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ABSTRACT

The authors introduce the concept of almost semiprime subsemimodules of semimodules over

a commutative semiring R. They investigated some basic properties of almost semiprime and

weakly semiprime subsemimodules and gave some characterizations of them, especially, for

(fnitely generated faithful) multiplication semimodules. They also study the relations among the

semiprime, weakly semiprime and almost semiprime subsemimodules of semimodules over

semirings.
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INTRODUCTION

The concept of semirings and semimodules has been studied by several authors

(Chaudhury and Bonde 2010 a,b, Golan 1999, Gupta and Chowdhury 2008). Prime

subsemimodules of semimodules over a commutative semirng was studied by Atani

(2010). Semiprime subsemimodules of a semimodule over a commutative semiring have

been studied by Yesilot et al. 2010. The authors studied the weakly semiprime and

almost semiprime subsemi-modules of a semimodule over a commutative semiring with

nonzero identity. They introduced some notation and terminology. By a commutative

semiring they mean an algebraic system R = (R, +, .) such that R = (R, +) and R = (R, .)

are commutative semigroup, connected by a(b + c) = ab + bc for all a, b, c  R, and there

exists 0  R such that r + 0 = 0 and r  0 = 0  r = 0 for all r  R. Throughout this paper

let R be a commutative semiring. A semiring R is said to be semidomain whenever a, b 
R with ab = 0, implies that a = 0 or b = 0. A subtractive ideal (= k-ideal) I is an ideal such

that if x, x + y  I, then y  I. A (left) semimodule M over a semiring R is a commutative

additive semigroup which has a zero element, together with a mapping from R  M into

M such that (r + s)m = rm + sm, r(m + n) = rm + rn, r(sm) = (rs)m and 2000 Mathematics

Subject Classi_cation: 16D10, 16D80, 13A15 0m = r0M = 0MT = 0M for all m; n  M and

r, s  R. Let M be a semimodule over a semiring R and let N be a subset of M, we say

that N is a subsemimodule of M when N is itself an R-semimodule with respect to the

operations for M (so 0M  N).
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It is easy to see that if r  R, then rM = {rm : m  M} is a subsemimodule of M. A

subtractive subsemimodule (=k-subsemimodule) N is subsemimodule such that if x, x + y

 N, then y  N. A proper subsemimodule N of R-semimodule M is called prime, if rm 
N where r  R and m  M, then m  N or rM  N. A semimodule M is called prime if the

zero subsemimodule of M is prime subsemimodule. The semiring R is a semimodule over

itself. In this case, the subsemimodules of R are called ideals of R. If R is a semiring (not

necessarily a semidomain) and M an R-semimodule, then we define the subset T(M) as

T(M) = {m  M : rm = 0 for some 0  r 2 R}. It is clear that if R a semidomain, then T(M)

is a subsemi-module of M (see [4]). Let R is a semidomain and M an R-semimodule, then

M is called torsion if T(M) = M and M is called torsion free if T(M) = 0. For any two

subsemimodules N and K of an R-semimodule M, the residual of N by K is de_ned as the

set (N : K) = {r  R : rK  N} which is clearly an ideal of R (Alani). In particular, the

ideal (0 : M) is called the annihilator of M. Let N be a sub-semimodule of M and I be an

ideal of R, the residual subsemimodule of N by I is defined as (N : MI) = {m  M : Im 
N} which is clearly a subsemimodule of M. These two residual ideal and subsemimodule

were proved to be useful in studying many concepts of semimodules. A proper

subsemimodule N of an R-semimodule M is called semiprime, if whenever r  R, m  M

and k  Z+ such that rkm  N, then rm  N. An R-semimodule M is called a second

semimodule provided that for every element r  R, the R-endomorphism of M produced

by multiplication by r is either surjective or zero, this implies that (0 : M) = p is a prime

ideal of R, and M is said to be p-second. An R-semimodule M is called a multiplication

semimodule provided that, for every subsemimodule N of M, there exists an ideal I of R

so that N = IM (or equivalently, N = (N : M)M). An ideal I of a semiring R is called

multiplication, if it is multiplication as R-semimodules. An R-semimodule M is called a

cancellation semimodule if for all ideals I and J of R, IM = JM implies that I = J.

