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ABSTRACT

The cyclic groups, the additive group Q of rational numbers and the additive group R of real

numbers are sometimes very useful elements in many studies. In this paper, the authors

concentrated their intuition in determining the structures of the automorphism groups of these

useful groups in the light of previous works.
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INTRODUCTION

Majumdar and Mallick (1987) studied a class of abelian groups having a set of

generators such that each non-zero element of the group is expressible uniquely in terms

of the generators using each generator its inverse, but not both, at most once. Following it

a class of commutative semigroups termed special semigroups was studied by Hossain

and Majumdar (2007). Later, the studies of endomorphism semigroups and the

automorphism groups for this class of groups were done by Majumdar et al. (2008) and

Hossain (2010), respectively. Some important structures for this class were determined in

those studies. Now for an object A of certain categories, the automorphism group of A

denoted by AutA is sometimes very interesting, and has some important structures.

For example, if the object A is V, a vector space over the field F, then

 AutVAAut the group of all invertible linear operators of V, and hence

)(FMVAut nn , the group of all nn   non-singular matrices with entries in F. For R

and C in place of V, these are GL(n, R) and GL(n, C), respectively. It is known that

several subgroups of GL(n, R) and GL(n, C) are very important and widely used in

theoretical physics. If the object A is a group G, )( GAutAAut  has different structure,

and the aim of this study was to determine it using the notions of their above mentioned

few works. In this paper,  the structures of GAut  have been determined for those cases

when the  group G is any one of cyclic groups, the additive group Q of rational numbers

and the additive group R of real numbers. Sometimes, a few terminologies of Zassenhaus

(1958) and Scott (1964) have been also used in this study.
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PRELIMINARIES AND PREVIOUS RESULTS

Let A be an object of a category C. If a subset G(A) of Hom(A, A) is a group under

composition of morphisms of C with 1A as the identity element, G(A) will be called a

group of morphisms of A. Then the subset of Hom(A, A) consisting of all

),( AAHomf  for which the inverse exists in the largest group of morphisms of A  and

contains all groups of morphisms of A. This group will be called the automorphism group

of A and denoted by .AAut For obtaining the structures of this class of groups, a few

objects and gluing operations are very necessary. The cyclic groups infinite or finite with

one generator, the additive group of the residue classes of the integers modulo some

positive integers, say, n, additive group of rational numbers, additive group of real

numbers etc. are main objects in this study, and these are denoted by C or Cn, Zn, Q and

R, respectively. The group of all automorphisms of G, i.e., the group of all 1-1

homomorphisms of G onto itself is denoted by .GAut It is assumed here that group

homomorphisms, group isomorphisms and group automorphisms etc. are known well to

the readers.

As gluing operations one needs direct product, semidirect product, free product etc.

If 1G and 2G are two groups, the direct product },|),{( 22112121 GgGgggGG  of

1G and 2G is a group with multiplication given by ).,(),)(,( 22112121 gggggggg  Its

cardinality is obviously |G||H|. Sometimes G×H is termed the external direct product. It

has two natural subgroups G}g|,1){(g=1×G  and H}.h|h){(1,=H×1 

Clearly, G  G × 1 since g  (g, 1) is an isomorphism of G  G × 1, and

similarly H  1 × H. So, one thinks of G × H as a group containing a copy of G. If 1G and

2G  are additive abelian groups, direct product in that case is replaced just by the direct

sum of the groups.

Let H and K be two groups, and let )(: HAutK be a homomorphism. The

semidirect product of H by K via  is the set of ordered pairs },|),{( KkHhkh  together

with the binary operation defined by )),((),)(,( 21212211 1
kkhhkhkh k , where k . is written

for Kkk ),(  is a group. This group is denoted by KH  for the semidirect product of

the group H by the group K. write N⋊ϕ K for the semidirect product.

The present authors now define another type of group product termed free product as

follows:

Given any collection }:{ IiGi  of groups their free product exists and can be

defined as follows:

Assume that for each Ii  there is a homomorphism i of iG into a fixed group G.

Then we say that G is the free product of the groups IiGi ,  if and only if for any group

H and for any homomorphism IiHGii  ,: there exists a unique homomorphism
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HGf :  such that ii f   for every .Ii

On the other hand, a group G is said to be the free product of its subgroups

IA  , if the subgroups A generate G i.e., every element g of G is the product of a

finite number of the elements of the A : ),,2,1(,,21 niAaaag
iin    ,

and the expression is unique. In this case, the free product includes the component groups

as subgroups.

Specifically, if one only deals with abelian groups, it can be seen that the free

product of abelian groups is again abelian. In that case, the free product equals the direct

product.

