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with vary slowly with time, which is more powerful than the existing
perturbation method. Finally, results are discussed, primarily to

enrich the physical prospects, and shown graphically by utilizing

MATHEMATICA and MATLAB software

Introduction

The most well-known standard methods for

constructing the approximate analytical
solutions to the nonlinear oscillators are the
perturbation techniques. For the first time,
Krylov and Bogoliubov (1974) introduced a
new perturbation method in order to discuss
the transient state solution of the equation

presented by

X+ w’x = eF (x,%)

(1.1)

where € is a small parameter, ® is the angular
frequency and x is the derivative of x with
respect to t and so on. But in particular cases, it
gives those periodic solutions obtained by
2008) method 1is a
well-known perturbation method for determin-

Poincare’s (Dey et al.,

ingperiodic solutions of nonlinear ordinary
differential equations with small nonlinearities.

*Corresponding author:<skhshahjahan@gmail.com>

When e=0 , equation (1.1) reduces to linear
equation and solution of which is

(1.2)

where a and @ are arbitrary constant to be

x = acos (ot + @)

determined from the initial conditions.

Now in order to determine an approximate
solution of the equation (1.1) for small but
different from zero, Krylov and Bogoliubov
(1974) assumed that the solution is still given

by (1.2) with the derivative of the from

X =—awsin ¢+ @)

(1.3)

Therefore, the first approximation solution of
Krylov and Bogliubov (1974) method is

£ 2”[F(cos w,—asiny)
a=——

27w q| siny

}dl// (1.4)
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ao__¢ J-{ (cosy aSInl//)i|dl//
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where @ and # are independent of time. The
equation (1.4) are the differential equations of
the first approximation in the form in which
they are original; the method was developed by
(Roy and Alam, 2004) for obtaining a periodic
solution of a second-order nonlinear
differential equation. The asymptotic method
of Krylov-Bogoliubov-Mitroplshkii (KBM)
[1.1-1.3] is a particularly convenient and
extensively used method to study nonlinear
differential systems with small nonlinearities.
Through it is restricted to differential equations of
the type (1.1), this method has been extened in
plasma physics, theory of oscillations and control
theory. Kruskal (1962) has extended this method
to solve the equation of type

X =F (X, X, ) (1.5
The solutions of these fully nonlinear
equations are based on the recurrent relations
and are given in the forms of power series of the

small parameter € . Cap (1974) has investigated
some nonlinear systems of the type

i+ w?f(x) =€F(x,%) (1.6)
by using elliptic functions in the sense of the
Krylov and Bogoliubov (1974) method.

Later this technique has been amplified and
justified mathematically by Bogoliubov and
Mitropolkii (1961) and extended to a non-
stationary vibration by Mitropokii (1964).
They assumed the solution of the nonlinear
differential equation (1.1) in the form

3 2
X=acosy +eau,(a,p) +&U,(a,p) + (1.7)

+e'u,(a,p)+ 0(e")

where U, (k=1,2, ..., n) are periodic functions

of ywith period 2" and a, b and ware a
function of time t, defined by

a=—¢gh(a)+&’A (@) +---+&"A (a) +O(s")

Y =w+eB,(a)+£°B,(a)+--+£"B () +0(e™Y)  (1.8)
After replacing a and y by the function
defined in equation (1.8), is a solution of (1.1).
The function A, and B, generate the arbitrari-

ness in the definitions of the functions u, . To

remove this arbitrariness, the following
additional conditions are imposed.
2

[luk(a y)]cosydy =0

[Tuk(a, w)lsin ydy =0

(0]
These conditions guarantee the absence of
secular terms in all successive approximations.
Dey et al. (2008) extended the technique for
damped forced nonlinear systems with varying
coefficients. Later, Alam and Satter (1997)
have presented a unified KBM method for
solving third-order nonlinear systems. Alam
(2002) has also presented a unified Krylov-
Bogoliubov-Mitropolskii method, which is not
the formal form of the original KBM method,
for solving n-th order nonlinear systems. Struble
(1961) has developed a technique for treating
weakly nonlinear oscillatory systems such as those

(1.9)

governed by X + @’ X = &F (X, X,t) (1.10)

He expressed the asymptotic solution of this
equation for small & in the form
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N
x =acos(wt—0)+ Y &"x, (t) +O(e*™)
n=1

where a and @ are slowing varying
functions of time.

