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ABSTRACT 
 
A system of two nonlinear differential equations in mathematical biology is considered. These models are 
originally stimulated by population models in biology when solutions are required to be non-negative, but the 
ordinary differential equations can be understood outside of this conventional scope of population models. The 
focus of this paper is on the use of linearization techniques, and Hartman Grobman theory to analyze nonlinear 
differential equations. We provide stability analysis and numerical solutions for these models that describe 
behaviors of solutions based only on the parameters used in the formulation of the systems.  
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INTRODUCTION 

Frequently, Mathematical models of real world 
affairs are formulated in terms of systems of 
nonlinear differential equations, which is not 
easy to solve explicitly. To defeat this obstacle, a 
qualitative way to analysis of solutions to 
nonlinear systems by making phase portraits and 
using stability analysis is adopted. These 
techniques in the analysis of a system of two 
nonlinear differential equations in mathematical 
biology are illustrated. The fact is that, allowing 
solutions for these equations to be positive 
provides some very attractive mathematical 
problems, and demonstrates the utility of the 
analysis techniques to be described in this work. 
The focus of this study is to discuss about the 
stability of system of nonlinear equations using 
linearization techniques (Morgan 2015), 
Hartman-Grobman theorem (Freedfman 1980, 
Kapur 1989, Perko 2008)  and Lyapunov 
theorem (Perko 2008, Strogatz 2000, Wiggins 
1983). 

Usually given any possibly nonlinear system of 
first order ordinary differential equations, a 
qualitative characterization of the behavior of 
solutions is generated which depends on the 

given initial conditions. For doing this, at first 
equilibrium points are found and then using the 
nature of equilibrium points, the stability of the 
system of nonlinear ordinary differential 
equations (Wiggins 1983) can be checked. 
Runge-Kutta-Fehlberg method (Burden and 
Faires 1993) is also used for solving a system of 
non-linear differential equations. The focus of 
the work needs to be obtained quickly since 
there are some basic ideas which will not discuss 
in details. In preliminaries, differential equations 
are introduced which are classified as partial 
differential equation (Kapur 1989,  Murray 
1989, Wiggins 1983). Mainly in the following 
section,  the analysis of stability will be 
discussed. For stability examination, the concept 
of equilibrium point which is a vector that 
satisfies ( , ( )) 0f t x t   need to be considered. 

Formally,  an equilibrium point  is stable if 

for ; where is a positive scalar 

such that  for all . 

When the equilibrium point  is stable and 
convergent then it is known as asymptotically 

ex

0( ) ex t x   

0 0( ; , ) ex t t x x  0t t

ex
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stable. Also the point  is locally 
asymptotically stable (Taylor 1958) if

 
and it is known 

as globally asymptotically stable (Taylor 1958) 
if it is asymptotically stable for all  
To apply this methodology, various types of 
growth functions are considered with chaos or 
crowding tolerance (Gilpin and Ayala 1973, 
Gompertz 1825, Smith 1963, Verhulst 1838). 

The rest of the part of the paper is organized as 
follows. In sections 2 and 3, few examples have 
been established by solving the equilibriums and 
the equilibrium points are obtained. Among 
these equilibria, a number of them give stable 
solution and rest others are unstable solution. It 
is noted that the equilibrium points with negative 
real parts  indicate the stable solution. 
Otherwise, the solutions are unstable.  

In sections 3.1, 3.2 and 4.1, several well 
established theorems are discussed which are 
connected to the study of stability. After that a 
well recognized theorem known as Lasalle’s 
Principle (LaSalle 1976) is recalled. The 
statement of Lasalle’s theorem helps to execute 
global asymptotic stability of a system. 

The main novelty of this paper is described 
shortly as follows: 

 The result is established by using eigenvalue 
and eigenvector that implies the stability test 
of the model.  

 In parametric case, it is considered that the 
intrinsic growth rate is constant as well as 
time varying.  

 The similar type of study is introduced for 
the choice of carrying capacities which 
covered all type of possible variation.  

 The main results of Theorems are verified 
theoretically as well as numerically. 

 Finally, the study presents some robust 
theories of Lyapunov stability and Lasalle’s 

principle and left for the readers for further 
study of the considered model.  

2. Preliminaries 

In the current section, the nonlinear system is 
introduced, and the linearization techniques of 
the system and various types of stability are 
considered. 

