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ON AUTOM ORPHISM GROUPS OF SOME PARTICULAR GROUPS
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ABSTRACT

The cyclic groups, the additive group Q of rational humbers and the additive group R of real
numbers are sometimes very useful elements in many studies. In this paper, the authors
concentrated their intuition in determining the structures of the automorphism groups of these
useful groupsin the light of previous works.
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INTRODUCTION

Majumdar and Mallick (1987) studied a class of abelian groups having a set of
generators such that each non-zero element of the group is expressible uniquely in terms
of the generators using each generator itsinverse, but not both, at most once. Following it
a class of commutative semigroups termed special semigroups was studied by Hossain
and Maumdar (2007). Later, the studies of endomorphism semigroups and the
automorphism groups for this class of groups were done by Majumdar et al. (2008) and
Hossain (2010), respectively. Some important structures for this class were determined in
those studies. Now for an object A of certain categories, the automorphism group of A
denoted by AutA is sometimes very interesting, and has some important structures.

For example, if the object A is V, a vector space over the field F, then
Aut A= AutV = the group of all invertible linear operators of V, and hence
AutV =M™ (F) , thegroup of al n x n non-singular matrices with entriesin F. For R
and C in place of V, these are GL(n, R) and GL(n, C), respectively. It is known that
severa subgroups of GL(n, R) and GL(n, C) are very important and widely used in
theoretical physics. If the object A isagroup G, AutA (= Aut G) has different structure,
and the aim of this study was to determine it using the notions of their above mentioned
few works. In this paper, the structures of Aut G have been determined for those cases
when the group G is any one of cyclic groups, the additive group Q of rational numbers
and the additive group R of real numbers. Sometimes, a few terminologies of Zassenhaus
(1958) and Scott (1964) have been also used in this study.
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PRELIMINARIES AND PREVIOUSRESULTS

Let A be an object of a category C. If a subset G(A) of Hom(A, A) is a group under
composition of morphisms of C with 1, as the identity element, G(A) will be caled a
group of morphisms of A. Then the subset of Hom(A, A) consisting of al
f e Hom(A, A) for which the inverse exists in the largest group of morphisms of A and
contains all groups of morphisms of A. This group will be called the automor phism group
of A and denoted by AutA.For obtaining the structures of this class of groups, a few
objects and gluing operations are very necessary. The cyclic groups infinite or finite with
one generator, the additive group of the residue classes of the integers modulo some
positive integers, say, n, additive group of rational numbers, additive group of real
numbers etc. are main objects in this study, and these are denoted by C_ or C,, Z,,, Q and
R, respectively. The group of al automorphisms of G, i.e, the group of al 1-1
homomorphisms of G onto itself is denoted by AutG.It is assumed here that group
homomorphisms, group isomorphisms and group automorphisms etc. are known well to
the readers.

As gluing operations one needs direct product, semidirect product, free product etc.
IfG, and G, are two groups, the direct product G, xG, ={(9,,9,)|9,€G,, g, €G,} of
G, and G, is a group with multiplication given by (9,,9,)(9;,95) =(0,0;,9505).1ts
cardinality is obvioudly |G|-|H|. Sometimes GxH is termed the external direct product. It
has two natural subgroupsGx1={(g,1)|ge G} and 1xH ={(1,h)|heH}.

Clearly, G = G x lsinceg — (g, 1)is an isomorphismof G - G x 1, and
similarly H = 1 x H. So, one thinks of G x H as a group containing a copy of G. If G, and
G, are additive abelian groups, direct product in that case is replaced just by the direct
sum of the groups.

Let H and K be two groups, and let ¢:K — Aut(H)be a homomorphism. The
semidirect product of H by K viaj isthe set of ordered pairs{(h,k)| heH,keK} together
with the binary operation defined by (h,k)(h,.k,) =(hj , (h,),kk,), where j , . is written
for j (k), keK isagroup. Thisgroup isdenoted by H x, K for the semidirect product of
the group H by the group K. write N x¢ K for the semidirect product.

The present authors now define another type of group product termed free product as
follows:

Given any collection {G :iel}of groups their free product exists and can be
defined as follows:

Assume that for each i<l thereis ahomomorphismj,; of G into afixed group G.
Then we say that G is the free product of the groups G, i el if and only if for any group
H and for any homomorphism y;:G —H,i el there exists a unique homomorphism
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f:G—>H suchthaty, =fj, forevery iel.

On the other hand, a group G is said to be the free product of its subgroups
A ,a el if the subgroups A, generate G i.e., every element g of G is the product of a
finite number of the elements of the A,: g=aa, --- a, a,€A, (=12 --,n),
and the expression is unique. In this case, the free product includes the component groups
as subgroups.

