
 J. Bangladesh Acad. Sci., Vol. 43, No. 1, 79-83, 2019 
DOI: https://doi.org/10.3329/jbas.v43i1.42236   

A NOTE ON THE FRAME-STEWART CONJECTURE ON THE GENERALIZED TOWER 
OF HANOI PROBLEM 
  
A. A. K. MAJUMDAR 
Ritsumeikan Asia-Pacific University, Beppu-shi 874–8577, Japan 
 

ABSTRACT 
 

The generalized Tower of Hanoi with p (≥ 3) pegs and n (≥ 1) discs, proposed by Stewart (1939) is well-known. 
To solve the problem, the scheme followed is : First, move the tower of the topmost i (smallest, consecutive) 
discs (optimally) to one of the auxiliary pegs in a tower, using the p pegs; next, move the remaining n – i (largest) 
discs (optimally) to the destination peg in a tower, using the p – 1 pegs available; and finally, transfer the discs 
on the auxiliary peg to the destination peg (optimally) in a tower. This is the so-called Frame-Stewart conjecture, 
which remains to be settled. The minimum number of moves under the scheme is denoted by SF(n, p). Chen and 
Shen (2004) have re-considered the Frame-Stewart conjecture in more detail, and claimed that SF(n, p) is of the 

order of 
1 / ( p 2 )[ n ( p   2 )!]2

 . This paper gives a better lower bound of SF(n, p), which shows that the 
claim of Chen et al. (2004) is not correct. 
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INTRODUCTION 

The generalized Tower of Hanoi (ToH) problem 
with p (≥3) pegs and n (≥1) discs was proposed 
by Stewart (1939). Later, two solutions 
appeared, one by Stewart (1941) himself and the 
second one by Frame (1941). The problem is: 
Given are p ( 3) pegs, S, P1, P2, …, Pp–2, D. 
Initially, a tower of n ( 1) discs of varying sizes, 
d1, d2, …, dn (where d1 is the smallest disc and dn 
is the largest one) rests on the source peg S, in 
small-on-large ordering. This is the perfect state. 
The objective is to shift this tower from the peg 
S to the destination peg D (using the p – 2 
auxiliary pegs P1, P2, …, Pp–2), optimally (using 
minimum number of moves), under the “divine 
rule” that no disc can be placed on a smaller one. 

Recently, the multi-peg ToH has attracted the 
attention of the mathematicians as well as the 
computer scientists, which provides a good 
example of recursion in computer programming. 

Let SF(n, p) be the minimum number of moves 
required to solve the problem, using the scheme below.  

1 : shift (recursively) the discs d1, d2, …, di from 
the peg S to some auxiliary peg, P1, say, in 
(minimum) SF(i, p) number of moves, 

2 : move (recursively) the remaining discs on the 
peg S to the destination peg D, in minimum 
SF(n – i, p – 1) number of moves, 

3 : transfer the i discs from the peg P1 to the peg 
D, again in SF(i, p) moves, 

where i is to be determined such that the total 
number of moves is minimized. 
Then, the DPE (dynamic programming equation) 
satisfied by SF(n, p) is 

  (1.1) 

Unfolding the recurrence relation (1.1) further, 
ultimately one arrives at the situation where the 
topmost n – 1 (smallest) discs on the source peg 
S are divided into p – 2 subtowers, each of 
consecutive discs, which are placed on the p – 2 
auxiliary pegs just before the largest disc dn is 
shifted from the peg S to the peg D. 
However, it remains to establish that the above 
scheme leading to the recurrence relation (1.1) is 
indeed optimal. In other words, if M(n, p) is the 
minimum number of moves necessary to solve 
the p-peg ToH problem, it remains open to show 
that    M (n, p)  =  SF(n, p),  

