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 where  and  are independent of time. The 

equation (1.4) are the differential equations of 

the first approximation in the form in which 

they are original; the method was developed by 

(Roy and Alam, 2004) for obtaining a periodic 

solution of a second-order nonlinear 

differential equation. The asymptotic method 

of Krylov-Bogoliubov-Mitroplshkii (KBM) 

[1.1-1.3] is a particularly convenient and 

extensively used method to study nonlinear 

differential systems with small nonlinearities. 

Through it is restricted to differential equations of 

the type (1.1), this method has been extened in 

plasma physics, theory of oscillations and control 

theory. Kruskal (1962) has extended this method 

to solve the equation of type   

),,( xxFx                      (1.5)                                                                          

 The solutions of these fully nonlinear 

equations are based on the recurrent relations 

and are given in the forms of power series of the 

small parameter . Cap (1974) has investigated 

some nonlinear systems of the type 
 

�̈� + 𝜔2𝑓(𝑥) = 𝜖 𝐹(𝑥, 𝑥 ̇ )               (1.6)                                                       

by using elliptic functions in the sense of the 

Krylov and Bogoliubov (1974) method. 

Later this technique has been amplified and 

justified mathematically by Bogoliubov and 

Mitropolkii (1961) and extended to a non-

stationary vibration by Mitropokii (1964). 

They assumed the solution of the nonlinear 

differential equation (1.1) in the form 
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where ku  (k=1,2, ..., n) are periodic functions 

of  with period 
2 and a, b and  are a 

function of time t, defined by 
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After replacing a  and   by the function 

defined in equation (1.8), is a solution of (1.1). 

The function kA and kB generate the arbitrari-

ness in the definitions of the functions  ku . To 

remove this arbitrariness, the following 

additional conditions are imposed. 
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These conditions guarantee the absence of 

secular terms in all successive approximations.  

Dey et al. (2008) extended the technique for 

damped forced nonlinear systems with varying 

coefficients. Later, Alam and Satter (1997) 

have presented a unified KBM method for 

solving third-order nonlinear systems. Alam 

(2002) has also presented a unified Krylov-

Bogoliubov-Mitropolskii method, which is not 

the formal form of the original KBM method, 

for solving n-th order nonlinear systems. Struble 

(1961) has developed a technique for treating 

weakly nonlinear oscillatory systems such as those 

governed by ),,(2 txxFxx      (1.10) 

  

He expressed the asymptotic solution of this 

equation for small   in the form 
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where a  and   are slowing varying 

functions of time. 

Krylov and Bogoliubov (1947) originally 

developed a perturbation method to obtain an 

approximate solution of a second-order 

nonlinear differential system. The method was 

amplified and justified by Bogoliubov and 

Mitropolskii (1961), Mitropolskii (1964) has 

extended the method to nonlinear differential 

system with slowly varying coefficients. 

Following the extended KBM method, 

Bojadziev and Edwards (1981) and Arya and 

Bodadziev (1980) studied some damped 

oscillatory and purely non-oscillatory systems 

with slowly varying coefficients. Murty (1971) 

presented a unified KBM method for both 

under-damped and over-damped system with 

constant coefficients. Alam (2002) presented a 

unified formula to obtain a general solution of 

an n-th order ordinary differential equation 

with constant and slowly varying coefficients. 

Roy and Alam (2004) found an asymptotic 

solution of a differential system in which the 

coefficient changes in an exponential order of 

slowly varying time. Dev et al. (2008) has 

presented an extended KBM method for under-

damped, damped and over-damped vibrating 

systems in which the coefficients change 

slowly and periodically with time. Recently, 

Alam et al. (2006) have developed the general 

Struble’s techniques for several damping 

effects. This paper aims to find a solution based 

on the KBM and general Struble’s nonlinear 

autonomous systems technique, which varies 

slowly with time, which is more powerful than 

the existing perturbation method and measures, 

better results, for strong nonlinearities.  

 

Method of First Approximation of Krylov 

and Bogoliubov 
 

We consider a method of finding an 

approximate solution of a nonlinear differential 

equation having the form 

        ),( yyFyy                         (2.1) 

where   is a very small parameter, if 0 . 