RESULTS AND DISCUSSION

Some results on almost semiprime subsemimodules

Definition 2.1. (i) Let R be a commutative semiring. A proper ideal I of R is called

almost semiprime if whenever akb  I – I2 for a, b  R and k  Z+, then ab  I.

(ii) Let R be a commutative semiring and M be an R-semimodule. A proper

subsemimodule N of M is called almost semiprime if whenever r  R, m  M and k  Z+

such that rkm  N – (N : M)N, then rm  N.

Let M be an R-semimodule and N a subsemimodule of M. N is called idem-potent in

M if N = (N : M)N. Thus any proper idempotent subsemimodule of M is almost

semiprime. If M is a multiplication R-semimodule and N = IM and K = JM are two

subsemimodules of M, then the product NK of N and K is defined as NK = (IM) (JM) =

(IJ)M. In particular, we have N2 = NN = [(N : M)M] [(N : M)M] = (N : M)2M. A
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subsemimodule N of an R-semimodule M is called a pure (RD-) subsemimodule if IN = N

 IM (rN = N  rM) for any ideal I of R (for any r  R).

Example 1. It is clear that every semiprime subsemimodule is almost semiprime.

But the convers is not true in general. For example, set Z* = Z+  {0}. Consider Z*-

semimodule M = Z*
24 (the non negative integers modulo 24) and the subsemimodule N =

< 8 >. Then (N : M)N = N, and so N is an almost semiprime subsemimodule of M. But N

is not semiprime in M, because 22  2  N, but 22  N.

Now the authors study almost semiprime subsemimodules in quotient semimodules.

Atani and Atani (2010) introduced the concept of quotient semimodules, a

subsemimodule N of an R-semimodule M is called a partitioning subsemimodule (=Q-

subsemimodule) if there exists a non-empty subset Q of M such that

(1) RQ  Q, where RQ = {rq : q  Q};

(2) M =  {q + N : q  Q}

(3) If q1, q2  Q, then (q1 + N)  (q2 + N)  ∅ q1 = q2.

Let M be a semimodule over a semiring R, and let N be a Q-subsemimodule of M.

We put M/N = {q + N : q 2 Q}. Then M=N forms a commutative additive semigroup

which has zero element under the binary operation  defined as follows: (q1 + N)  (q2 +

N) = q3 + N where q3 is a unique element of Q such that q1 + q2 + N  q3 + N. By the

definition of Q-subsemimodule, there exist a unique q0  Q such that 0M + N  q0 + N.

Then q0 + N is a zero element of M/N. But, for every q  Q from (1) one obtains 0M = 0Rq

 Q; hence q0 = 0.

Now let r  R and suppose that q1 +N, q2 +N  M/N are such that q1 + N = q2 + N in

M/N. Then q1 = q2, the authors must have rq1 + N = rq2 + N. The authors can

unambiguously define a mapping from R  M/N into M/N (sending (r, q1 + N) to rq1 + N)

and it is routine to check that this turns the commutative semigroup M/N into an R-

semimodule. The authors call this R-semimoule the residue class semimodule or factor

semimodule of M modulo N.

In the almost semiprime subsemimodules case, N is an almost semiprime sub-

semimodule of M, then N/K is an almost semiprime subsemimodule of M/K for any Q-

subsemimodule K  N. But the covers part may not be true. For example, for any non

almost semiprime subsemimodule N of M, the authors have N/N = 0 is an almost

semiprime subsemimodule of M/N. But the authors have the following theorem:

Theorem 2.2. Let N be a k-subsemimodule and K a Q-subsemimodules of an R-

semimodule M with K  (N : M)N. Then N is an almost semiprime sub-semimodule of M

if and only if N/K is an almost semiprime subsemimodule of the R-semimodule M/K.
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Proof. Let N be an almost semiprime subsemimodule of M and assume that r  R, q1

+ K  M/K and k  Z+ such that rk(q1 +K)  N/K – (N/K : M/K)N/K. So rkq1 + K = q2 + K

where q2  Q  N. Therefore rkq1  N since K  N and N is a k-subsemimodule of M.