2.1 System of Nonlinear Differential Equations 

Example 1: An example of a system of 
nonlinear differential equations is the system of 
Lotka-Volterra equations (Murray 1989) in 
biology for two organisms such as 

  

 

 
 

This is one of the sample competition models in 
mathematical biology that shows how the 
ecosystems are in balance between two species; 
may be the predator-prey. The main goal of 
current work is to discuss about the stability of 
the system of non-linear ordinary differential 
equation with logistic type non-symmetric 
growths. The next theorem (Freedfman 1980, 
Kapur 1989, Perko 2008) is important for further 
analysis. 

2.2 Hartman-Grobman Theorem  

A system involving in time with state  
that satisfies the differential equation 

 
for some smooth map is 
considered. It is supposed that the map has a 

hyperbolic equilibrium state ; that is 

 and the Jacobian matrix of 

at state  has no eigenvalue with real part 
equal to zero. Then there exists a neighborhood 

 of the equilibrium  and a 

homeomorphism  such that in the 

ex
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neighborhood the flow of 
 

is 

topologically conjugate by the continuous map 

 to the flow of its linearization 

.  

Even for infinitely differentiable maps , the 
homeomorphism  need not be smooth, not 
even locally Lipschitz. However, it turns out to 
be Hölder continuous (Taylor 1958), with an 
exponent depending on the constant of 
hyperbolicityof .  

The Hartman-Grobman theorem has been 
extended to infinite dimensional Banach spaces, 

non-autonomous systems and to 

cater for the topological differences that occur 
when there are eigenvalues with zero or non-
zero real part. 

Example 2: The following problem will show 
the techniques of linearization (Morgan 2015). It 
is supposed that the  system in variables

 evolving according to the pair of 
coupled differential equation 

   

By direct computation it can be seen that the 
only equilibrium of this system lies at the origin, 
that is  the coordinate transform,

 where , given by 

 

is a smooth map between the original  
and new coordinates, at least near 
the equilibrium at the origin. In the new 

coordinates the dynamical system transforms to 
its linearization form 

                       and  

Hence the original dynamics in some finite 
neighborhood is obtained by a distorted version 
of the linearization.  

3.  Stability Analysis of Nonlinear Systems 
The main purpose of this section is to understand 
the term stable means resistant to change. From 
this section, it will be possible for readers to find 
the stable points and unstable points for a system 
of nonlinear differential equations by using the 
equilibrium points of that system. This portion 
also includes that when a system of nonlinear 
differential equations is very critical and creates 
difficulties to find equilibrium points then 
linearization method can be used.  

3.1 Finding the Stability and Instability of 
Equilibrium States 
A system of nonlinear equations   

 

                                     
(1) 

is first considered. The first aim is to find out the 
fixed (equilibrium) points. For this purpose set 

 (2) 

 (3) 

which yields the equilibrium points 

. 

In this part, next approach is to find out the 
fourth fixed point while both populations are 
coexisting. For this case, the following two 
equations 
 

 (4) 

 (5) 

are considered. Finally, the equilibria 
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
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are obtained. The jacobian matrix be defined as: 

 

where, and 
Now differentiation of  both  and  with 
respect to and  respectively and the 
Jacobian matrix is 

  

Case 1: For the fixed point  

 

In this case the eigenvalues are and , which 
are real and positive. Then the trivial equilibrium 

 is always unstable. 

Case 2: For the fixed point  

 

In the second case, this is a lower triangular 
matrix and the eigenvalues are and , 
whose real components are negative and 
according to Hartman-Grobman Theorem the 
fixed point is stable. 

Case 3: For the fixed point  

 

In the third case, this is an upper triangular 
matrix. Hence, the eigenvalues are and , 
which are negative and real. Thus, the fixed 
point is stable. 

Case 4: For the fixed point

ቀభయ,భయቁܬ 
=  

Here, 

 

 

It is seen that one of them is positive and the left 
one is negative i.e. have opposite signs. 
Therefore, the fixed point 

 
is unstable. 

In the following example, generalized example 
to analyze the stability for another law of growth 
function is considered. 

3.2 Linearization Method to Check the Stability 
and Instability 

For this, the system of nonlinear equations with 
symmetric logistic type growths is considered 
and defined as follows  

                         
(6)                                

And for simplicity for further analysis, 
and  

are denoted. Where  are the densities of the 
population of two specific species considered in 
the model and is the carrying capacity or 
environmental support and . 