SF( n, p )       min      2 SF( i, p ) SF( n i, p 1) , 
                1 i n 1

{ }   
  
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which is known as the Frame-Stewart 
conjecture. The case when p = 3 is almost trivial, 
and the optimality of the corresponding scheme 
has been established by Wood (1981–1982); an 
alternative proof appears in Hinz, Klavzar, 
Milutinovic and Petr (2013), under the 
assumption that, in the odd numbered moves, the 
disc D1 is moved. In Majumdar (2012), it has 
been shown that, for p = 4, the scheme followed 
is at least as good as any other optimal policy, 
and further that, for n ≥ 6, the scheme is the only 
optimal policy. For p = 4, there are other optimal 
schemes as well when n = 4, 5. 
In an attempt to find a lower bound of       
M(n, p), Chen and Shen (2004), following 
Szegedy (1999), adopted a different approach, 
introducing a new function        g(n, p), derived 
some results, and claimed that “This provides 
the strongest evidence so far to support the 
Frame-Stewart Conjecture”.  
In this paper, both the approach and results of 
Chen and Shen (2004) are examined. This is 
done in Section 2. In Section 3, the main results 
are given. Conclusion  of the paper with some 
remarks is given in the final Section 4. 

BACKGROUND  MATERIALS 

The approach and results of Szegedy (1999) are 
examined first since Chen and Shen (2004) are 
motivated by his approach. To find a lower 
bound of SF(n, p), Szedegy (1999) starts with an 
arbitrary configuration C of the n discs on the p 
pegs – though his analysis shows that one of the 
pegs must contain at least 2m discs and the 
smallest number of discs is n – 2pm, where m is 
an integer such that  Letting G(C) 

be the minimum number of moves necessary 
when it is required that each disc of C is moved 
at least once, let 

C                
G(C), minp) g(n,   

where the minimum is over all the possible 
configurations C of the n discs and p pegs. 
Szedegy (1999) then proved that 

   (2.1) 

Further move was considered to Chen and Shen 
(2004). In Corollary 1, they proved that g(n, p) 
satisfies the following inequality: 
 

Lemma 2.1 : For n ≥ 2, p ≥ 4, 
g(n, p) ≥ 2 min{g(n – m, p), g(m, p – 1)}  

for all 1 ≤ m ≤ n – 1.                                      (2.2) 
 

Chen and Shen (2004, Lemma 4) then proved 
the result below which gives a lower bound of 
g(n, p). 
 

Lemma 2.2 : For any n ≥ 1 and p ≥ 3, 

.2)p ,n(g 1  p )2/(p1])!2  p(n[   
At this point, it is worth noting that both 
Szegedy (1999) and Chen and Shen (2004) 
considered log2 of the numbers   SF(n, p) and 
g(n, p), which is completely unnecessary, since 
is primary interest is in the numbers SF(n, p) and 
g(n, p) themselves and not their logs; moreover, 
log2 SF(n, p) and log2 g(n, p) do not offer any 
extra information or advantage. 

Strictly speaking, Chen and Shen (2004) proved 
the following result, though in the main result 
(2004, Theorem 3), for some unknown reason, 
the factor 1 – p (which reduces the lower bound 
by the multiplicative factor of 2p–1) has been 
deleted, and instead, the factor 1  o(1) has been 
added. Moreover, the statement of the theorem 
gives a result quite different from what has 
actually been proved. 

Proposition 2.1 : For any n     1 and p  4, 

 

 

Now examining how good are the lower and 
upper bounds of SF(n, p), given in Proposition 
2.1. For p =4, n = 18, Proposition 2.1 is obtained 
that g(18,s4)>26 (even disregarding the 
multiplicative factor 2–3), whereas 

SF(18, 4) <1826. 
 

Since SF(18, 4) = M(18, 4) = 225 (Majumdar 
(2012, p. 42), 26 is a very poor lower bound and 
1826 is a too large upper bound for SF(18, 4) = 
M(18, 4). 

n
2 p0 m . 

g(n, p) 2min g(n 2pm, p), g(m, p 1) .{ }  

2 g( n, p ) M( n, p )

                          SF( n, p ) n2 .

1/(p 2 )[n( p  2 )!]  p  1
1/(p 2 )[ n( p  2 )!]

 

 

  


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Again, for p = 5 and n = 36, Proposition 2.1 
gives g(36, 5)> 26, while  
 

SF(36, 5)<3626. 
Since SF(36, 5) = M(36, 5) = 383, the lower and 
upper bounds in Proposition 2.1 are rather poor 
for p = 5 as well. 

Finally, for p = 6, and from Proposition 2.1, is 
obtained g(24, 6) > 24.5, and 

SF(24,   6) < 2424.5. 

