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ABSTRACT 

There is a growing need for integer solutions in industries, production units, etc. Specifically, there is 

an increasing demand to develop precise methods for solving integer-programming problems (IPPs). 

In this paper, we propose a new algorithm for solving IPPs in a general form by combining two 

decomposition techniques: Benders decomposition (BD) and decomposition-based pricing methods 

(DBP). Moreover, we generate some conditions for solving problems having either infeasible or 

unbounded solutions.  In addition, we present an application and evaluation of a solution method for 

solving IPPs, while also giving a brief description of the different classical decomposition methods, 

namely the Dantzig-Wolfe decomposition (DWD), decomposition-based pricing (DBP), Benders 

decomposition (BD), and recently proposed improved decomposition (ID) methods for solving 

IPPs.We also discuss the use of the decomposition methods for solving IPPS to develop a heuristic 

algorithm, describe the limitations of the classical algorithms, and present extensions enabling its 

application to a broader range of problems. To illustrate the decomposition procedures, we will 

provide corresponding models and numerical results for two standard mathematical programs: the 

Fixed Charge Problem (FCP) and the Facility Location Problem (FLP). Our findings from this study 

suggest that our algorithm produces the most efficient computational solutions of IPPs. 

Keywords: Integer linear programming, heuristic algorithm, Dantzig-Wolfe decomposition, 

decomposition-based pricing, Benders decomposition, fixed charge problem, facility location 

problem. 

 

INTRODUCTION 

Recent years have witnessed widespread use of 

integer programming problems to address many 

real life optimization problems. These problems 

have been evolved due to the implementation of 

linear programming (LP) when scientists 

realized that there was a need for certain models, 

especially models related to business problems, 

to have integer solutions.  The integer variables 

refer to particular items, which are indivisible 

(number of machines, vehicles and others), and 

the continuous variables reflect mainly the 

estimates of price, time and other divisible 

objects. Nowadays Integer Linear Problems 

(ILP) are used in applications oriented towards 

decision making in many industrial and business 

activities. This is due not only to the increased 

computing power of modern computers, but also 

to improved ILP solvers, which enable easier 

formulation and solution of these models. So, 

ILPs have been around for a long time.  In 1960, 

George Dantzig was a major contributor to the 

decomposition technique which was presented 

for linear program that permits the problem to be 

solved by alternate solutions of linear sub-

programs representing its several parts and a 

coordinating program that is obtained from the 

parts by linear transformations. In recent years, 

researchers have used IPPs to solve optimization 
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problems in industry and business. This is due 

not only to the increased computing power of 

modern computers, but also as a result of 

improved methods to solve IPPs. In a typical 

setting, a LP problem in which all of the 

variables must take integer values is called an 

IPP. A number of integer algorithms have been 

developed to solve the various types of IPPs. 

The cutting plane method was developed at the 

end of the 1950’s by Gomory for solving integer 

programming and integer programming 

problems using the simplex method. Once the 

simple Cutting plane method does not work for 

solving IPPs, then in the mid-1990s Gérard 

Cornuéjols and co-workers showed them to be 

very effective in combination with branch-and-

bound(called branch-and-cut) and ways to 

overcome numerical instabilities. This approach 

works by branching on variable restrictions for 

solving IPPs, which is largely used method in 

practice, is neither efficient for solving an IPPs. 

For more general problems, a combination of 

cutting planes with a branch and bound 

procedure was designed by Crowder, Johnson 

and Padberg in 1983 which was able to solve 

large scale IPPs with sparse constraint matrix. 

Moreover, Benders' decomposition, branch and 

cut, branch and bound, column generation and 

Dantzig–Wolfe decomposition procedures, 

developed after World War II, are useful for 

solving those types of problems. In 2014, Islam, 

Hasan, and Das developed a new DBP procedure 

to filter unnecessary decision ingredients from 

large scale IPPs. While many authors may have 

developed new decomposition procedures for 

solving IPPs, they did not account for infeasible 

solutions or bounded solutions. A few of their 

procedures are based on DWD, DBP, or BD 

methods. Many of them did not use any 

application of IPPs. While these methods are 

successful, we will figure out which methods are 

best for solving an MIP. In addition, the 

optimality condition described by these methods 

requires more iteration. In this paper, we 

developed a successful and time-consuming 

method to solve IPPs. Despite experimenting 

with different alternatives for IPPs, we then 

developed an effective decomposition method.  