The equilibria of the system is to be found and 
then the system is linearized as follows: 

To find the fixed points, 
is considered; that is,  

 (7) 

 (8) 
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By solving, four fixed points: 
 are obtained. 

Here,  is the trivial solution,

are semi-trivial solutions and  is 

the coexisting solution for all .  

For steady state analysis first the system (7)-(8) 
is linearized. The Jacobian matrix of f and g at 
each fixed point have to be found: 

 

Putting the values of fu, fu, gu  and gv  above  

  

is obtained. At the initial stage, the point at  (0,0) is considered and the Jacobian matrix is

  

such that the eigenvalues are . Since real 
parts of the eigenvalues are positive so the 
equilibrium point is unstable. 

In the following step, the equilibirum point 
 with Jacobian matrix is explored

  

Two eigenvalues,  are obtained. In this 
issue the real parts of the eigenvalues are not 
positive, so the point  is asymptotically 

stable. Now, at  the Jacobian matrix 

. 

Hence, the eigenvalues are . Since real 
parts of the eigenvalues are not positive as the 
previous one, so the point  is also 
asymptotically stable. 

Now at the coexisting equilibrium 
the Jacobian matrix is 

  

 

which produce the eigenvalues . Again 
non-positive real parts of the eigenvalues are 
obtained. So, the point  is 

asymptotically stable.  

Finally, introducing the intrinsic growth rates, 
the physical significance of the logistic model by 
numerical simulations is shown and the results 
are described in the following section.  

4. Competition Model with Logistic Growth 

The nonlinear differential equations (6) is 
recalled by introducing intrinsic growth rates 
with crowding effects 

  

 

(9) 

Where  and and u,v are 
population densities of two species. The specific 
growth rates are  with corresponding 
resource distributions respectively for 
respective populations.  

4.1 Main Results 

In this section, the following main results are 
established for the system (9) depending on the 
variations of parametric values. In the first 
result, the interest is to consider the constant 
growth rates while the carrying capacities vary.  

Theorem 1: If  then for any non-
negative and non-trivial initial values

, the following results are valid: 

(i) For , the coexistence 
solution is stable periodically. 
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(ii) For , the semi-trivial 

equilibrium  is periodically 
globally asymptotically stable. 

(iii) For , the semi-trivial 

equilibrium  is periodically 
globally asymptotically stable. 

The results in Theorem 1 are verified in 
Examples 4.1, 4.2 and 4.3 by particular 
functions of specific growth rates of organisms 
and resource distributions. One can check that 
the results are valid for functions connected to 
the real life problems when two species are in 
competition for natural resources. In the 
following results, it is shown that the growth 
rates are non-constant whereas the resource 
functions are constant.  

Theorem 2: If , then for 
any non-negative and non-trivial initial values

, the following results are valid: 

(i) For , the coexistence 
solution is stable. 

(ii) For , the semi-trivial equilibrium

 is globally asymptotically stable. 

(iii) For , the semi-trivial equilibrium

is globally asymptotically stable. 

The results of Theorem-2 are thus justified in 
Examples 4.4, 4.7 and 4.8. 
 
 

 

 

 

 

 

 

Next results show the effects of intrinsic growth 
rates: 

Theorem 3: If  and
then for any non-negative and non-

trivial initial values , the following 
results are valid: 

(i) For , the coexistence 

solution  is globally 

asymptotically stable. 

(ii) For , the coexistence 

solution 
 

is globally 

asymptotically stable. 

The results of Theorem-3 are thus checked in 
Examples 4.5 and 4.6; for more details  
Example 4.10 can be seen for constant growth 
functions. 

It is noted that all these results are possible to 
proof by considering the Jacobean matrix via 
Hartman-Grobman Theorem (Freedfman 1980, 
Kapur 1989, Perko 2008) or Lasalle’s principle 
(LaSalle 1976) as shown in the previous 
Sections 3.1 and 3.2. Instead in this portion the 
results are verified using numerical examples 
and illustrations in the following Section 4.2. 
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Fig. 1.1. Solutions of system (9) with respect to time for and and for initial 
values . 

 

1 2 2r r  1 2 2 cos( )k k t  

0 0 1u v 

Example 4.1. Identical intrinsic growth rates and equal carrying capacity are considered. 
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Example 4.2. In this case, equal intrinsic growth rates and time dependent carrying capacities for
 are considered. 