Since by Lemma 5 of [4], (N : M) = (N/K : M/K), so rkq1  (N : M)N, hence rq1  N since

N is almost semiprime subsemimodule. Thus r(q1 + K)  N/K, as needed. Conversely, let

N/K be an almost semiprime subsemimodule of M/K and assume that rkm  N – (N : M)N

for some r  R, m  M and k  Z+. So there exists a unique element q  Q such that m 
q + K. Hence m = q + k for some k  K, and rkm = rkq + rkk. Since K  N and N is k-

subsemimodule, hence rkq  N  Q. Thus rkq + K  N/K, and it is clear that rkq + K 
(N/K : M/K)N/K ((N : M) = (N/K : M/K)). Therefore, r(q + K)  N/K because N/K is

almost semiprime, so rq  N. Thus rm = rq + rk  N, as required.

Let R be a semiring and let S be a multiplicatively closed subset of R. De_ne a

relation on R  S as follows:

for (a, s), (b, t)  R  S, we write (a, s)  (b, t) if and only if at = bs. Then  is a

equivalence relation on R  S. For (a, s)  R  S, denote the equivalence class of s which

contains (a, s) by a/s, and denoted the set of all equivalence classes of  by S–1R. Then S–1

R can be given the structure of a commutative semiring under operations for which a/s +

b/t = (ta + sb)/st, (a/s)(b/t) = ab/st for all a, b  R and s, t  S. This new semiring S–1R is

called the semiring of fractions of R with respect to S, its zero element is 0/1, its

multiplicative identity element is 1/1 and each element of S–1R has a multiplicative

inverse in S–1R (see [5]). Let M be a semimodule over a semiring R. We de_ne a relation

on M  S. Assume that (a, s), (b, t)  M  S, we write (m, s)  (n, t) if and only if mt = ns.

Then  is a equivalence relation on M  S. For (m, s)  M  S, denote the equivalence

class of  which contains (m; s) by m/s, and denoted the set of all equivalence classes of s

by S–1M. Then S–1M can be given the structure of a semimodule over the semiring S–1R

under operations for which m/s + n/t = (tm + sn)/st, (r/l)(m/s) = am/st for r/l  S–1R and

m/s, n/t  S–1M.

Theorem 2.3. Let S be a multiplicative closed subset of R and N an almost

semiprime subsemimodule of R-semimodule M with S  (N : M) = ∅. Then S–1N is an

almost semiprime subsemimodule of the S–1R-semimodule S–1M.

Proof. Let N be an almost semiprime subsemimodule of M. Since (N : M)  S = ∅,

then S–1N  S–1M. Assume that (r/s)km/t  S–1N – (S–1 : S–1R S–1M)S–1N where r/s  S–1R,

m/t  S–1M and k  Z+. Hence rkm/skt = n/s for some n  N and s  S, and so there

exists t  S such that rkstm = skttn  N. If rkstm  (N : M)N, then rkm/skt =

rkstm=sktst  S–1((N : R M)N) = S–1(N : RM)S–1N  (S–1N : S–1R S–1M)S–1N, a

contradiction. So rkstm  N – (N : M)N, and rstm  N since N is almost semiprime.

Therefore rm/st = rstm/stst  S–1N, hence S–1N is an almost semiprime subsemimodule

of S–1M.
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Proposition 2.4. Let R = R1  R2 where each Ri is a commutative semiring with non

zero identity. Let Mi be an Ri-semimodule and let M = M1  M2 be the R-semimodule with

action (r1, r2) (m1, m2) = (r1m1, r2m2) where ri  Ri and mi  Mi. Then

(i) N1 is an almost semiprime subsemimodule of M1 if and only if N1  M2 is an

almost semiprime subsemimodule of M.

(ii) N2 is an almost semiprime subsemimodule of M2 if and only if M1  N2 is an

almost semiprime subsemimodule of M.

Proof. (i) Let N1 be an almost semiprime subsemimodule of M1. Assume that (r1, r2)

k(m1, m2)  N1  M2 – (N1  M2 : M)N1  M2 where (r1, r2)  R, (m1, m2)  M and k  Z+.

