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where b (1) is a pre-assigned integer, called 

the bottleneck size. 

Any arrangement of the n (1) discs on the hree 

pegs  that  can  be  obtained  without  violating  

condition (2) above is called a legal position. 

Let g3(n, b) denote the minimum number of 

moves required to transfer the tower of n discs 

from its starting position (not necessarily 

standard) to a legal (but not necessarily 

standard) position on another peg, and let M3(n, 

b) denote the minimum number of moves 

required to solve the bottleneck Tower of 

Hanoi problem. The following result, giving 

the recurrence relations satisfied by g3(n, b) and 

M3(n, b), is due to Poole (1992). 
 

Lemma 1: For any n (≥ 1) and b (≥ 1), 

(1)  g3(n, b) = 2g3(n
 – b, b) + b, n ≥ b,                                                                                 

(2)  M3(n, b) = 2g3(n
 – 1, b) + 1, n ≥ 1,                                                                           

with  

g3(n, b) = n for all 0 ≤ n ≤ b,  

M3(0, b) = 0 for all b ≥ 1. 

The solution of the bottleneck Tower of Hanoi 

problem, due to Poole (1992), is given below. 

 

Theorem 1: Given n (≥ 1) and b (≥ 1), let 

n = bq + r, 

where, 

q{1, 2, …}, 0 ≤ r < b. 

Then, 

(1)  g3(n, b) = (b + r)2q – b, 

(2) 
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The 4-peg generalization of the Tower of Hanoi 

problem is commonly known as the Reve’s 

puzzle due to the English puzzlist Dudeney 

(1958). The problem may be stated as follows: 

Given are four pegs, S, P1, P2 and D, and a 

tower of n (1) discs (of varying sizes) on the 

source peg S, in small-on-large ordering. The 

objective is to move this tower to the peg D, 

using the auxiliary pegs P1 and P2, in a 

minimum number of moves, where each action 

shifts the topmost disc from one peg to another 

under the “divine rule” that no disc can ever be 

placed on top of a smaller one. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Initial state in the Reve’s puzzle. 

Let M4(n) be the minimum number of moves 

required to solve the Reve’s puzzle with n (  

1) discs. Then, the dynamic programming 

equation satisfied by M4(n) is as follows: 

 ( )              2 ( ) 2 1   1
              0 1

n k
4 4M n min M k , n ,

k n

   
  

          (1)                                                                                                                                                                                                                                           

M4(0) = 0.                                             (2) 

The complete solution of the recurrence 

relation (1) is given in the theorem below. 

Theorem 2: Let 
(   1)

2
s s
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integers s (  1) and R (0  R  s). Then, 
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s s
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is attained exactly at the two points k = n
 – s, n 

– s – 1; moreover, in either case, 

(   1)
2

2 ( 1) 1.( ) s
4

s s
M R s R


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For further details on Reve’s puzzle, the reader 

is referred to Majumdar (1994). 
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The bottleneck Reve’s puzzle was proposed by 

Majumdar (1996), who gave a scheme to derive 

the dynamic programming equation for the 

optimal value function. Based on some local-

value relationships, Majumdar and Halder 

(1996) presented a recurrence relation to 

calculate the optimal value function as well as 

the optimal partition numbers recursively in n. 

It may be noted that, in Theorem 1, there is no 

restriction on the number of violations of the 

“divine rule”, so long as Condition 2 is not 

violated. But what happens if the violation of 

the “divine rule” is allowed only once? To 

solve this new version of the problem, let 

MB3(n, b) be the minimum number of moves 

required to solve the restricted bottleneck 

Tower of Hanoi problem with n (1) discs and 

bottleneck size b (2). Then, the closed-form 

expression of MB3(n) is given below. 

Theorem 3: For any b (2), 

MB3(n) = 2n–b+1 + 2b – 3, n  b, 

MB3(n) = 2n – 1, 1  n  b, 

Proof: To find MB3(n, b), n  b, the scheme 

below is employed: 

Step 1: Move the topmost n – b – 1 discs   d1, d2, 

…, dn–b–1, (from the peg S) to the peg D, in 

(minimum) 2n–b–1 – 1 number of moves, 

Step 2: Form the inverted tower with the b 

discs, dn–b, dn–b+1, …, dn–1, 

Step 3: Now, transfer the discs d1, d2, …, dn–b–1 

(from the peg D) to the peg P, in 

(minimum) 2n–b–1 – 1 number of moves, 

Step 4: Shift the largest disc, dn, (from the peg 

S) to the peg D, 

Step 5:   Move the discs d1, d2, …, dn–b–1 (from 

the peg P) to the peg S, in (minimum) 2n–b–1 

– 1 number of moves, 

Step 6: Transfer the b discs on the peg P, one-

by-one, to the peg D, 

Step 7: Finally, shift the discs d1, d2, …,  dn–b–1 

(from the peg S) to the peg D, in (minimum) 

2n–b–1 – 1 number of moves, to complete the 

tower on the peg D. 

The total number of moves involved is 
 

2(2n–b–1 – 1 + b + 2n–b–1 – 1) + 1  

= 2n–b–1 + 2b – 3. 

When 1  n  b, the transfer process can be done 

linearly in 2n–1 move by first forming an 

inverted tower of the smallest n–1 disc on the 

peg P, then moving the largest disc to the peg 

D, and finally, shifting the n–1 disc, one-by-

one, to the peg D. 

All these complete the proof of the theorem. 

Next, let MB4(n, b) be the minimum number of 

moves required to solve the restricted 

bottleneck Reve’s puzzle with n (1) discs and 

bottleneck size b (2), when the violation of the 

“divine rule” is allowed (at most) once. Then, 

we have the following theorem. 
 

Theorem 4: For any b (  2), 

MB4(n, b) = M4(n
 – b + 1) + 2(b – 1), n  b, 

MB4(n, b) = 2n – 1, 1  n  b.  

Proof: To find the dynamic programming 

equation satisfied by MB4(n, b), n  b, the 

scheme below is followed: 

Step 1: Move the topmost k discs from the peg 

S, to some auxiliary peg, say, P1, using the 

available four pegs, in (minimum) M4(k) 

moves, 

Step 2: Shift the remaining n – k discs, from the 

peg S to the peg D, in (minimum) MB3(n – 

k, b) = 2
n–k–b+1 + 2b – 3 number of moves, 

Step 3: Transfer the k discs (from the peg P1) to 

the peg D, in (minimum) M4(k) moves. 
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The total number of moves involved in the 

above three steps is 

2M4(k)+ 2n–k–b+1 + 2b – 3, 

where k is determined so as to minimize the 

above expression. Therefore, MB4(n, b) 

satisfies the following recurrence relation  

 +1( , ) =              2 ( ) 2 2 3
                     0 1

n k b
4 4MB n b min M k b

k n

   
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,                      

which gives the desired expression by virtue of 

(1). The remaining part is evident from the 

proof of Theorem 3. 

 

 

 

 

 

 

Fig. 2. A legal position in the bottleneck 

Reve’s puzzle with. 
  

Theorem 5: For any b  2 fixed,  
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Proof: Follows from Theorem 2. 

Note from Theorem 4 that MB4(n, 1) = M4(n), 

that is, when b = 1, the restricted bottleneck 

Reve’s puzzle reduces to the Reve’s puzzle. 
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