 

  
 

Fig. 1.2. Solutions of (9) with respect to time for and ,  and 
for initial values . 
 

2 1k k

1 2 2r r  1 2 cos( )k t  2 4 cos( )k t 

0 0 1u v 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

4.2 Numerical Examples 

The Runge-Kutta-Fehlberg method (Burden and 
Faires 1993) is introduced to solve the problem 
(9) simultaneously. The method also describes 
the required solutions graphically which assist us 
to understand the behaviors of solutions. Here, 
some examples to investigate the model are 
considered by showing the effect of different 
parameters. Different solutions for different 
values of those parameters are obtained. 

The introductory example 4.1 presents constant 
and equal  i.e.  and

 where  are functions 
of time  then two types of solutions for two 
population sizes are obtained which are 
represented graphically in Fig. 1.1. In Fig. 1.1, it 
is observed that both population sizes are 
coexisting for same initial densities and their 
densities are increasing and decreasing 
periodically. 

In this example 4.2, it is noticed that the values 
of  are constant and identical i.e.

and ,   

 

 

 

 

 

 

 

 

 

 

 
 

here  are functions of time  and . 
The solutions of the model are represented 
graphically in Fig. 1.2. The left diagram of the 
Fig. 1.2, with the increase of time the densities 
of the population are increasing for short 
moment and then turning the density in 
decreasing order strictly and at last the 
population size tends to zero. The right design of 
the same figure depicts that with the increase of 
time the density of the population is increasing 
and sustains periodically. 

Another example 4.3 where r1, r2 are equivalent 
and consider  which shows that both 
of them are constant and ,

 where  are functions of 

time  and  then two types of solutions 
are obtained for two population sizes which are 
presented  graphically in Fig. 1.3 for identical 
initial densities. The left design of Fig. 1.3 
indicates that with the increase of time, the 
densities of the population are increasing and 
decreasing periodically and the right side of this 

1 2,r r 1 2 2r r 

1 2 2 cos( )k k t   1 2,k k
t

1 2,r r

1 2 2r r  1 2 cos( )k t  2 4 cos( )k t 

1 2,k k t 1 2k k

1 2 2r r 

1 4 cos( )k t 

2 2 cos( )k t  1 2,k k

t 1 2k k
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Fig. 1.3 implies that with the increase of time, 
the densities of the population are decreasing 
and finally is in extinction. 

An example 4.4 while  are equal and 

constant i.e.  and  are 

considered where  are functions of time . 
Fig. 1.4 shows that both species are coexisting 
for uniform initial densities.  

From the both left and right sides of the Fig. 1.4 
with the increasing of time, the densities of the 
both population sizes are increasing and after a 
certain time the population sizes are in the 
equilibrium position. Here, both sketch 
behaviors are same since,  are equally 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

constant and intrinsic growth rates are same and 
both of them are time dependent. 

In example 4.5   are equally constant i.e. 

 and  
where  are functions of time  and  
are considered. Then two types of solutions for 
two sizes of population which are represented 
graphically in Fig. 1.5 are obtained. In Fig. 1.5, 
both population sizes are coexisting for alike 
initial densities and with the increase of time the 
densities of the left sided population are 
increasing strictly and the densities of the right 
sided population are increasing and decreasing 
periodically for a certain time and finally the 
fluctuation periods tends to zero. 
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1 2,r r t

1 2,k k

1 2,k k
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1 2,r r t 1 2r r

Example 4.3. In the following example, the intrinsic growth rates are uniform as before while for time 
dependent carrying capacities are considered. 

  
 

Fig. 1.3. Solutions of (9) with respect to time for and ,  and for 

initial values . 
 

2 1k k

1 2 2r r  1 4 cos( )k t  2 2 cos( )k t 

0 0 1u v 

Example 4.4. Now, we want to investigate the case for time dependent growth rates. 

 

Fig. 1.4. Solutions of (9) with respect to time for and and for . 1 2 4k k  1 2 2 exp( )r r t    0 0 1u v 



STABILITY ANALYSIS AND NUMERICAL SOLUTIONS OF A COMPETITION  MODEL  103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.6. This particular example has the similar manner as designed in example 4.5 as long 
as . 
 

  
 
Fig. 1.6. Solutions of (9) with respect to time for and 
and for initial values  . 
 
 

2 1r r

1 2 4k k  2 19 exp( ), 2 exp( )r t r t     

0 0 1u v 

Example 4.5: Criteria when the intrinsic growth rates are unequal but time varies can be checked. 
. 