If rk
1m1  (N1 : M1)N1, then (r1, r2) k(m1, m2)  (N1 : M1)N1  (M2 : M2)M2 = ((N1 : M1) 

(M2 : M2))N1  M2 = (N1  M2 : M1  M2)N1  M2, a contradiction. Hence as N1 is almost

semiprime and rk
1m1  N1 – (N1 : M1)N1, then r1m1  N1, and so (r1, r2)(m1, m2)  N1 

M2. Conversely, Assume that N1  M2 is an almost semiprime subsemimodule of M. Let

rk
1m1  N1 – (N1 : M1)N1 for r1  R1, m1  M1 and k  Z+. Then (r1, 1) k(m1, 0)  N1  M2

–(N1  M2 : M)N1  M2 by (i). Therefore (r1, 1) (m1, 0)  N1  M2, since N1  M2 is almost

semiprime, so r1m1  N1, as needed.

(ii) is similar to (i).

Let R be a commutative semiring with identity and M be an R-semimodule. Then

R(M) = R(+)M with multiplication (a, m) (b, n) = (ab, an + bm) and with addition (a, m)

+ (b, n) = (a + b, m + n) is a commutative semiring with identity (1, 0), and 0(+)M is a

nilpotent ideal of index 2. The semiring R(+)M is said to be the idealization of M or

trivial extension of R by M. We view R as a subsemiring of R(+)M via r  (r, 0). An

ideal J is said to be homogeneous if J = I(+)N for some ideal I of R and some

subsemimodule N of M such that IM  N.

Lemma 2.5. Let I(+)N be an ideal of R(M). Then (I(+)N)2  I2(+)IN.

Proof. The proof is straightforward.

Theorem 2.6. Let I(+)N be a homogeneous ideal of R(M). Then, if I(+)N is an

almost semiprime ideal of R(M), then I is an almost semiprime ideal of R and N is an

almost semiprime subsemimodule of M.

Proof. Assume that I(+)N is an almost semiprime ideal of R(M). Let a, b  R and k

 Z+ such that akb  I – I2. Then (a, 0) k(b, 0)  I(+)N – (I(+)N)2. Because if (a, 0) k(b,

0)  (I(+)N)2, then by Lemma 2.5, (a, 0) k(b, 0)  I2(+)IN, hence akb  I2, a

contradiction. Therefore (a, 0) (b, 0)  I(+)N, and ab  I, so I is an almost semiprime

ideal of R. Let r  R, m  M and k  Z+ such that rkm  N – (N : M)N. Therefore (r, 0)

k(0, m)  I(+)N – (I(+)N)2. Because if (r, 0) k(0, m) = (0, rkm)  (I(+)N)2  I2(+)IN, then
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rkm  IN. So rkm  IN  (N : M)N since I(+)N is a homogeneous ideal, a contradiction.

Hence (r, 0) (0, m)  I(+)N, so rm  N. Thus N is an almost semiprime subsemimodule

of M.

Proposition 2.7. Let M be an R-semimodule and N be an almost semiprime sub-

semimodule of M. Then

(i) If M is a second R-semimodule, then N is a second semimodule.

(ii) If M is a second R-semimodule, then N is an RD-subsemimodule of M.

Proof. Let N be an almost semiprime subsemimodule of M and let r  R. If rM = 0,

then rN  rM = 0. Let rM = M. Now It is enough to show that N  rN. First, we show

that (N : M)N = 0. Since N is a proper subsemimodule of M, so for any r  (N : M), we

have rM = 0. Therefore (N : M)N = 0. Let n  N. We may assume that n  0. Since rM =

M, so n = rm for some m  M, and m = rm for some m  M. Hence n = r2m  N – (N :

M)N, as N is almost semiprim so m = rm  N. Hence n = rm  rN, so N  rN. Therefore

rN = N, and N is second.

(ii) Let r  R. If rM = 0, then rN = 0, so rN = 0 = N  rM. Suppose that rM = M, so

by (i), rN = N, therefore rN = N  rM.

In the following Theorems, we give other characterizations of almost semiprime

subsemimodules.

Theorem 2.8. Let M be an R-semimodule and N a proper subsemimodule of M. Then

the following are equivalent:

(i) N is an almost semiprime subsemimodule of M.

(ii) For r  R, k  Z+, (N : M <rk>) = (N : M <r>)  ((N : M)N : M <rk>).

(iii) For r  R and k  Z+, (N : M <rk>) = (N : M <r>) or (N : M <rk>) = ((N :

M)N : M <rk>).