In this paper, there are two principal motivations 

for solving IPPs. First, we develop a new 

algorithm for solving IPPs by using both 

Benders decomposition and DBP. The approach 

is similar to Benders decomposition, but our 

algorithm involves using the dual value from 

DBP. Second, we illustrate the algorithm by 

considering five examples, in particular two 

applications of IPPs and comparing our 

algorithm with the other methods.   

The remainder of the paper is organized as 

follows. First, we briefly discuss some existing 

classical decomposition methods for solving 

IPPs. Second, we develop a new algorithm 

illustrated by a flowchart. Third, we compare 

our algorithm with the other standard 

decomposition methods for solving IPPs. 

Finally, we show that our method is effective for 

solving IPPs along with Benders decomposition 

method.   

 

MATERIALS AND METHODS 

This section demonstrates some existing 

methods for solving the IPPs along with our 

method. Furthermore, we illustrate our algorithm 

by a flowchart for better insight into the 

phenomenon. 

 

Dantzig–Wolfe decomposition Method 

The way of exploiting the block-angular 

structure is Dantzig-Wolfe decomposition, 

which was invented by Dantzig and Wolfe in 

1961. Moreover, this method is very closely 

https://en.wikipedia.org/wiki/G%C3%A9rard_Cornu%C3%A9jols
https://en.wikipedia.org/wiki/G%C3%A9rard_Cornu%C3%A9jols
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_cut
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connected to column generation and they are 

often used interchangeably. 

The problem being solved is split into two 

problems: 

(i) The master problem  

(ii) The sub problem 

Step-1: The master problem is solved. From this 

solution, we are able to obtain dual prices for 

each of the constraints in the master problem and 

this information is then utilized in the objective 

function of the sub problem. 

Step-2: The sub problem is solved. This variable 

is then added to the master problem and 

continued Step1. the process is repeated until no 

variables with negative reduced cost are 

identified. 

Decomposition Based Pricing Method 

Decomposition-based pricing (DBP) for the 

efficient solution of integrated fishery planning 

problem: Mamer and McBride developed DBP 

for multicommodity flow problems. DBP 

procedure is summarized as follows. 

Step-1: Relax complicating constraints by 

subtracting from objective function of the 

original problem. Decompose the whole problem 

into sub-problems and a master problem. Solve 

sub-problems and generate master problem by 

deleting those variables, which do not provide 

non-negative values from the original problem. 

Step-2: Stop when sub problem value and 

master problem value become equal. Otherwise, 

repeat the previous steps. 

Benders Decomposition Method  

Benders decomposition is closely related to 

other decomposition methods for linear 

programming and having some relationships 

among Benders, Dantzig-Wolfe, and Lagrangian 

optimization. It is a solution method for solving 

certain large-scale optimization problems. 

Instead of considering all decision variables and 

constraints of a large-scale problem 

simultaneously, it partitions the problem into 

multiple smaller problems. 

The problem being solved is split into two 

problems:  

(i) The master problem 

(ii) The sub problem 

Step-1: We have chosen the complicating 

variable and the initial master problem is solved. 

If the sub problem is infeasible, artificial 

variables are included in the sub problem.  

Step-2: After solving the sub problem, we got 

dual value. The optimal solution of sub problem 

and dual value are used in the master problem. 

Solving this master problem again. The process 

is repeated until no variables with negative 

reduced cost are identified. 

Improved Decomposition Method 

Due to the delayed column generation for 

solving large scale IPPs by DWD principle, in 

2013 Istiaq and Hasan presented an Improved 

Decomposition algorithm depending on DWD 

principle for solving IPPs into the following 

way. The problem being solved is split into two 

problems: 

(i) The master problem 

(ii) The sub problem 

Step-1: The master problem is solved. From this 

solution, we are able to obtain dual prices for 

each of the constraints in the master problem and 

this information is then utilized in the objective 

function of the sub problem. 

Step-2: The sub problem is solved. This variable 

is then added to the master problem and 

continued Step1. The process is repeated until no 

variables with negative reduced cost are 

identified. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjjxNXlusLWAhWLpo8KHcCxDPIQFgglMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBenders_decomposition&usg=AFQjCNHdR3NWYTapAJzEthjSDzYk0iqRsg
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That is, the method is composed of three sub 

problems (which can be generalized for n sub 

problems) of an original problem and the master 

problem with the help of Lagrangian relaxation. 

Optimality holds when the value of the sum of 

the sub-problem will be equal to the master 

problem, 𝑉(𝑆1) +  𝑉(𝑆2) +  𝑉(𝑆3) =  𝑉(𝑀). 