Since SF(24, 6) = M(24, 6) = 121 (Majumdar 
2012 the bounds obtained from Chen and Shen 
(2004) are indeed poor for SF(24, 6). 

It may be mentioned here that, in Proposition 
2.1, the lower bound of SF(n, p) is too small, 
while paradoxically, the upper bound of M(n, p) 
has been made larger than SF(n, p). 
 
MAIN  RESULTS 

This section derives a lower bound of SF(n, p). 
For p = 4, the following result is obtained for 
some integer s ≥ 1.  

Lemma 3.1: Let, for some integer s ≥ 1, 

.                 (3.1) 

Then, SF(n, 4) > s2s. 

Proof : Let 

R2
) s(s 1n    

for some integer R with 1 ≤ R ≤ s. 

Writing the right-hand-side of the inequality 
(3.1) as 

(s + 1)2 + (s + 1) – 2n > 0; 
,2

11  1  n8 n21s 2    

so that 
.2

3n2s   
Now, 

  1     2)4 ,SF(n  1    R 2
)1 s(s 

2
)1 s(s s     

= 2s(s + R – 1) + 1 
> s2s, if 1 ≤ R ≤ s. 

 

Thus, the desired result is obtained. 

The following lemma deals with the case  
SF(n, p), p ≥ 5. 

3.2 : Let, for p ≥ 5, 
for some integer 

s ≥ 1, so that 

 for some integer R  

with  

1 ≤ R ≤ .                               (3.2) 

Then, 
SF(n, p) > (R + p – 2)2s – 2p + 5. 

 
Proof : The right-hand side of the inequality 
(3.2) can be rewritten as follows : 

 

so that 
(s + 1)(s + 2) … (s + p – 2) > n(p – 2)!.       (3.3) 

Now, by the AM-GM inequality, 

 

 
that is, 

.     (3.4) 

From (3.3) and (3.4), 

     (3.5) 

The following expression of SF(n, p) is well-
known since the time of Frame (1941) and 
Stewart (1941). 

 

Now, for t ≥ 1, 

 

1s(s  ) ( s  1 )(s  2 )n2 2
   

p s 3 p s 2np 2 p 2
   
   
   

    
 

p s 3n Rp 2
 
 
 

  


p s 3
p 3

 
 
 

 


n ( p  s  2)! (s  1)(s  2)  ...  ( s  p  2)
( p  2)!  s! ( p  2)!       

1
p 2( s  1)  ( s  2 )   ...   ( s  p  2 )

p  2
      


1

p 2( s  1)( s  2)  ...  ( s  p  2) ,[ ]     

n( p  2 )!p  1 1/(p 2 )
2s [ ]
 

n( p  2 )!

n( p  2 )!

p  11/(p 2 )
2

1/(p 2 ) p 1.

s [ ]
[ ]





 
  

t  
s 1

t 0

s p s 3 p t 32  n  2  .p 2 p 3 SF(n, p)




                  


                  

p t 3 ( t 1 )( t 2 )  ....  ( t p 3 )
p 3 (p 3)!

( p 2 )! p 2.( p 3 )!

 
 
 

     
 

  

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Therefore, 

 

= R2s + (p – 2)(2s – 2) + 1, 

which was to be proved.  

It would be instructive to see how good are the 
lower bounds of SF(n, p), given in Lemma 3.1 
and Lemma 3.2. For example, when p = 4, 
n = 16, s = 5, and by Lemma 3.1, 

SF(16, 4) > 5.25 = 160, 

which is almost tight, since SF(16, 4) = 161. On 
the other hand, when n = 18,    s = 5, and Lemma 
3.1 gives 

SF(18, 4) > 160, 

while SF(18, 4) = 225. The above example 
shows that, for the lower bound of SF(n, 4), the 
factor R2s cannot be ignored. Again, when p = 5, 
n = 36, s = 5, R = 1, and from Lemma 3.2, 

SF(36, 5) > 123. 
Lemma 3.1 shows that, SF(n, 4) is of the order 

; also by virtue of 

Lemma 3.2, SF(n, p) is of the order 

 for p ≥ 5, 
where in the latter case, the lower bound is 
rather a very conservative estimate. 