Specifically, if one only deas with abelian groups, it can be seen that the free
product of abelian groups is again abelian. In that case, the free product equals the direct
product.

The wreath product of transformation groups G and H on sets A and B, respectively,
writtenGVH , is the group of al permutations g on AxB such that
q((a,b)) = (g,(@),h (b)), aeA beB, where heH and for each beB, g, is a
permutation of G on A, but for different b’s the choice of the permutations g, are
independent.

Now one can recall the structures obtained from earlier one research work Hossain
(2010) in the following way:

If Z*, Q" and N(2) represent the additive group of all positive integers, additive group
of al positive rationals and additive group of all positive rationals having denominators
2* for any non-negative integer respectively, then

THEOREM 1.
(i) Aut Z" = {1}, the group with one element,
qQ,
(iii) Aut (N(2)) = {1}, the group with one element.

(i) Aut Q°

I

If Safinite direct sum, where each S, isany of Z*, Q" or N(2); then

THEOREM 2:

AutS= (AUt S, ¢ S, ) x - x(AutS, ¢S, ), where ¢ denotes the wreath product,
(<i<r).
AUTOMORPHISM GROUP OF CYCLIC GROUPS

It is easy to see that if G is infinite cyclic with generator x, then the only
automorphisms of G are given by the maps x—2—x and x—2—x". Hence Aut G is
the cyclic group of order 2 generated by b, i.e., Aut G =C,(b).

For a finite cyclic group G, the situation is more complex. If x is a generator of G,
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then the automorphisms of G are precisely the homomorphisms of G given by the maps
x—1x', wherei is any integer relatively prime to n. Thus the order of Aut Gis f (n),
where nisthe order of G and f isthe Euler function. We now determine the structure of
Aut C,. This is done by a manner different to that used in Scott (1964) and Zassenhaus
(1958).

Consider the ring Z,, of the residue classes of the integers modulo n (n>2). Then
the set of elementst € Z,, with (r,n) =1is agroup under multiplication. For, since there
are integers a, b such that ar +bn=1and so, we have ar =1, a isthe multiplicative
inverse of T, the bar denoting the residue class modulo n. The authors denote this group
by [n]. Clearly the order of [n] isf (n), where f isthe Euler function.

Now the map y : AutC, —[n] given by y (f)=r, where C, being the cyclic
group of order n and f(x) = X", is an isomorphism. Thus this can be obtained in the
following theorem.

THEOREM 3: AutC, =[n].

One can now establish the structure of the group[n]. For this purpose, it needs to
prove that:

THEOREM 4: If a and bare two relatively prime integers, then [ab] =[a] x[b]
(direct product).

Proof: The elements of [ab] are {ag;,+r}, where {r}is the set of al positive
integers less than a and relatively primeto a, and for afixed r,, aq;,+ is the set of
integersin {a+r,2a+r, --- ,(b—Da+r} which arerelatively primeto a.

Definey :[ab] —[a] by y (ag.,,+T) =T e[a] . Then, v is an onto homomorphism

and Kery :{aqj(rl)+i}. Now, y :Kery —[b] given by

y (ag;,,+1) = aq;, +1, €[b] isanisomorphism.

Hence the sequence of abelian multiplicative groups and group homomorphisms

(A 1 [b]——[ab] ——[a] > lis exact. Also, y " :[ab] —[b]

given by y*(aqj(ri)+ri):aqj(,i)+r.e[b]is a well defined homomorphism and

y ¥V =1,,. Thusthe sequence (A) splits. Hence [ab] = [a] x[b] .

THEOREM 5: (i) If pisan odd prime, [ p"] = C " for each positive integer n.

(i) [2"]=C,xC,, , foreach n> 2.
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[p"]1=f(p")
=p"(p-D).

The element 2 of [p"] must have order exactly p"*(p—1). Hence 2 is a generator
of [p"]. Thus, [p"]=C

f(p" "

Proof: (i) The order of

(i) For n=2 and 3, the result is easily verified; for [2?]=<3>and
[2°]=<3>x<5>.

The authors first noted that for each a €[2"], a2’ =1 , the identity element of [21.
For n=2, 3, 4, 5 thisistrue. Let it be true for n>2, let a be any integer then
a?” =k2"+1, for some integer k, so that a? =k22%"+k2™4+1=12"+1, where
| =k?2" + 2k . Hence a2 = 1, where 1 istheidentity element of [2™].

The order of 3in [2"]is exactly 2"2 To do so we show that for all
n>4 37" #1in[2"],i.e, 3 #k2"+1for any integer k.