Krylov and Bogoliubov (1947) originally
developed a perturbation method to obtain an
approximate solution of a second-order
nonlinear differential system. The method was
amplified and justified by Bogoliubov and
Mitropolskii (1961), Mitropolskii (1964) has
extended the method to nonlinear differential
system with slowly varying coefficients.
Following the extended KBM method,
Bojadziev and Edwards (1981) and Arya and
Bodadziev (1980) studied some damped
oscillatory and purely non-oscillatory systems
with slowly varying coefficients. Murty (1971)
presented a unified KBM method for both
under-damped and over-damped system with
constant coefficients. Alam (2002) presented a
unified formula to obtain a general solution of
an n-th order ordinary differential equation
with constant and slowly varying coefficients.
Roy and Alam (2004) found an asymptotic
solution of a differential system in which the
coefficient changes in an exponential order of
slowly varying time. Dev et al. (2008) has
presented an extended KBM method for under-
damped, damped and over-damped vibrating
systems in which the coefficients change
slowly and periodically with time. Recently,
Alam et al. (2006) have developed the general
Struble’s techniques for several damping
effects. This paper aims to find a solution based
on the KBM and general Struble’s nonlinear
autonomous systems technique, which varies
slowly with time, which is more powerful than

the existing perturbation method and measures,
better results, for strong nonlinearities.

Method of First Approximation of Krylov
and Bogoliubov
We consider a method of finding an
approximate solution of a nonlinear differential
equation having the form
y+y=:cF(y.y)
where & is a very small parameter, if £=0.
Then equation (2.1) becomes
y+y=0

(2.1)

(2.2)
The solution of equation (2.2) may be written
as,

y = a(t) cos(t + @) (2.3)
where @ and ¢ are arbitrary constant to be
determined from the initial conditions.

Now equation (2.3) with respect to t, we get,
y =-a(t)sin(t + ) (2.4)
where @ and ¢ are functions of rather than

being constants. If & # 0 but it is sufficiently
small. We can assume (2.1) has a solution of
the form of equation (2.3) with derivative at the
form of equation (2.4) provided, that is
equation (2.3) becomes,

y =a(t) cos(t + (1)) (2.5)
and

y =—a(t)sin(t+ ¢(t)) (2.6)
where a and ¢ are functions of t.

Differentiating (2.5) we get,

y=dcos(t + p(t)) —asin(t+ o)1+ @) (2.7)
In order to make the form y given by equation
(2.6) we must require

acos(t+ o(t) —sin(t+ () =0
Again, differentiating (2.6) we get,

(2.8)
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y =asin(t+p(t) —a)cos(t + ¢(t))

=dsin(t+ g(t)) cos(t + (1)) (2.9
—acos(t+ ¢(t))
Now using (2.9), (2.5) & (2.6) and
let t+@ =1, we get from (2.1)
asiny —acosy —agcosy +acosy =¢  (2.10)
Now, equation (2.8) & (2.10) we get,
acosy (t)—a(t)sin w(t)=0 (2.11)
and
asin y(t) +a(t) cosy (t)
= sF[a(t)cosy,—a(t)siny]  (212)

Multiplying (2.11) by COSw/(t) and (2.12) by
sin y(t) then adding we get

a= —g F[a(t) cosy,—a(t)sin y]sin (1)
(2.13)

Multiplying (2.11) by sin y/(t) and (2.12) by

cosy (t) then subtracting we get,
¢= —%[a(t) cosy,—a(t)sin w cosy (t)] (2.14)

These are the exact equations for the function
aand ¢ when the solution is of the form given

by equation (2.5) and (2.6).

Now we apply the first approximation of
Krylov and Bogliubov Equation

F[a(t) cosw,—a(t)sin y]sin w(t)
and

F[a(t) cosy,—a(t)sin y]cos(t)

in Fourier Series, we obtain

Fsiny =Ky(a)+ > [K,(a)cosny + L, sin ny]

n=1

and

Fcosy =Py(a)+ Y [P,(a)cosny +Q, sin ny]
=1

where,

2

K, (a)= 1 j Fla(t) cosy,—a(t)sin ysin w(t) cosnydy

0

N

P.(a) = iTF[a(t) cosy,—a(t)sin y]cosy (t)dy

P (a) = %TF [a(t) cosy,—a(t) sin y|cosnydy

L (a)= 1 TF [a(t) cosy,—a(t)sin w Jsin y(t)sin nydy

0

N

2z

Q.(a)= 1 [ Flatt)cosy.~a(t)sin yJcosy (t)sin nydy
T

0
Equation (2.13) and (2.14) can be written as,

a=-K,(a)- i[Kn (a)cosny + L, sin(ny)]

&
a(t)
The first approximation of Krylov —Bogliubov
Consists of neglecting all terms on the R.H.S
except first that is

a=-eK,(a)

p=- [Po(a)+i[Pn(a)cosnw+Qn Sin(m//]j

- _%JZ”(F[a(t)cosu/,—a(t)sin ylsinydy  (2.15)
790

and
h—__ %
Y= 7am Fo(a)
- _iLZ”(F[a(t) cosy,—a(t)sin y])cosydy (2.16)

A justification for this procedure is as follows.
We note that the right-hand sides are periodic
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with respect to the variable y with a period to

27 . Also a=0(¢g)and ¢ =0(g).