Therefore, picking up an initial value of the dual 

variables randomly the sub problem(s) is solved 

from which current solution of the sub problem 

is imported to create the master problem. Then 

master problem is solved and the optimality 

condition is tested. If the optimality condition 

does not hold, then the current dual value from 

the master problem is taken and imported this to 

update the sub problem(s) and continue the same 

process unless it meets the optimality condition. 

This method is almost same computational skill 

to find the optimal solution in IPPs.  There are 

many BD extensions and researchers explore 

algorithmic enhancements for the BD 

extensions. Therefore, we now introduce a new 

algorithm in details as well as discuss by 

flowchart in the following Section by extending 

the idea of BD method. 

Our Decomposition Approach 

The heuristic algorithm is used to find non 

negative integer solutions in a general form. It is 

an algorithm that allows us to solve certain 

optimization problems very quickly. The 

algorithm can be used on any kind of 

optimization problem but requires a certain 

substructure within the problem to be efficient 

that can be demonstrated in the following way.  

Basic idea of the algorithm 

Here P1 means original problem. 

Main problem 

(P1)minimize

. .

(1)

0,

T Tp x q y

s t Ay b

Dx Gy h

x y S





 

 

Since x  is continuous and y  is fixed, S is set 

continuous. Then original problem can be 

decoupled into a master problem (MP) and a sub 

problem (SP). ,T Tp q  are cost coefficient, 

, ,A D G are coefficient of constrain, ,b h  are 

our right-hand sides. 

Master problem (MP1) 

minimize

. . 0

(2)

l

T

l

z

s t z q y

Ay b

y S

 





lz   is our cost coefficient of master problem 

Sub problem (SP1) 

ˆminimize

ˆ. .

ˆ (3)

ˆ0,

T Tp x q y

s t Ay b

Dx h Gy

x y S





 

 

 

ŷ is solution of MP1 

Sub problem (SP1-Dual)  

Dual form of SP1,  

ˆmaximize ( )

. . (4)

, 0

T T

T

h Gy v b u

s t D v p

Au q

v u

 







,v u be dual variables 

The Proposed Algorithm 

Step 1. Solve MP1 and obtain solution given as

ˆ
lz at ŷ . If MP1 is infeasible, the original 



A HEURISTIC ALGORITHM FOR SOLVING INTEGER LINEAR PROGRAMMING 17 

 

problem P1 will have either no feasible solution 

or an unbounded solution. Stop the process. If 

not, then we go to Step 2.  

Step 2. Generate sub problem by deleting those 

variables which do not provide non negative 

values from the master problem. We solve SP1 

or SP1-Dual and obtain solution is ˆ
uz  and get 

dual value. Then new optimal solution of SP1 is 

ˆ ˆ
new u lz z z  . Where ˆ

uz  is dual value and 

ˆ
lz is solution of MP1. 

i. If ˆ ˆ
new lz z    then stop the 

process. Otherwise, generate a new 

constrain 

ˆ (h Gy) 0T T r

lz q y v     

(feasibility cut) for MP2 where, 
rv comes from the optimal 

solution of SP2. 
rv is generated of 

optimal solution here r denote row. 

ii. If SP1-Dual is unbounded, which 

means that SP1 is infeasible, then 

added a new cut -

(h Gy) 0T rw   (infeasible cut) 

for MP2. In this case, we will first 

calculate 
rw  form the infeasibility 

cut and then go to step 3. We use a 

new SP1 (5), feasibility check sub 

problem to calculate 
rw in SP2. 

rw is generated of optimal solution 

here r denotes row. 

iii.  

minimize 1

ˆ. . (5)

0, 0

T s

s t Dx Is h Gy

x s

  

 

 

Here 1 is the unit vector and I is new vector  

ands is new variable 

iv. If SP1-Dual is infeasible, the main 

problems P1 will not any feasible 

solution or an unbounded solution. 

Stop the process.  

Step 3. Solve MP2 to obtain a solution ˆ
lz  w.r.t.

ŷ . The feasibility cut (second constraint) or the 

infeasibility cut (third constraint) is adding with 

MP2 which being discussed in step2.  

Minimize

. .

(h Gy) 0, 1,..., 2

(h Gy) 0, 1,...

l

T T r

l

T r

z

s t Ay b

z q y v i n MP

w i n

y S



    

   



 

i. If MP2 is infeasible then main 

problem P1 must infeasible. 

ii. If MP2 is unbounded so lz   

go to Step-2  

Step-4. Then go to back Step-2 and solve Sub 

problem again. This process to be continuing 

until the master problem=sub problem.    

