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ABSTRACT 

A mathematical macroscopic traffic flow model known as Lighthill, Whitham and Richards 
(LWR) model appended with a closure nonlinear velocity-density relationship yielding a quasi-
linear first order (hyperbolic) partial differential equation as an initial boundary value problem 
(IBVP) was considered. The traffic model IBVP by finite difference method which leads to a first 
order explicit upwind difference scheme was discretized. Computer programs for the 
implementation of the numerical scheme and perform numerical experiments in order to verify 
some qualitative traffic flow behaviour for various traffic parameters were developed. 
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INTRODUCTION 

Nowadays traffic flow and congestion is one of the main societal and economical 
problems related to transportation in industrialized countries. Traffic congestion is one of 
the greatest problems in Bangladesh like some other countries of the world. In this 
respect, countries managing traffic in congested networks requires a clear understanding 
of traffic flow operations.  

The aims of this analysis are principally represented by the maximization of vehicles 
flow, and the minimization of traffic congestions, accidents and pollutions etc. 

Macroscopic fluid-dynamic model which is characterized by representations of traffic 
flow in terms of aggregate measures such as flux, space mean speed, and density was focused.  

In this paper (Section 2), we consider a macroscopic traffic model developed first by 
Lighthill and Whitham (1955) and Richard (1956) shortly called LWR model based on 
Habermann (1977), Klar (1996). As presented in Kabir (2006), we study finite difference 
method for first order non-linear PDE from Leveque (LeVeque 1992), Larsson and 
Thomee (Larsson and Thomce 2005), Morton and Mayers (Morton and Mayers 1995) 
and based on these, we develop a finite difference scheme for our traffic flow model as 
an (IBVP) which has been presented in Section 3. We develop computer programming 
code for the implementation of the numerical scheme and perform numerical experiments 
in order to verify some qualitative traffic flow behaviour for various traffic parameters. In 
Section 4 we present the numerical results. 
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Macroscopic model of traffic flow 

The macroscopic traffic model developed first by Lighthill and Whitham (1955) and 
Richard (1956) shortly called LWR model is most suitable for correct description of 
traffic flow; details can be seen in (Haberman 1977). In this model, vehicles in traffic 
flow are considered as particles in fluid: further the behaviour of traffic flow is modeled 
by the method of fluid dynamics and formulated by hyperbolic partial differential 
equation (PDE). 

The macroscopic traffic flow model is used to study traffic flow by collective 
variables such as traffic flow rate (flux) ( ),,txq traffic speed ( )txV ,  and traffic 
density ( ),,txρ  all of which are functions of space, ℜ∈x  and time, +ℜ∈t . The well-
known LWR model is formulated by employing the conservation equation 
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A non-linear velocity-density relationship of the form was used 
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then the flux is of the form  
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and leads to formulate a nonlinear first order hyperbolic partial differential equation 
(PDE) of the form                                

01. 2
max

2

max =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+
∂
∂

ρ
ρρρ V

xt
               (2.2) 

 
Analytical and numerical methods for traffic flow model 

The non-linear PDE is considered as an initial value problem (IVP) of the form 
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The IVP (3.1) can be solved by the method of characteristics as follows: 

The PDE in the IVP (3.1) may be written as 
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where  
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Equations (3.2) and (3.3) give  
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which is known as the characteristics curve of the IVP (3.1). 

Now from equation (3.2) we have 

    0=
dt
dρ

 

( ) ctx =∴ ,ρ  (3.5) 

Since the characteristics through ( )tx,  also passes through ( )0,0x  and ( ) ctx =,ρ  
is constant on this curve, so we use the initial condition to write 
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Equation (3.5) and (3.6) yield 
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Using equation (3.4), (3.7) takes the form 
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This is the analytic solution of the IVP (3.1) which is in implicit form. Moreover, in 
reality it is very difficult to formulate )(0 xρ  from data. Therefore, there is unavoidable to 
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use numerical methods for solving the IVP (3.1) as an initial boundary value problem 
(IBVP), which is also appended with boundary condition. 