Proof. (i)  (ii) Let m  (N : M <rk>), then rkm  N. If rkm  (N : RM)N, as N is

almost semiprime, rm  N, so m  (N : M <r>). Let rkm  (N : RM)N, then m  ((N :

RM)N : M <r> k), hence (N : M <rk>)  (N : M <r>)  ((N : M)N : M <rk>). The other

containment holds for any subsemimodule N.

(ii)  (iii) It is well known that if a subsemimodule is the union of two subsemi-

modules, then it is equal to one of them.

(iii)  (i) Let rkm  N – (N : RM)N for some r  R, m  M and k  Z+. Hence m 
(N : M <rk>) and m  ((N : RM)N : M <rk>), so by assumption, m  (N : M <r>) and rm
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 N. Therefore N is almost semiprime. The following Theorem give from Theorem 2.8

Theorem 2.9. Let M be an R-semimodule and N be a proper subsemimodule of M.

Then N is almost semiprime in M if and only if for any subsemimodule K of M, a  R and

k  Z+ with <a>k K  N and <a>k K  (N : RM)N, we have <a> K  N.

It is clear that if N is a semiprime subsemimodule of M, then (N : RM) is a semiprime

ideal of R. But it may not be true in the case of almost semiprime subsemimodules.

Example 2. Let M denoted the cyclic Z*-semimodule Z*4 (the non negative integers

modulo 4). Take N = {0}. Certainly, N is almost semiprime, but (N : RM) = 4Z* is not an

almost semiprime ideal of Z*. Because 22  (N : M) – (N : M)2, but 2  (N : M).

Now in the following Theorem, we give a characterization of almost semiprime

subsemimodules in (finitely generated faithful) multiplication semimodules. We first

need the following Lemma.

Lemma 2.10. Let N be a subsemimodule of a finitely generated faithful

multiplication (so cancellation) R-semimodule. Then (IN : M) = I(N : M) for every ideal I

of R.

Proof. As M is multiplication R-semimodule, then we have (IN : M)M = IN = I(N :

M)M. So since M is cacellation semimodule, the proof is hold.

Theorem 2.11. Let M be a finitely generated faithful multiplication R-semimodule

and N a proper subsemimodule of M. Then the following are equivalent:

(i) N is almost semiprime in M.

(ii) (N : RM) is almost semiprime in R.

(iii) N = PM for some almost semiprime ideal P of R.

Proof. (i)  (ii) Suppose that N is an almost semiprime subsemimodule of M. Let a,

b  R and k  Z+ such that akb  (N : M) – (N : M)2. Then <a>k (bM)  N and <a>k

(bM)   (N : M)N. Indeed, if <a>k (bM)  (N : M)N, then by Lemma 2.10, akb  ((N :

M)N : M) = (N : M)2, a contradiction. Now, N almost semiprime implies that <a> (bM) 
N by Theorem 2.9, so ab  (N : M), hence (N : M) is almost semiprime in R.

(ii)  (i) In this direction, we need M to be just a multiplication semimodule. Let

rkm  N – (N : M)M where r  R, m  M and k  Z+. Then <r>k (<m> : M)  (<rkm> :

M)  (N : M). Moreover, <r>k (<m > : M)  (N : M)2 because otherwise, if <r>k (<m>

: M)  (N : M)2  ((N : M)N : M), then <r>k <m> = <r>k (<m> : M)M  (N : M)N, a

contradiction. As (N : M) is an almost semiprime ideal of R, then <r> (<m>: M)  (N :

M). Therefore <r> <m> = <r> (<m> : M)M  (N : M)M = N, and so rm  N, as

required.
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(ii)  (iii) We choose P = (N : M).

3 The relations among almost semiprime and weakly semiprime subsemimodules

Definition 3.1. (i) Let R be a commutative semiring. A proper ideal I of R is called

weakly semiprime if whenever 0  akb  I for some a, b  R and k  Z+, then ab  I.

(ii) Let M be an R-semimodule. A proper subsemimodule N of M is called weakly

semiprime if whenever 0  rkm  N for some r  M, m  M and k  Z+; then rm  N.

Remark 1. Let M a semimodule over a commutative semiring R. Then semiprime

subsemimodules  weakly semiprime subsemimodudules  almost semiprime sub-

semimodules.