Example

Consider the damped linear oscillator
y+y+ey=0

For 1t approximation, we know

F=-y

.17)

We have,
g

W:_Zna

2
I F (—asin w) cosyd y
6]

27
g _[asin wcosydy  (2.18)
2ma 5

Now, let siny =z = cosydy =dz
when y =0 thenz=0and y =27 thenz=0
From equation (2.18), we have

8 o0
y=———\|zdz=0
v 272"!:

and

B, =—Zij F(-asin w)cosydy =0
7Z3.0

(2.19)

2z
—ij'asin w cosydy
27ma
Now, let
siny =z or cosydy = dx
when y =0 then Z=0 and

when w =27 then 2=0
From equation (2.19), we have

1 2
y=———|zdz=0
v 27z-c[

27
—iIF(—asin w)sin ydy
2

(o]

2
—% [@—cos2z)dy

0
2z

ea[ 1. } 1
=—/|7—-=SiNn27| =--¢&a
4 2 0 2
1, a
Therefore, A =—a=——.
& 2

In this case, the function,

F(acosy,—asin y)sin y(t)

and

F(acosy,—asin w)acosy

and the corresponding Fourier Coefficients are

12;1' )
glz—j(asm w)cosydy
T 0
0
=3jzdz=0
7[0
1 2
g, z—I(asin w) cos 2ydy
T 0
a27z
=— | (sin w —2sin ?
ﬂg( y v My
a27r 1 . 1 )
=— —=siny +—=sin 3y |[dy =0
7r£[ 2" V72 W) v
Similarly, g;(a) =0, i =3,4,5,---
and
127z
hlzz'f(asin w)sin wdy
0

2z
% j(l—cos 2y )dy =a
0

1%, . .
h, == | (asin y)sin 2
' ﬁy y)sin 2ydy (2:20)

27
= % I(Zasin w CoSy )cos 2udy
0
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Now, let sin y =z = cosydy =dz
wheny =0 then Z=0 and
when w =27z then 2=0

From equation (2.20), we have
2
h, = 2a _fsin 2y cosydy
T (0]
(]
= 3_[ z?dz=0
7T (0]

Similarly, h, =h, =h, =0,U
h(@)=0, i1 =234,
Putting this in the Equation

U, (a,y)= go(a)+i[gn(a) cosny +h, (a)sin m//]/(l—nz)

We get, U, (a,) =0
Again,

1 dB,
Az(a):—E[ZAiBﬁAlaa]

1 or .
—gfo V. (ap)Fy(@cosy -asiny)

+A, cosy —aB, sin W+% F,y(acosy,—asin V/)}sin wdy
a 27 a 2
=— .fasin w cosy sin ydy =— Isin 2w cospdy =0
4r Ar

B (a)=}+izfsin y/coszy,dl//zl (2.21)
? 8 dr 8

This is the second approximation from which
we have Y =cosy and Integrating both
sides we get, a = Ae /2 and y =1-5?/8.
Integrating (2.21) we get,
p(t)=[1-&"18)t+y,
where A and , arbitrary constant. Hence the
solution in the second approximation is given
by
y=Ae”

et/2

cos(l— & I8)t +y,
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Fig. 1. Damped linear oscillation with

corresponding numerical solution [Euler]

are plotted with initial condition [y(0) =
1,y'(0) =0,e =0.1].

eps 0.1

o0
oid»

Position

oo
PN

-0.6
-0.8
=4 - - - - L - - -
01 2 3 4 5 6 7 8 910
Time
Fig. 2. Damped linear oscillation with
corresponding numerical solution [Euler]
are plotted with initial condition [y(0) =
1,y'(0) =0,e = 0.2].
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Fig. 3. Damped linear oscillation with
corresponding numerical solution [Euler]
are plotted with initial condition [y(0) =
1, y'(0) =0,e =0.3].
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Fig. 4. Damped linear oscillation with
corresponding numerical solution [Euler]
are plotted with initial condition [y(0) =
1,y'(0) =0,e = 0.4].
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Fig. 5. Damped linear oscillation with
corresponding numerical solution [Euler]
are plotted with initial condition [y(0) =
1,y'(0) =0,e =0.5.
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Fig. 6. Damped linear oscillation with
corresponding numerical solution [Euler]
are plotted with initial condition [y(0) =
1,y'(0)=0,€6=0.1,e=0.2, €=0.3,
€=0.4,e =0.5].

Solution of Nonlinear Differential Systems

Let us consider a nonlinear non-autonomous
differential system governed by

K+(&7 +¢,c087)x=-d (x,%,7), =& 3.1)

where the over-dots denote differentiation with
respecttot, & isasmall parameter, ¢;and &,

are constants, and ¢; = O(&) =&,

is the slowly varying time, f is a given nonlinear

function. We set @*(r) = glz +¢,C0ST,
where @(7)is known as internal frequency.