Therefore, we study finite difference method for first order non-linear PDE presented 
in Leveque (1992), Larsson and Thomee (2005), Morton and Mayers (1996) and based 
on this, in the following, we investigate a finite difference scheme for our considered 
traffic flow model as an (IBVP). 
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with initial condition ρ(x, 0) = ρ0(x) and boundary condition ρ(a, t) = ρa(t). (3.10) 

Equation (3.9) may be written as                                                  
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In order to develop the scheme, we discretize the space and time. The discretization 
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Forward difference in time: 

From Taylor’s series we write 
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Similarly, backward difference in space 
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We assume the uniform grid spacing with step size h  and k  for time and space, 
respectively htt nn +=+1 and .1 kxx ii +=+  

We also write n
iρ   for ( )tx,ρ  in equations (3.12) and (3.13). 

Now equation (3.11) takes the form  
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This is the explicit upwind difference scheme for the equation (3.9).           

Therefore, equation (3.14) leads to the desired numerical scheme for the traffic model. 
 
Numerical simulations 

We have developed computer programs for the implementation of the numerical 
scheme and perform numerical experiments in order to verify some qualitative traffic 
flow behaviour for various traffic parameters as in the case of linear density-velocity 
relationship presented in (Andallah et al. 2008). Details can also be seen in Kabir (2006). 

To obtain the density profile we have used the explicit upwind difference scheme. In 
order to use the scheme we have made the following assumptions: 

 We have considered a highway in a range of 10 km. 

 We consider the number of vehicles of various points at a particular time as 
initial data and constant boundary ( ) 1.0/21,0 =tρ km 

 We have estimated maximum density which is parameterized by maxρ  in the 
traffic flow model. To evaluate maxρ , we have used the following equation 

                               ( ) cx *,0maxmax ρρ =       

      For this we use the initial density for ( )x,0ρ  and take c = 10 as a constant.  

According to focusing on some parameters we present some specific cases of traffic 
flow which are as follows: 

Case A: In this case we choose maximum speed, 60max =V km/hour. We 
consider /250max =ρ km and perform numerical experiment for 6 minutes in 90=Δt  
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time steps (temporal grid size) for a highway of 10 km in 51 spatial grid points with step 
size 100=Δx meters. We considered the initial density ( )x,0ρ  as presented in Fig. 1 
and the constant boundary value ( ) 1.0/210, =tρ km. We wanted to simulate the traffic 
flow for six minutes. In Fig. 2, the curve marked by solid line represents the density of 
car at 2 minutes, and the curve manifested as “-o-” represents the density profile at 4 
minutes also the curve manifested as “-*-” represents the density profile at 6 minutes, 
respectively.  

 

 

 

 

 

 
 

 
Fig. 1. Initial traffic density in 0.1 km.            Fig. 2. Density of car for 6 minutes. 

 
Fig. 3 represents the respective computed velocity profile according to the certain 

points of the highway. The velocity is computed by the following relation 
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can calculate the flux with the aid of the relation, Vq *ρ= . Fig. 4 represents the 
computed flux with respect to the distance. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
             Fig. 3. Velocity profile.                                               Fig. 4. Flux of traffic. 
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Case B: In this case, we reduced the parameter of maximum velocity 
30max =V km/hour but treating the same maxρ = 250 / km with the same initial density as 

in the case A.   As maximum speed is reduced by a factor 2 from the previous case, the 
density is also increased that is the speed is decreased. The computed density profile as 
shown in Fig. 5 and desired traffic waves are moving much slower than that in the 
previous case.   

Case C: If we take a source term after 5 km of our considered 10 km highway by 
which some vehicles are entered but suppose the same maximum speed and density also 
the initial density as in case A. The nature of the computed density profile is presented in 
Fig. 6. We see that after 5 km, density is increased and after 6 minutes it backs to the 
previous situation likely. 

 

 

 

 

 

 

 
 

Fig. 5. Car moves slower for smaller maxV .               Fig. 6. Density profile for including inflow.  
 
CONCLUSIONS 

We have considered a macroscopic traffic model known as LWR model, which is 
quasi-linear first order partial differential equation, and used it to predict density, velocity 
and flow (flux) profile at certain points of a highway using artificially assumed initial 
density and the density at the boundary. We have shown the analytic solution of traffic 
flow model by the method of characteristics which is in implicit form. For this we have 
discussed the numerical solution of the traffic flow model. The finite difference scheme 
has been used to solve the traffic flow model. Computer program has been used to predict 
density profile for the implementation of the explicit upwind difference scheme. We have 
verified the qualitative behaviour of different flow variables of the traffic flow model. 
The outcome of different parameters of the model has also been presented. The predicted 
speed and flux with respect to the distance and these results are consistent with the values 
of the parameters chosen. This motivates us to extend this numerical scheme for further 
study of the model. 
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