Flowchart of the proposed Algorithm 

In this section, we discuss our decomposition 

method by flowchart. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the Algorithm  

Research into the decomposition methods are 

not yet complete, as there are still many 

challenges and open questions. In addition, 

recent studies have presented various modified 

decomposition strategies though.  
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We conclude here the discussions of the 

decomposition algorithms. Next Section 

demonstrates how the prescribed decomposition 

procedures work in problem encountered in the 

FCP and the FLP and giving a numerical 

comparison. 

 

RESULTS AND DISCUSSION  

We performed experiments in this section to 

compare the execution of Benders' method, 

DWD, DBP, ID and the proposed decomposition 

methods on the two classical optimization 

problems: the FCP and the FLP and some other 

problems in this field and find the best algorithm 

for solving of IPPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fixed Charge Problem  

Example 1  

Gandhi Cloth Company is capable of 

manufacturing three types of clothing: shirts, 

shorts and pants. The manufacture of each type 

of clothing requires that Gandhi has the 

appropriate type of machinery available. The 

machinery needed to manufacture each type of 

clothing must be rented at the following rates: 

shirts machinery, 200$ per weeks; shorts 

machinery, 150$ per week; pants machinery, 

100$ per week. The manufacture of each type of 

clothing are requires the amounts of cloth and 

labor shown in Table-B. Each week, 150 hours 

of labor and 160 sq yd of cloth are available. 

The variable unit cost and selling price for each 

type of clothing are shown in Table-A. This 

example is taken from Winston 

 

 

 

 

 

 

 

 

 

 

 

Table 1.  Data of Example-1 

Table-A Table-B 

Clothing  

Type 

Sales Price 

($) 

Variable 

Costs ($) 

Clothing 

type 

Labor 

(hours) 

Cloth  

( square yards) 

Shirts 12 6 Shirts 3 4 

Shorts 8 4 Shorts 2 3 

Pants 15 8 Pants 6 4 

Solution  

Solution of Example 1 by Using DWD Method 
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Table 4. Result of Example-1by using BD 

It. # Sub problem Solution Master problem Solution Dual value 

 
i ix and y  (v)iS  ix  (v)iM

 

i  

1 
1 2 3

1 2 3

30, 0, 10

0, 1

x x x

y y y

  

  
 

75 
1 2 330, 0, 10x x x    

250 
1 2 35, 4, 4      

2 
1 2 3

1 2 3

0, 25

0, 1

x x x

y y y

  

  
 

75 
1 2 30, 0, 25x x x    

75 
1 2 30, 0, 4      

Solution of Example 1 by Using ID Method 

Table 2. Result of Example-1by using DWD 

It.# Sub problem Solution Master problem Solution Dual Value 

 
ix  (v)iS  

i  (v)iM

 

i  

1 
1 2 3 0x x x    

1 2 3 0y y y    

4700  
1 1   0 

1

2

100

200








 

2 
1 2 3

1 2 3

40, 53, 25

1

x x x

y y y

  

  
 

177 
1 20.618138, 0.381862    67.589 

1

2

0

0.422434








 

3 
1 2 3

1 2 3

0, 25

0, 1

x x x

y y y

  

  
 

96.12 
1 2 30, 0, 1      75 

1

2

0.451327

0








 

4 
1 2 3

1 2 3

0, 25

0, 1

x x x

y y y

  

  
 

75  
1 2 3 40, 1        75 

1

2

0.451327

0








 

Solution of Example 1 by Using DBP Method 

 

 

 

 

 

 

 

Solution  

Using DWD Method 

 

Table 3. Result of Example-1by using DBP 

It.# Sub problem Solution Master problem Solution Dual value 

 
i ix and y  (v)iS

 

i ix and y  (v)iM

 
i  

1 
1 2 3 1 2 30, 25, 0, 1x x x y y y       

60 
3 325, 1x y   

75 
1 0.1   

2 
1 2 3 1 2 30, 25, 0, 1x x x y y y       

75 
3 325, 1x y   

75 
2 0   

Solution of Example 1 by Using BD Method 

 

 

 

 

 

 

 

 

 

Using DBP Method 
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Example 2 

Mr. Amit has been approached by three 

telephone companies to subscribe to their long 

distance service in the United States. MaBelll 

will charge a flat $16 per month plus $.25 a 

minute. PaBell will charge $25 a month but will 

reduce the per minute cost to $.22. As for 

BabyBell, the  flat  monthly charge  is $18, and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Result of Example-1 by using ID 