With the improved lower bound of SF(n, p), the 
problem needs to be considered. 

 
CONCLUSION 

Chen and Shen (2004, Theorem 3), actually 
proved that the newly defined function     g(n, p) 

is of the order , and 
concluded, without further closer study, that 
SF(n, p) is of the same order. As has been proved 
in Lemma 3.1 and Lemma 3.2, SF(n, p) is not of 
the same order as g(n, p). Moreover, since SF(n, 
p) itself is an upper bound for  M(n, p), and since 
an explicit form of SF(n, p) is already available, 
it is unnecessary to look for an upper bound for 

M(n, p). As has already been pointed out, the 
upper bound of SF(n, p) (and M(n, p) as well), 
given in Proposition 2.1 is rather very crude. 

Surprisingly, the same erroneous lower bound 
for g(n, p) has been quoted in Hinz, Klavzar, 
Milutinovic and Petr (2013) as 

, 
adding the term 1 + o(1) in the exponent, 
apparently without realizing that actually only 
the left-hand side of the inequality in Proposition 
2.1 has been established. It may be mentioned 
here that, if the above result is correct, it would 
be  g(36, 5) > 212. 

In the Tower of Hanoi problem, one has to start 
with the tower in perfect state on the source peg 
S, and the approach of Szedegy (1999) and Chen 
and Shen (2004) does not indicate how to 
dismantle this tower in order to move it to the 
destination peg D. It is thus unnecessary to 
introduce an artificial function g(n, p) in 
connection with the Frame-Stewart conjecture, 
particularly since it does not give any further 
insight into the problem. and the only property 
known about the function g(n, p) is the 
inequality (2.2), together with the inequality                
g(n, p)  M(n, p). 

It is thus seen that the criterion that tracfind 
tracking only on the number of moves ensuring 
(at least) one movement of each disc would not 
help us at all in resolving the Frame-Stewart 
conjecture. Moreover, under that criterion, one 
would end up with a configuration that is not 
perfect, though the problem is to transfer the 
tower of n discs in perfect state on the source 
peg to the perfect state on the destination peg (in 
minimum number of moves). Moreover, it is not 
known how g(n, p) is (functionally) related to 
SF(n, p). It is also not known how the newly 
found lower bound of SF(n, p) is related to M(n, 
p) or to g(n, p). From Proposition 2.1, it could 
not be claimed that SF(n, p) and  M(n, p) are of 
the same order. 
Thus, the Frame-Stewart conjecture still remains 
open. However, it is conjectured that, for 

t  
s 1

t 0

s p s 32  n  ( p 2 ) 2p 2  SF(n, p)




         
 

3
22n5 )22( 2n R  

1
1 p[ n( p  2 )!]  p  1( R p 2 )2
   

1
p 2[n( p  2 )!] p  12
  

1
p 2( 1  o( 1))[ n( p  2 )!]2
 
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sufficiently large values of n, the scheme leading 
to the recurrence relation (1.1) is not only 
optimal, it is the only optimal policy to solve the 
p-peg ToH. This is based on the fact that, for the 
generalized p-peg ToH problem with (p  4) 
pegs and n discs, the scheme is the only one to 
solve the problem optimally when 

n =  

The same point of view has been shared by 
Hinz, Klavzar, Milutinovic and Petr (2013, 
Conjecture 5.41). It may be recalled here that, 
the solution of the classical ToH problem (with 3 
pegs and n discs) is unique, when p = 4, the 
solution is still unique if  n = 3, and unique again 
when n = 6, and for n = 4, 5, there are solutions 
in addition to the pms (presumed minimum 
solution) determined by (1.1). This, in turn, 
implies that the ToH problem with p (  5) pegs 
has non-pms solutions for sufficiently large 
values of n. It may also be recalled that, for         
p  5, FS(n, p) is uniquely attained at the point 

 when n = , and 

simultaneously, the function FS 

(  – , p – 1) is uniquely 

attained. Thus, for example,  FS(10, 5) is 
attained at the unique point k = K = 4, because 
each of the two functions FS(K, 5) = FS(4, 5) and 
FS(10 – N, 4) =  FS(6, 4), is attained at a unique 
point. For the analysis of the generalized p-peg 
ToH problem, this fact should be kept in mind. 
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