Then equation (2.1) becomes 

               0 yy                                 (2.2)                                       

The solution of equation (2.2) may be written 

as, 

)cos()(  ttay                   (2.3)   

where a  and   are arbitrary constant to be 

determined from the initial conditions. 

Now equation (2.3) with respect to t, we get, 

                 )sin()(  ttay             (2.4)                                                                     

where a  and   are functions of rather than 

being constants. If 0  but   it is sufficiently 

small. We can assume (2.1) has a solution of 

the form of equation (2.3) with derivative at the 

form of equation (2.4) provided, that is 

equation (2.3) becomes, 
 

             ))(cos()( tttay                   (2.5)                                                          

and   

              ))(sin()( tttay             (2.6)                                                                                      

where a  and   are functions of t. 

Differentiating (2.5) we get, 

)1))((sin())(cos(   ttattay   (2.7)                        

In order to make the form y given by equation 

(2.6) we must require  

0)(sin()(cos(  tttta          (2.8) 

Again, differentiating (2.6) we get, 
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 Now using (2.9), (2.5) & (2.6) and         

let  t , we get from (2.1)  

  coscoscossin aaaa      (2.10)             

 Now, equation (2.8) & (2.10) we get, 

0)(sin)()(cos  ttata    (2.11) 

and                                                                                                                         

)(cos)()(sin ttata    

       =   sin)(,cos)( tataF     (2.12)             

Multiplying (2.11) by )(cos t  and (2.12) by 

)(sin t  then adding we get 
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Multiplying (2.11) by )(sin t  and (2.12) by 

)(cos t then subtracting we get, 
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These are the exact equations for the function 

a and   when the solution is of the form given 

by equation (2.5) and (2.6). 

Now we apply the first approximation of  

Krylov and Bogliubov Equation  
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 and  
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in Fourier Series, we obtain 
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Equation (2.13) and (2.14) can be written as, 
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The first approximation of Krylov –Bogliubov 

Consists of neglecting all terms on the R.H.S 

except first that is 
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A justification for this procedure is as follows. 

We note that the right-hand sides are periodic 
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with respect to the variable  with a period to 

2 . Also  )(Oa  and )( O . 

 

Example 

Consider the damped linear oscillator 

           0 yyy    (2.17)                                                                               

For 1st approximation, we know 
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Now, let  dzdz   cossin  

when 0  then z=0 and   2  then z = 0 

From equation (2.18), we have 
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Now, let  

zsin or dxd cos  

when 0  then 0z  and  

when  2  then  0z  

From equation (2.19), we have 
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  Now, let  dzdz   cossin  

when 0  then 0z  and 

when  2  then 0z   

From equation (2.20), we have 
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This is the second approximation from which 

we have cosY   and  Integrating both 

sides we get, 2/tAea   and 8/1 2  . 

Integrating (2.21) we get,  
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2 )8/1()(   tt  

where A and 0 arbitrary constant. Hence the 

solution in the second approximation is given 

by  
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Fig. 1. Damped linear oscillation with 

corresponding numerical solution [Euler] 

are plotted with initial condition [𝒚(𝟎) =
𝟏, 𝒚′(𝟎) = 𝟎, 𝝐 = 𝟎. 𝟏]. 

 
 

 

 

 

 

 

 

Fig. 2. Damped linear oscillation with 

corresponding numerical solution [Euler] 

are plotted with initial condition [𝒚(𝟎) =
𝟏, 𝑦′(0) = 0, 𝜖 = 0.2]. 