Putting £ =0 and 7=, (constant), in Eq.

(3.1), we obtain the unperturbed solution of
(3.1) in the form

X(t,0) = X, o €Xp( 4, (75 )t + Xy g ©X( Ay (7o)t (3.2)
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Let Eq.(3.1) has two eigen values, A, (z,)and
A,(z,) are constants, but when & =0,
A(z,) and A,(z,) vary slowly with time.
When & # Qwe seek a solution of (3.1) in the

form

X(t, &) =x(t,7) +x,(t,7) +eu, (X, X ,,t,7)

—1!

+ &2 (X, X, 1, T) 4o (3.3)

where X; and X satisfy the equations
X! = A7), + X (X, X5, 7) + & X (X, X1, 7) +o

X'y =4, ()X, +eX (X, X4,7) a4
+&2X (X, X, T) + '

Differentiating x(t,&) two times with respect

to t, substituting for the derivatives X and x
in the original equation (3.1) and equating the
coefficient of &, we obtain

(2,D%, + 4% ,Dx ) X, + (4% DX, + A ,DX 1) X,
+ﬂl'Xi+ﬂéX_1—ﬂ,ZX1—Z1X_1 +
(/“'1X1DX1 + jixleX—l - j~1)(j'1x1DX1 + j~2X71DX71 - j'2 )Jl

=—fO(x,x,,7) (3.5)

where,
da da

P Y e T WL
dr dz ox,
Dx_, :5, f©@ = f(Xy,X0,7)

-1

Here it is assumed that f © can be expanded
in Taylor’s series as given below:

fO=>F @xx3

rn,rn,=0

(3.6)

To obtain the solution of (3.1), it has been
proposed in (Cap, 1974) that, %1 excluded the

terms X,* X "2 @ (1242t of £ O yyhere

I, —r, ==x1. This restriction guarantees that
the solution representations always exclude

secular-type (e.g., tcost and tsint),
otherwise a sizeable error would occur (Cap,
1974). By transforming the varia-bles

X =ae’ /2 and X, =ce’/2 and
A =lw, 1, =—lw,the existing form of the

solution is determined (see also [3.1-3.3]).
Here, o and ¢ are respectively amplitude and

phase variables.

Example

Let us consider a nonlinear deferential
autonomous system with slowly varying
coefficients

X+ (L + &, cost)X = —ex’ (3.7)

Here over dots denote differentiation with
respect

to t. X, =X +X, and the function f©

becomes,

0 _ 3 2 2 3
Y =—(X +3x% X, +3X,X5 + X))
(3.8)
Following the assumption (discussed in section

2) U, excludes the terms 3X/X_,, 3X,X% and.

We substitute in (3.5) and separate it into two
parts

(A%, DX, + A, %, Dx )X, + (2%, Dx, + A,x ,Dx )X,
A A = A Xy = X == (3xEX, +3%,X%)

(3.9)

and
(XD + 2,0 DX =) 7kDt + 2x D -2 = (¢ +¢) - (3-10)

The particular solution of (3.10) is

U, =-150¢ (-4, 134) — X8 (-4, 131,)"} (3.11)
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Now we have to solve (3.9) for two functions
X1 and ¥_4 (discussed in section 2)

The particular solutions are

X, = =A% (A4 = A,) " =15x2x A4 (3.12)
and
X, =%, (4 -4,)" -15xx34"  (3.13)

Substituting the functional values of X, X ;

from (3.12) and (3.13) into (3.4) and
rearranging, we obtain

%= Aty + el A% (- 2,)H-15xx ) (3.14)
and
X, =X, + el y( — 1) ~15xx% 1Y) (3.15)

The variational equations of & and ¢, in the

real form, transform (3.14) and (3.15) to
a=—-&o' 2w (3.16)
and

@ = w+3ex’ | 8

where @ =/ +¢,c0ST .

Therefore, the first-order solution of the
equation (3.7) is

(3.17)

X(t,&) =acosp+eu,
(3.18) where @ and ¢ are the solutions of

the equations (3.16) and (3.17) respectively, U,
is given by (3.11). Substituting the values of
X3 and ¥_1 from (3.12) and (3.13) into

X(t, £) = a(t)e™ +b(t)e™ +eu,(a,b,t) +...

and solving them, we obtain the exiting
solution of (3.4) similar to (3.16) and (3.17).

Conclusion

An approximate solution of second-order
nonlinear differential systems with varying time
has been found based on the KBM method and
general Struble’s technique. The method is
simpler than the classical method and
measures  better  result for  strong
nonlinearities. The method can be preceded
to higher-order nonlinear systems (i.e., third
order, fourth order, etc.).
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