  
 

Fig. 1.5. Solutions of (9) with respect to time for  and for 
initial values  

 
 

1 2 4k k  1 22 exp( ), 9 exp( )r t r t     

0 0 1u v 
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This considerable example 4.6 shows that 
are equally constant i.e. and

 where  are functions of 

time  In Fig. 1.6, it is clearly seen that both 
sizes are coexisting for similar initial densities 
and inverse manner as sketched in Fig. 1.5. 
An example 4.7 where  are unequal 
constant and  and  
are considered and the results are presented 
graphically in Fig. 1.7. From the left design of 
Fig. 1.7, it is clear that the densities of the 
population size are increasing with the increase 
of time t and finally after a certain time  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

equilibrium position occurs and coincides with
whereas the rest diagram of Fig. 1.7 

implies that with the increase of time  the 
population size are decreasing strictly and finally 
is in extinction.  
 
When  are unequal and constant and

 are functions of time then the 
results are presented graphically in Fig. 1.8 of 
example 4.8. In this grpah, it is seen that the left Fig. 
1.8, it clearly shows that the species  does not 
survive. From Fig.1.8, it is concluded that the 
solution converge to the resource function . 
 

 

 

 

 

 

 

 

 

1 2,k k

1 2 4k k 

2 19 exp( ), 2 exp( )r t r t      1 2,r r

t

1 2,k k

1 2k k 1 2 2 exp( )r r t   

1 4k 

t

1 2,k k

2 exp( )r r t   

u

2 4k 

Example 4.7. The exploration for various resource functions with time variable growth rates expanding. 
 

  
Fig. 1.7. Solutions of (9) with respect to time for and and for 
initial values . 

1 2 2 exp( )r r t    1 24, 2k k 

0 0 1u v 

Example 4.8. Considering the fact that carrying capacities are unequal and growth rates are equal 
but and the next results are obtained. 
 

  
 

Fig. 1.8. Solutions of of (9) with respect to time for  and  and for 

initial values . 

1 2 .r r const 

1 22, 4k k  1 2 2 exp( )r r t   

0 0 1u v 
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The example 4.9 is an additional one where 
 are  constant i.e.  and 

. Here  are functions 
of time t  which are presented graphically in Fig. 
1.9. The left side of this Fig. 1.9 shows that with 
the increase of time the densities of the 
population size are decreasing and tends to zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

On the other hand, the right side of the Fig. 1.9 
shows  that with the increase of time, the 
densities of the population size are increasing 
strictly.  

In the last example 4.10, it is considered that
are equal and constant i.e. and

where  are also constant but 

1 2,k k 1 22, 20k k 

1 2 1 exp( )r r t    1 2,r r

1 2,k k 1 2 5k k 

1 23, 6r r  1 2,r r

Example 4.9. The following study for whereas the growth rates are equal and non-
constant can be considered. 
 

 
 

 
Fig. 1.9. Solutions of (9) with respect to time for and and for  
initial values . 
 

2 1k k

1 22, 20k k  1 2 1 exp( )r r t   

0 0 1u v 

Example 4.10. Finally, all parameters are constant but unequal intrinsic growth rates can be 
considered. 
 

  
 

Fig. 1.10. Solutions of (9) with respect to time for  and and for initial 
values . 

1 2 5k k  1 23, 6r r 

0 0 1u v 
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not equal which are represented graphically in 
Fig. 1.10. In the Fig. 1.10, both organisms are 
coexisting for uniform initial densities. In this 
considerable example it is seen that with the 
increase of time , the densities of both sizes 
are increasing. Lastly, it is seen that after a 
certain time both are in equilibrium position 

.  

CONCLUSION 

The stability analyses of a non-linear system of 
equations have been studied and some main 
results established theoretically. This study is 
important for applications in ecology and 
mathematical biology. Different techniques 
which are used to analysis the stability of system 
of nonlinear differential equations have been 
discussed. The interested readers can use those 
techniques for verifying the stability of different 
kinds of mathematical models which are 
perfectly connected to our real life activities. 
The numerical illustrations are addressed to 
solve the system which is related to real world 
models and characterized how the parameters of 
each system influenced and behaviors of the 
solutions; consider Theorem 1 to Theorem 3 in 
Section 4.1. Furthermore, a very important 
concept is that readers can apply Lyapunov 
functional to verify the stability.  
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