 

 

 

 

 

 

 

 

Fig. 3. Damped linear oscillation with 

corresponding numerical solution [Euler] 

are plotted with initial condition [𝒚(𝟎) =
𝟏, 𝒚′(𝟎) = 𝟎, 𝝐 = 𝟎. 𝟑]. 
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Fig. 4. Damped linear oscillation with 

corresponding numerical solution [Euler] 

are plotted with initial condition [𝒚(𝟎) =
𝟏, 𝒚′(𝟎) = 𝟎, 𝝐 = 𝟎. 𝟒]. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Damped linear oscillation with 

corresponding numerical solution [Euler] 

are plotted with initial condition [𝒚(𝟎) =
𝟏, 𝒚’(𝟎) = 𝟎, 𝝐 = 𝟎. 𝟓. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Damped linear oscillation with 

corresponding numerical solution [Euler] 

are plotted with initial condition [𝒚(𝟎) =
𝟏, 𝒚′(𝟎) = 𝟎, 𝝐 = 𝟎. 𝟏, 𝝐 = 𝟎. 𝟐, 𝝐 = 𝟎. 𝟑,
𝝐 = 𝟎. 𝟒, 𝝐 = 𝟎. 𝟓]. 

 
 

Solution of Nonlinear Differential Systems 

Let us consider a nonlinear non-autonomous 

differential system governed by   

 ),,()cos( 2

2

1  xxfxx   ,  t     3.1) 

where the over-dots denote differentiation with 

respect to t,   is a small parameter, 1 and 2  

are constants, and  21 )(  O  

is the slowly varying time, f is a given nonlinear 

function. We set  cos)( 2

2

1

2  , 

where )( is known as internal frequency. 

 Putting 0  and 0  (constant), in Eq. 

(3.1), we obtain the unperturbed solution of 

(3.1) in the form 

txtxtx )(exp()(exp()0,( 0210,1010,1       (3.2) 
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Let Eq.(3.1) has two eigen values, )( 01  and 

)( 02   are constants, but when ,0

)( 01    and )( 02   vary slowly with time. 

When 0 we seek a solution of (3.1) in the 

form     
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Differentiating ),( tx  two times with respect 

to t , substituting for the derivatives x  and x 

in the original equation (3.1) and equating the 

coefficient of  , we obtain 
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Here it is assumed that 
)0(f  can be expanded 

in Taylor’s series as given below: 
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To obtain the solution of (3.1), it has been 

proposed in (Cap, 1974) that, excluded the 

terms 
trrrr

exx
)(

11
221121  

 of
)0(f where

121  rr . This restriction guarantees that 

the solution representations always exclude 

secular-type (e.g., tt cos  and tt sin ), 

otherwise a sizeable error would occur (Cap, 

1974). By transforming the varia-bles 

2/1

 iex     and 2/1

 iex 

   and            

 i1 , ,2  i the existing form of the 

solution is determined (see also [3.1-3.3]). 

Here,   and   are respectively amplitude and 

phase variables. 

Example 

Let us consider a nonlinear deferential 

autonomous system with slowly varying 

coefficients 

3

2

2

1 )cos( xxx             (3.7) 

Here over dots denote differentiation with 

respect 

to t . 110  xxx  and the function 
)0(f  

becomes, 
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(3.8)             

Following the assumption (discussed in section 

2) 1u  excludes the terms 1

2

13 xx ,
2

113 xx  and. 

We substitute in (3.5) and separate it into two 

parts  
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  The particular solution of (3.10) is  
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Now we have to solve (3.9) for two functions 

 and (discussed in section 2)  

The particular solutions are 
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Substituting the functional values of 1X , 1X  

from (3.12) and (3.13) into (3.4) and 

rearranging, we obtain 
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The variational equations of   and  , in the 

real form, transform (3.14) and (3.15) to  

           2/ x             (3.16) 

and        

22 8/3  x            (3.17) 

where   cos2

2

1  . 

  Therefore, the first-order solution of the 

equation (3.7) is  

             1cos),( utx                   

(3.18) where    and      are the solutions of 

the equations (3.16) and (3.17) respectively, 1u  

is given by (3.11). Substituting the values of 

 and from (3.12) and (3.13) into 

...),,()()(),( 1
21  tbauetbetatx
tt  

 

 and solving them, we obtain the exiting 

solution of (3.4) similar to (3.16) and (3.17). 

Conclusion 

An approximate solution of second-order 

nonlinear differential systems with varying time 

has been found based on the KBM method and 

general Struble’s technique. The method is 

simpler than the classical method and 

measures better result for strong 

nonlinearities.  The method can be preceded 

to higher-order nonlinear systems (i.e., third 

order, fourth order, etc.).    
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