The wreath product of transformation groups G and H on sets A and B, respectively,

written HG , is the group of all permutations   on BA  such that

)),(( ba ,,,))(),(( BbAabab   where H  and for each bBb ,  is a

permutation of G on A, but for different b’s the choice of the permutations b  are

independent.

Now one can recall the structures obtained from earlier one research work Hossain

(2010) in the following way:

If Z+, Q+ and N(2) represent the additive group of all positive integers, additive group

of all positive rationals and additive group of all positive rationals having denominators

2x for any non-negative integer respectively, then

THEOREM 1:

 (i) Aut Z+   {1}, the group with one element,

(ii) Aut Q+  Q+,

(iii) Aut (N(2))   {1}, the group with one element.

If S a finite direct sum, where each Sα  is any of Z+, Q+ or N(2); then

THEOREM 2:

)()(
11 rr nn SSAutSSAutSAut    , where   denotes the wreath product,

)( rii  .

AUTOMORPHISM GROUP OF CYCLIC GROUPS

It is easy to see that if G is infinite cyclic with generator x, then the only

automorphisms of G are given by the maps xx   and 1 xx  . Hence GAut is

the cyclic group of order 2 generated by , i.e., )(2 CGAut  .

For a finite cyclic group G, the situation is more complex. If x is a generator of G,
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then the automorphisms of G are precisely the homomorphisms of G given by the maps
if xx i , where i is any integer relatively prime to n. Thus the order of GAut is )(n ,

where n is the order of G and  is the Euler function. We now determine the structure of

nCAut . This is done by a manner different to that used in Scott (1964) and Zassenhaus

(1958).

Consider the ring Zn of the residue classes of the integers modulo n ( 2n ). Then

the set of elements r  Zn, with 1),( nr is a group under multiplication. For, since there

are integers a, b such that 1 nbra and so, we have 1ra , a  is the multiplicative

inverse of r , the bar denoting the residue class modulo n. The authors denote this group

by ][n .  Clearly the order of ][n  is )(n , where  is the Euler function.

Now the map ][: nCAut n   given by rf )( , where nC  being the cyclic

group of order n and rxxf )( , is an isomorphism. Thus this can be obtained in the

following theorem.

THEOREM 3: ].[nCAut n 

One can now establish the structure of the group ].[n  For this purpose, it needs to

prove that:

THEOREM 4: If a and b are two relatively prime integers, then ][][][ baab 
(direct product).

Proof: The elements of ][ab  are }{ )( irj raq
i
 , where }{ kr is the set of all positive

integers less than a and relatively prime to a , and for a fixed ir , irj raq
i
)( is the set of

integers in })1(,,2,{ iii rabrara   which are relatively prime to a.

Define ][][: aab  by ][)( )( arraq irj i
 . Then,  is an onto homomorphism

and }1{ )( 
irjaqKer . Now, ][: bKer  given by

][)( )()( braqraq irjirj ii
 is an isomorphism.

Hence the sequence of abelian multiplicative groups and group homomorphisms

1][][][1)(
1

 


aabbA 
is exact. Also, ][][:* bab 

given by ][)( )()(
* braqraq irjirj ii

 is a well defined homomorphism and

][
1* 1 b
 . Thus the sequence )( A splits. Hence ][][][ baab  .

THEOREM 5: (i) If p is an odd prime,
)(

][ np

n Cp


 for each positive integer n.

                        (ii) 222]2[  nCCn for each .2n



ON AUTOMORPHISM GROUPS OF SOME PARTICULAR GROUPS 113

Proof: (i) The order of
).1(

)(][
1 


 pp

pp
n

nn 

The element 2  of ][ np  must have order exactly ).1(1  ppn  Hence 2 is a generator

of ].[ np  Thus,
)(

][ np

n Cp


 .

(ii) For 2n  and 3, the result is easily verified; for  3]2[ 2 and

 53]2[ 3 .

The authors first noted that for each 1],2[
22 
nn aa , the identity element of [2n].

For ,5,4,3,2n  this is true. Let it be true for 2n , let a be any integer then

12
22 
 nka

n

, for some integer k, so that 12122 1222 1

  nnn lkka
n

, where

kkl n 222  . Hence 1
12 
n

a , where 1 is the identity element of ]2[ 1n .

The order of 3 in ]2[ n is exactly .2 2n  To do so we show that for all

13,4
32 
n

n in ]2[ n , i.e., 123
32 
 nk

n

for any integer k.