By the above paragraph, there exists an integer | such that 32 =12 +1. Hence the
authors had to show that | is odd. This can be done by induction on n. Thisis seen to be
true for n=4. Assume that for n>4, 32 =12"1+1, where | is odd. Squaring both
sides, 3" = 12222 12" 4+ 1= (122" 2 +1)2" +1=1"2" +1, where |’ isodd. Hence 3 has
order 2"2in [2"] i.e., < 3>, the cyclic subgroup generated by 3 in [2"] hasorder 2"2,

Let ye[2"], but yg<3>. Then, y?e<3>, since the order of [2"] is 2" Now
y? cannot be equal to an odd power of 3, for then y will be of order 2"*, which is
impossible by the second paragraph of our proof. Hence y?=3%, for some non-
negative integer r. Then 3 y ! has order 2 and it does not belong to < 3 >. Therefore
[2"]= <3>x<3y™>, theinternal direct product. Thus, [2"]=C, xC,., .

The structure of AutC, for an arbitrary positive integer n> 2follows from the above
three theorems 1, 2 and 3, and can be stated as:

THEOREM 6: Let n be positive integer n= plel - p,% where p,,---, p, are prime
numberswith p, < p,<---<p, and e,e,,:--,6 arepositive integers. Then
Cao ><><C2><Cf(pzez) X "'ch(p,%) if p,=2,

x - xC it p =2

f(p?) f(pe®)

AutC, =[n] = {

THE AUTOMORPHISM GROUPS OF Q AND R

The following propositions describe the structure of Aut Q and Aut R, where Q is
the additive group of rational numbers and R is the additive group of real numbers.
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PROPOSITION 7:
AutQ = Q’, where Q' isthe multiplicative group of all non-zero rationals.

Proof: Let f e Aut Q and let f(x)=1. Then, x=0.Let m, neZ, n=0. Then,
f(m=mx. Let f(M=mx f(@)=y, then f(M=Ff(ND)=nf(®)=ny. So,
f()=y=0x=01(1).

Conversely, let x=0 be any element of Q. Define f: Q — Q as follows:
Timnez for each m, neZ, n=z0 f(7)=7x. Then f(1)=x, and so,
f(®)=m01(1) . Clearly fisanisomorphism of Q. Heref’l(%) =nL,

Consider the mapj : Aut Q ® Q' givenby j (f)=f(1) . Clearly f(1)#0, so that
f(e Q*. It can seen that, if f, g e Aut Q, then j (fg) = (fg)() = f@Qg@) =j (f)j (9),
Thusj isahomorphism.

Next consider themapy : Q" — AutQ given by y (x) = f , where, for eachy € Q,
f(y)=yx. Forx, x,e€Q’, let y (x)=f,y (x,)=1f,, then y (xx,)=f , where, for
each yeQ, f(y)=y(xpX)=y(%X)=(yX)x = fi(yx) = fi(fo(y)) = (f.f;)(y) . Thus
f="ff,,0ey(xX)=y (x)y (X).Hencey isasoahomomorphism.

Now, for each xeQ", (y)(¥) =j & (X)) = (X)) = x, by the definitions ofj
andy .Hencej y =1q.

Also, for each f e AutQ, j )(f)=y ( (f))=y (f(1))=ge Aut Q, where, for
exchyeQ, g(y)=yf@="Ff(y)so thatg=f. Thus, () )(f)=Tf. Therefore
(/j =1, Therefore] andy areisomorphismsothat AutQ = Q.

The authors noted from the above proposition that Hom (Q, Q) , the additive group
of al additive endomorphisms of Q, is given by Hom (Q, Q)={ f: Q - Q)/ f(xX)=ax,
ac Q} = Q. Here, theisomorphismisgivenby f «— f(1).

Finaly, Aut R, the group of automorphisms of R where R is the additive group of
real numbers, will now be determined.

PROPOSITION 8: AutR = R’, where R’ is the multiplicative group of all non-
zero real numbers.

Proof: The mapj : AutR — R * given by j (f)=f(l) gives the required
isomorphism for result of the above Proposition 8. The arguments similar to those in the
proof of Proposition?, prove the statement.

If R is the additive group of all real numbers and R is the multiplicative group of
al postive rea numbers, then the mapj : R— R" given by j (X)=€* is an
isomorphism of R onto R*. So, (R, +)= (R",x). Since (R", x) is a subgroup of index 2
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inthe group (R", x), Aut (R, +) contains an isomorphic copy of (R, +) asa subgroup of
index 2.

CONCLUDING REMARK

The structure of automorphism groups of finite cyclic groups is known through the
theorems 3, 5 and 6. For the additive groups Q of rational numbers and R of real
numbers, Aut Q and Aut R are to be known by Propositions 7 and 8. Moreover, in future,
automorphism groups of the category of some objects in topological spaces will be
determined due to perspective of the present work.
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