Example 3. Consider the Z*-semimodule M = Z*24 and the proper subsemimodule N

= <8> = {0, 8, 16}. Then 0 = 08, 8 = 168 and 16 = 1616, so (N : M)N = N. Therefore N

is almost semiprime. On the other hand, 0  222  N, but 22  N, and so N is not

weakly semiprime.

Theorem 3.2. Let M be an R-semimodule, (N : M)N a Q-subsemimodule of M and N

a proper k-subsemimodule of M. Then N is an almost semiprime subsemi-module of M if

and only if N/(N : M)N is a weakly semiprime subsemimodule of the R-semimodule M/(N

: M)N.

Proof. Assume that N is an almost semiprime subsemimodule of M. Let q0 + (N :

M)N  rk(q1 + (N : M)N)  N/(N : M)N where r  R, q1  Q and k  Z+. Hence rkq1 + (N :

M)N = q2 + (N : M)N such that q2  Q  N. Since (N : M)N  N and N is a k-

subsemimodule, hence rkq1  N. If rkq1  (N : M)N, then rkq1  q0 + (N : M)N, so rkq1 +

(N : M)N = q0 + (N : M)N, a contradiction. Hence rkq1  N – (N : M)N, and so rq1  N

since N is weakly semiprime. Therefore r(q1 + (N : M)N))  N/(N : M)N, as needed.

Conversely, assume that N/(N : M)N is weakly semiprime in M/(N : M)N. Let rkm  N –
(N : M)N where r  R, m  M and k  Z+. Then m  q + (N : M)N where q  Q is a

unique element of Q. Thus rkm  rkq + (N : M)N and since N is k-subsemimodule, then

rkq  N  Q. Therefore q0 + (N : M)N  rkq + (N : M)N  N/(N : M)N, hence r(q + (N :

M)N)  N/(N : M)N since N/K is weakly smiprime subsemimodule. So rq  N, and so rm

 N, as required.

Proposition 3.3. Let R be a semidomain and M be a torsion free R-semimodule.

Then every weakly semiprime subsemimodule of M is semiprime.

Proof. Let N be a weakly semiprime subsemimodule of M. Let r  R, m  M and k

 Z+ such that rkm  N. If 0  rkm, then N weakly semiprime gives that rm  N. Suppose

that rkm = 0. If rk  0, then m  T(M) = 0, so rm  N. If rk = 0, then r = 0, and hence rm
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 N. Therefore N is semiprime.

Proposition 3.4. Let M be a prime R-semimodule. Then every weakly semiprime

subsemimodule of M is semiprime.

Proof. Let N be a weakly semiprime subsemimodule of M. Let r  R, m  M and k

 Z+ such that rkm  N. If 0  rkm, then N weakly semiprime gives that rm  N. Suppose

that rkm = 0, then rm = 0 or rk–1M = 0 since M is a prime semimodule. By following this

method, we get rm = 0  N, hence N is a semiprime subsemimodule of M.

Proposition 3.5. Let M be a second R-semimodule and N a proper subsemimodule of

M. Then N is almost semiprime if and only if N is weakly semiprime.

Proof. We know that every weakly semiprime is almost semiprime. Let N be an

almost semiprime subsemimodule of M and 0  rkm  N for some r  R, m  M and k 
Z+. By Proposition 2.7, we have (N : M)N = 0, hence rkm  N – (N : M)N, and so rm 
N. Therefore N is weakly semiprime subsemimodule of M.

Now we get other characterizations of weakly semiprime subsemimodule.

Theorem 3.6. Let M be an R-semimodule and N a proper subsemimodule of M. Then

the following are equivalent:

(i) N is a weakly semiprime subsemimodule of M.

(ii) For r  R and k  Z+; (N : M <rk>) = (0 : M <rk>)  (N : M <r>).

(iii) For r  R and k  Z+; (N : M <rk>) = (0 : M <rk>) or (N : M <rk>) = (N : M <r>).

Proof. (i)  (ii) Let m  (N : M <rk>), then rkm  N. If rkm  0, as N is weakly

semiprime, rm  N, so m  (N : M <r>). Let rkm = 0, then m  (0 : M <rk>), hence (N : M

<rk>)  (N : M <r>)[(0 :M <rk>). Clearly, (N : M <r>)  (0 : M <rk>)  (N : M <rk>),

therefore (N : M <rk>) = (0 : M <rk>)  (N : M <r>).