By the above paragraph, there exists an integer l such that .123 12 3

  nl
n

Hence the

authors had to show that l is odd. This can be done by induction on n. This is seen to be

true for .4n Assume that for ,4n 123 12 3

  nl
n

, where l is odd. Squaring both

sides, ,1212)2(1223 2222222   nnnnnn
lllll where l is odd. Hence 3 has

order 22 n in ]2[ n  i.e., ,3   the cyclic subgroup generated by 3  in ]2[ n  has order .2 2n

Let ],2[ ny  but  3y . Then,  32y , since the order of ]2[ n  is .2 1n  Now
2y  cannot be equal to an odd power of ,3 for then y will be of order ,2 1n  which is

impossible by the  second paragraph of our proof. Hence ry 22 3 , for some non-

negative integer r. Then 13 yr  has order 2 and it does not belong to .3   Therefore

,33]2[ 1  yrn  the internal direct product. Thus, 222]2[  nCCn .

The structure of nCAut for an arbitrary positive integer 2n follows from the above

three theorems 1, 2 and 3, and can be stated as:

THEOREM 6: Let n be positive integer re
r

e ppn 
1

1 where rpp ,,1   are prime

numbers with rppp  21  and reee ,,, 21   are positive integers. Then














.2

,2
][

1)()(

1)()(22

1
1

2
2

21

pifCC

pifCCCC
nCAut

re
r

e

re
r

ee

pp

pp

n









THE AUTOMORPHISM GROUPS OF Q AND R

The following propositions describe the structure of Aut Q and Aut R, where Q is

the additive group of rational numbers and R is the additive group of real numbers.
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PROPOSITION 7:

Aut Q   Q*, where Q* is the multiplicative group of all non-zero rationals.

Proof: Let Autf   Q and let 1)( xf . Then, 0x . Let nm, Z, 0n . Then,

xmmf )( . Let xmmf )( yf n
m )( , then ynfnnfmf n

m
n
m  )()()( . So,

)1()( fxyf n
m

n
m

n
m  .

Conversely, let 0x  be any element of Q. Define :f Q  Q as follows:

nm
n
m ,, Z for each nm, Z, xfn n

m
n
m  )(,0 . Then, xf )1( , and so,

)1()( ff n
m

n
m  . Clearly f is an isomorphism of Q. Here

xn
m

n
mf 11 )(  .

Consider the map Aut: Q  Q* given by )1()( ff  . Clearly 0)1( f , so that

)1(f Q*. It can seen that, if Autgf , Q, then )()()1()1()1)(()( gfgffgfg   ,

Thus  is a homorphism.

Next consider the map : Q* Aut Q given by fx )( , where, for each y Q,

xyyf )( . For 21, xx Q*, let 2211 )(,)( fxfx   , then fxx )( 21 , where, for

each y Q, ))(())(()()()()x()( 212121121221 yffyffxyfxxyxxyxyyf  . Thus

21 fff  , i.e., )()()( 2121 xxxx   . Hence is also a homomorphism.

Now, for each x Q*, xxxx  )1))((())(())((  , by the definitions of

and . Hence 1 Q*.

Also, for each Autf  Q, Autgfff  ))1(())(())((  Q, where, for

each y Q, )()1()( yfyfyg  so that fg  . Thus, ff ))(( . Therefore

.1( QAut Therefore and  are isomorphism so that Aut Q   Q*.

The authors noted from the above proposition that Hom (Q, Q) , the additive group

of all additive endomorphisms of Q, is given by Hom (Q, Q)  { f : Q → Q)/ f(x)=ax,

aQ}  Q. Here, the isomorphism is given by )1(ff  .

Finally, Aut R, the group of automorphisms of R where R is the additive group of

real numbers, will now be determined.

PROPOSITION 8: Aut R   R*, where R* is the multiplicative group of all non-

zero real numbers.

Proof: The map Aut: R   R * given by )1()( ff  gives the required

isomorphism for result of the above Proposition 8. The arguments similar to those in the

proof of Proposition7, prove the statement.

If R is the additive group of all real numbers and  R+ is the multiplicative group of

all positive real numbers, then the map : R  R+ given by xex )(  is an

isomorphism of R onto R+. So, (R, +)  (R+, ). Since (R+, ) is a subgroup of index 2
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in the group (R*, ), Aut (R, +) contains an isomorphic copy of (R, +) as a subgroup of

index 2.

CONCLUDING REMARK

The structure of automorphism groups of finite cyclic groups is known through the

theorems 3, 5 and 6. For the additive groups Q of rational numbers and R of real

numbers, Aut Q and Aut R are to be known by Propositions 7 and 8. Moreover, in future,

automorphism groups of the category of some objects in topological spaces will be

determined due to perspective of the present work.
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