It.# Sub problem Solution Master problem Solution Dual value 

 

ix  (v)iS  i  (v)iM  i  

1 
1 2 3

1 2 3

0

, 0

x x x

y y y

  

  

 4700  1 1   0 
1 2100, 200    

2 
1 2 3

1 2 3

40, 53, 25

1

x x x

y y y

  

  

 
177 

1

2

0.618138,

0.381862









 
67.589 

1 20, 0.42    

3 
1 2 3

1 2 3

0, 25

0, 1

x x x

y y y

  

  
 

96.12171 
1 2 30, 0, 1      75 

1 20.45, 0    

4 
1 2 3

1 2 3

0, 25

0, 1

x x x

y y y

  

  
 

75  1 2 3 40, 1        75 
1 20.45, 0    

Solution of Example 1 by Using our Algorithm  

Table 6. Result of Example-1by using Our Procedure 

It. # Sub problem Solution Master problem Solution Dual value 

 
i ix and y  (v)iS

 

ix  (v)iM  
iv  

1 
1 2 3

1 2 3

0, 25

, 0, 1

x x x

y y y

  

  

 
75 

1 2 330, 0, 10x x x  
 

250 1 2 35, 4, 4v v v    

2 
1 2 3

1 2 3

0, 25

, 0, 1

x x x

y y y

  

  

 
75 

1 2 30, 0, 25x x x    
75 1 2 30, 0, 4v v v    

 

the cost per minute is $21. I usually make an 

average of 200 minutes of long-distance calls 

a month. Assuming that I do not pay the flat 

monthly fee unless I make calls and that I 

can apportion my calls among all three 

companies as I please, how should I use the 

three companies to minimize my monthly 

telephone bill? This example is taken from 

Taha. 
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Solution of Example 2 by Using DBP Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Result of Example-2by using BD 

It.  # Sub problem Solution Master problem Solution Dual value 

 
iy  (v)iS  ix  (v)iM  i  

1 
1 2 30, 1y y y    

60 
 1 2 30, 200x x x    

42 
1 0   

2 
1 2 30, 1y y y    

60 
1 2 30, 200x x x    

60 
1 2 30, 0, 0.09      

Solution of Example 2 by Using ID Method 

 

Solution 

Solution of Example 2 by Using DWD Method 

Table 7. Result of Example-2by using DWD 

It. # Sub problem Solution Master problem Solution Dual 

Value 

 
i ix and y  (v)iS

 

i  (v)iM
 

i  

1 
1 2 3 1 2 3x =x =0,x =200,y =y =y =0  50 

 1 1   
0 

 1 0.02   

2 
1 2 3 1 2 3x =0,x =0,x =200,y =y =y =0  50 

1 21, 1    
60 

1 0   

3 
1 2 3 1 2 3x =x =0,x =200,y =y =0,y =1 60 

1 2 3θ =1,θ =0,θ =1

 

60 
1 0.25   

Using DBP 

 
Table 8. Result of Example-2by using DBP 

It. # Sub problem Solution Master problem Solution Dual value  

 
i ix and y  (v)iS

 

i ix and y  (v)iM  i  

1 
1 2 3

1 2 3

x =0,x =200,x =0,

y =y =y =0
 

22 
2 200x   

50 
1 0.1   

2 
1 2 3 1 2

3

x =x =0,x =200,y =y =0,

y =1
 

60 
3 3200, 1x y 

 

60 
1 0   

Solution of Example 2 by Using BD Method 
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The Facility Location Problem 

We again explain here how DWD, DBP, BD, 

improved decomposition and the proposed 

decomposition methods work, and how those 

can be used on a facility location problem in 

order to illustrate the mechanics of the 

algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10. Result of Example-2 by using ID 

It. # Sub problem Solution Master problem Solution Dual Value 

 
i ix and y  (v)iS  i  (v)iM  i  

1 
1 2 3 1 2 30, 200, 0x x x y y y       50 

1 1   0 
1 0.02   

2 
1 2 3 1 2 30, 0, 200, 0x x x y y y       50 

1 21, 1    60 
1 0   

3 
1 2 3 1 2 30, 200, 0, 1x x x y y y       

60 
1 2 31, 0, 1      

60 
1 0.25   

Solution of Example 2 by Using Our Procedure  

 
Table 11. Result of Example-2 by using Our Procedure 

It.  # Sub problem Solution Master problem Solution Dual value 

 
i ix and y  (v)iS  ix  (v)iM  iv  

1 
1 2 3

1 2 3

0, 200

0, 1

x x x

y y y

  

  
 

60 
1 2 30, 200x x x    

42 
1 2 3 0v v v    

2 
1 2 3

1 2 3

0, 200

0, 1

x x x

y y y

  

  
 

60 
1 2 30, 200x x x    

60 
1 2 30, 0.09v v v    

 
Example 3  

This example will use 3 possible factories 

and 5 possible customers. The following 

table lists the ijc ’s as well as the if ’s. 