(ii)  (iii) It is straightforward.

(iii)  (i) Let 0  rkm  N for some r  R, m  M and k  Z+. Hence m  (N : M

<rk>) and m  (0 : M <rk>), so by assumption, m  (N : M <r>). Therefore N is weakly

semiprime.

Theorem 3.7. Let M be an R-semimodule and N be a proper subsemimodule of M.

Then N is weakly semiprime in M if and only if for any subsemimodule K of M, a  R

and k  Z+ with 0  <a>k K  N, we have <a> K  N.

Theorem 3.8. Let N be a weakly semiprime subsemimodule of an R-semimodule M

with T(M) = 0. Then for any non zero ideal I of R; (N : M I) is a weakly semiprime
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subsemimodule of M.

Proof. Let r  R, m  M and k  Z+ such that 0  rkm  (N : M I). Hence <r>k (mI)

 N. If 0  <r>k (mI)  N, then by Theorem 3.7, N weakly semiprime gives that <r>

(mI)  N, so rm  (N : M I), as needed. Suppose that <r>k (mI) = 0, so rkma = 0 for some

non zero a  I. Hence rkm  T(M) = 0, which is a contradiction. Therefore (N : M I) is

weakly semiprime.

In Theorem 3.8, the assumption T(M) = 0 is necessary. To see this, consider Z*-

semimodule Z*
16. Let N = {0} and I = 2Z*. Clearly, N is weakly semiprime

subsemimodule of M, but (N : M I) = {0}, 8g is not weakly semiprime.

Theorem 3.9. Let I be an ideal of R and N a subsemimodule of M such that I(+)N be

a weakly semiprime ideal of R(M). Then I is a weakly semiprime ideal of R and N is a

weakly semiprime subsemimodule of M.

Proof. Assume that I(+)N is a weakly semiprime ideal of R(M). Let a, b  R and k 
Z+ such that 0  akb  I. Then (0; 0)  (a; 0) k(b, 0)  I(+)N. Therefore (a, 0) (b, 0) 
I(+)N, and ab  I, so I is a weakly semiprime ideal of R. Now, let r  R, m  M and k 
Z+ such that 0  rkm  N. Therefore (0, 0)  (r, 0) k(0, m)  I(+)N, hence (r, 0) (0, m) 
I(+)N, so rm  N. Thus N is a weakly semiprime subsemimodule of M.

Proposition 3.10. Let M be a faithful R-semimodule and N a weakly semiprime

subsemimodule of M. Then (N : M) is a weakly semiprime ideal of R.

Proof. Suppose N is weakly semiprime, a, b  R and k  Z+ such that 0  akb 
(N : M). Then 0 = <a>k (bM)  N. Indeed, if <a>k (bM) = 0, then akb  (0 : M) = 0, a

contradiction. Now, by Theorem 3.7 implies that <a> (bM)  N, so ab  (N : M), and

(N : M) is weakly semiprime in R.

Now we give characterizations of weakly semiprime subsemimodules in (finitely

generated faithful) multiplication semimodules.

Theorem 3.11. Let M be a finitely generated faithful multiplication R-semimodule

and N be a proper subsemimodule of M. Then the following are equivalent:

(i) N is weakly semiprime in M.

(ii) (N : R M) is weakly semiprime in R.

(iii) N = QM for some weakly semiprime ideal Q of R.

Proof. (i)  (ii) By Proposition 3.10.

(ii)  (i) In this direction, we need M to be just a multiplication semimodule. Let 0=

rkm  N where r  R, m  M and k  Z+. Then <r>k (<m> : M)  (<rkm> : M)  (N :
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M). Moreover, <r>k (<m> : M)  0 because otherwise, if <r>k (<m> : M) = 0, then <r>k

<m> = <r>k (<m> : M)M = 0, a contradiction. As (N : M) is a weakly semiprime ideal of

R, then <r> (<m> : M)  (N : M). Therefore <r> <m> = <r > (<m> : M)M  (N : M)M

= N, and so rm  N, as required.

(ii) (iii) We choose Q = (N : M).
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