Table 12. Facilities Location Problem 

Factory Customers Fixed costs($) 

  1        2        3         4       5 

1   2        3        4         5       7 2 

2   4        3        1         2       6 3 

3   5        4        2         1       3  3 
 

We find out how many factories are open at minimum cost? This example is taken from Hooker. 

Solution 
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Note that, i O(y) =open factories and 
(y)j C  = closed factories and jv are the dual 

variables associated with the demand constraints 
and 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14. Result of Example-3using DBP 

It. # Sub problem Solution Master problem Solution Dual value 

 
ij ix and y  (v)iS  i ix and y  (v)iM

 
i  

1 
31 32 13 14 15

21 22 23 24 25

11 12 33 34 35

1 2 3

x =x =x =x =x

=x =x =x =x =x =0,

x =x =x =x =x =1

y =1,y =0,y =1

 

15 
11 12 33 34

35 1 3

x =x =x =x =1

x =1, y =y =1

 

16 
1 2   

2 
31 32 13 14 15

21 22 23 24 25

11 12 33 34 35

1 2 3

x =x =x =x =x

=x =x =x =x =x =0,

x =x =x =x =x =1

y =1,y =0,y =1

 

16 
11 12 33 34

35 1 3

x =x =x =x =1

x =1, y =y =1

 

16 
1 0   

Using BD Method 

ijw are the dual variables associated with 

the setup constraints. We choose open 

factories 3, closed factories 1 and 2. 

 Table 15. Result of Example-3 by using BD 

It.# Sub problem Solution Master problem Solution 

 
j ijv and w  (v)iS

 
iy  (v)iM  

1 
j 1j 2j 3jv =(2,3,4,5,7), w =(2,0,0,0,0),w =w =0

 

23 
 1 2 30, y 1y y    

10 

2 
j 1j 2j 3jv =(4,3,1,1,3),w =(2,0,0,0,0),w =w =0

 

18 
1 2 30, 0, y 1y y    

15 

3 
j 1j

2j 3j

v =(5,4,2,1,3), w =(3,1,0,0,0),

w =(1,1,1,0,0),w =0

 16 
1 2 3y =1,y =0,y =1

 

16 

Using ID Method 

 

 

 

 

 

 

Table 13. Result of Example-3using DWD 

It. # Sub problem Solution Master problem 

Solution 

Dual 

value 

 
ij ix and y  (v)iS

 

i  (v)iM  i  

1 
31 32 13 14 15 21 22 23 24 25

11 12 33 34 35 1 2 3

x =x =x =x =x =x =x =x =x =x =0,

x =x =x =x =x =1,y =1,y =0,y =1

 

16 
1θ =1

 

16 
1 5   

Using DBP Method 
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Example 4 

Steel manufactures two types of steel (steel 1and 

steel 2) at two locations (plant 1 and plant 2). 

Three resources are needed to manufacture a ton 

of steel: iron, coal and blast furnace time. The 

two plants have different types of furnaces, so 

the resources needed to manufacture a ton of 

steel depend on the location (see table 1). Each 

plant has its own coal mine. Each day, 12 tons of 

coal are available at plant 1 and 15 tons at plant 

2. Coal cannot be shipped between plants. Each 

day, plant 1 has 10 hours of blast furnace time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

available, and at plant 2 has 4 hours available. 

Iron ore is mined in a mine located midway 

between the two plants: 80 tons of iron are 

available each day. Each ton of steel 1 can be 

sold for $ 170/ton, and each ton of steel 2 can be 

sold for $ 160/ton. All steel that is sold is 

shipped to a single customer. It costs $ 80 to 

ship a ton of steel from plant 1, and $100 a ton 

from plant 2. Assuming that the only variable 

costs is the shipping cost, formulate and solve 

the IPP to maximize Steelco’s revenue less 

shipping cost. This example istaken from 

Winston. 

 

Table 16. Result of Example-3 by using BD 

It. # Sub problem Solution Master problem Solution Dual value 

 
ij ix and y  (v)iS

 

i  (v)iM
 

i  

1 
31 32 13 14 15 21 22 23 24 25

11 12 33 34 35 1 2 3

x =x =x =x =x =x =x =x =x =x =0,

x =x =x =x =x =1,y =1,y =0,y =1
 

16 
1 1 

 

16 
1 5   

 

Using Our Procedure 

We choose open factories 3, closed factories 1 and 2. 

Table 17. Result of Example-3by using Our Procedure 

It.# Sub problem Solution Master problem Solution Dual value 

 
ij ix and y  (v)iS

 

iy  (v)iM

 

j ijv and w  

1 
31 32 13 14 15

21 22 23 24 25

11 12 33 34 35

x =x =x =x =x =

x =x =x =x =x =0

,x =x =x =x =x =1

 

16 
1 2 3y =1,y =0,y =1

 

16 
j

1j

2j

3j

v =(5,4,2,1,3),

w =(3,1,0,0,0),

w =(1,1,1,0,0)

w =0
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Solution of Example 4 by using DBP 

At first we choose a dual value 1 0   then 

moderated dual value put in master  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 19. Result of Example-4 by using DWD 

It.# Sub problem Solution Master problem Solution Dual value 

 
ix  (v)iS  i  (v)iM  i  

1 
1 2

3 4

0

0

x x

x x

 

 
 

8000  
1 1   0  

1 100   

2 
1 2

3 4

0, 10

, 4, 0

x x

x x

 

 
 

1080  
1

2

0.090909

, 0.909091








 

981.8182

 
2 0   

3 
1 2

3 4

0, 10

, 0, 0

x x

x x

 

 
 

1045.455

 
1 2

1

0, 0.714286

, 0.285714

 



 


 

1000  
3 12.272727   

4 
1 2

3 4

0, 10

, 0, 0

x x

x x

 

 
 

1040  
1 2 3 40, 0, 0, 1        1040  

4 10   

 
problem, this procedure continue until master 

problem and sub problem are equal. 

Table 18. Steelco Manufacturing Problem 

Product (tons) Iron required (tons) Coal required (tons) Blast furnace time 

required(hours) 

Steel 1 at plant 1 8  3  2  

Steel 2 at plant 1 6  1 1 

Steel 1 at plant 2 7  3  1 

Steel 2 at plant 2 5  2  1 

Solution  

Solution of Example-4 by using DWD 
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Table 20. Result of Example-4 by using DBP 

It.# Sub problem Solution Master problem Solution Dual 

value 

 
ix  (v)iS

 

i  (v)iM  i  

1 
1 2 3 4x =0,x =10,x =4,x =0

 

1080
 

1 2 3 4x =0,x =10,x =2,x =0

 

1000  
1 0   

2 
1 2 3 4x =0,x =10,x =0,x =4

 

1040
 

1 2 3 4x =0,x =10,x =0,x =4

 

1040  
2 10   

 

Solution of Example 4 by using BD 

 Table 21. Result of Example-4 by using BD 

It. # Sub problem Solution Master problem Solution Dual value 

 
iu  (v)iS  ix  (v)iM

 

i  

1 
1 2 3u =12,u =0,u =0  240   

1 2 3 4x =0,x =10,x =0,x =0

 

800  
1 0   

2 
1 2 3u =12,u =0,u =0  1040  

1 2 3 4x =0,x =10,x =0,x =0

 

1040
 

2 12   

Solution of Example 4 by using ID 

 
Table 22. Result of Example-4 by using ID 

It. # Sub problem solution Master problem solution Dual value 

 
ix  (v)iS  i  (v)iM    

1 
1 2 3 4 0x x x x     

8000 
 1 1   

0 100 

2 
1 4 2

3

x =x =0,x =10,

x =4
 

1080 
1

2

θ =.090909,

θ =.90909
 

981.81 0 

3 
1 3 4

2

0,

10

x x x

x

  


 

1045.45 
1 2

3

θ =0,θ =0.714286

,θ =0.285714

 

1000 12.272727 

4 
1 3 2

4

0, 10,

4

x x x

x

  


 

1040 
1 2 3 4θ =θ =θ =0,θ =1  

1040 0 
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Example 5 

1 2 3

1 2 3

1 2

1

2 3

1 2 3

maximmize 7 5 3

subject to 2 10

5

3

2 8

, , 0 integer

z x x x

x x x

x x

x

x x

x x x

  

  

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution  

Solution of Example 5 by using DWD 

We now solve this problem by using DWD in 

following table. 

Table 23. Result of Example-4 by using Our Algorithm 

It. # Sub problem Solution Master problem Solution Dual value 

 
ix  (v)iS  ˆ

ix  (v)iM  
rv  

1 
2 3 410, 2, 0x x x    1040  

1 2
ˆ ˆ0, 10x x   800  1 0v   

2 
2 3 410, 0, 4x x x    1040  

1 2
ˆ ˆ0, 10x x   1040  2 12v 

 

 

Table 24: Result of Example-5 by using DWD 

It. # Sub problem Solution Master problem Solution 
Dual 

value 

ix  (v)iS
 

i  (v)iM  

1 
1 2 33, 0x x x    

56 
1 1   

21 
5 

2 
1 2 33, 3, 2x x x    

42 
1 20.125, 0.875    

39.375 
0 

3 
1 2 33, 0, 5x x x    

41.25 
1 2 3θ =0,θ =0.666667,θ =0.333333

 

40 
2.625 

4 
1 2 33, 2, 3x x x    

40 
1 2 3θ =0,θ =0.666667,θ =0.333333  40 

2 

Solution of Example 5 by using DBP Method 

We now solve this problem by using DWD in following table. 

 



28 DHAR AND DAS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 25. Result of Example-5 by using DBP 

It.# Sub problem Solution Master problem Solution Dual value 

i  
ix  (v)iS  ix  (v)iM  

1 
1 2 30, 0, 0x x x    

1000 
1 2 30, 0, 0x x x    

0 
1 100   

2 
1 2 33, 2, 3x x x    

40 
1 2 33, 2, 3x x x    

40 
2 0   

Solution of Example 5 by using BD Method 

We now solve this problem by using DWD in following table. 

 

Table 26. Result of Example-5 by using BD 

It.  # Sub problem Solution Master problem Solution Dual value 

i  
ix  (v)iS  ix  (v)iM  

1 
2 32, 3x x   

40 
 1 3x   

21 
1 2 32, 1, 0      

2 
2 32, 3x x   

40 
1 3x   40 

1 2 30, 0, 0      

Solution of Example 5 by using ID Method 

 
Table 27. Result of Example-5 by using ID 

It.  

# 

Sub problem Solution Master problem Solution Dual 

value 

  
ix  (v)iS  i  (v)iM

 

1 
1 2 33, 0x x x    56 

1 1   21 5 

2 
1 2 33, 3, 2x x x    42 

1 20.125, 0.875    39.375 0 

3 
1 2 33, 0, 5x x x    41.25 

1 2 3θ =0,θ =0.666667,θ =0.333333

 

40 2.62 

4 
1 2 33, 2, 3x x x    40 

1 2 3θ =0,θ =0.666667,θ =0.333333  40 2 

Solution of Example 5 by using Our Procedure  
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Comparison and Findings 

Our aim in this section is to find the best 

algorithm for solving of IPPs. We present the 

graphical comparison of our decomposition 

procedure with DWD, DBP, ID and BD. In the 

following figures, blue color indicates the 

iteration number and horizontal axis 

illustratesthe name of decomposition procedures. 

By these experiments, we conclude that our 

algorithm produce the most efficient 

computational solutions of IPPs. 

 

 

 

 

 

 

 

 

 

Fig. 2. Iteration Comparison of Decomposition 

Procedures for Example-1 

 

 

 

 

 

 

 

 

 

Fig. 3. Iteration Comparison of Decomposition 

Procedures for Example-2 

 

 

 

 

 

 

 

 

Fig. 4. Iteration Comparison of Decomposition 

Procedures for Example-3 
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Table 28. Result of Example-5 by using Our Procedure 

It.  # Sub problem Solution Master problem Solution Dual value 

rv  
ix  (v)iS  

ix  (v)iM  

1 
2 32, 3x x   40 

1 3x   21 1 0v   

2 
2 32, 3x x   40 

1 3x   40 1 2v   
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Fig. 5. Iteration Comparison of Decomposition 

Procedures for Example-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Iteration Comparison of Decomposition 

Procedures for Example-5 

 

CONCLUSION 

The heuristic algorithm, proposed to solve IPPs, 

using the concept of Benders' decomposition and 

DBP methods. We also generated some 

conditions for solving problems having either 

infeasible or unbounded solutions. Upon 

comparison and rigorous analysis, we observed 

that our algorithm produced the most efficient 

computational solutions of IPPs. We also discuss 

the use of the decomposition methods to develop 

a heuristic algorithm, describe the limitations of 

the classical algorithms, and present extensions 

enabling its application to a broader range of 

problems.  
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