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ABSTRACT 
A problem on the two dimensional slow viscous fluid motion obeying the Stokes equations is 

solved in terms of the Earnshaw stream function, when a line source and equal line sink are 
arbitrarily situated in a viscous fluid bed between two fixed co-axial circular cylinders. Fluid 
mechanical properties of interest, such as drags and torques acting upon the cylinders are 
calculated. Also we have shown the variation of the forces per unit length on the inner cylinder with 
its radius keeping outer cylinder fixed, whose radius is assumed to be one. 

1. INTRODUCTION 

Ranger [1] has solved the problem of a slow viscous flow between two fixed co-axial 
circular cylinders, due to a line source and equal line sink located at arbitrary points on 
the outer boundary with the help of the Earnshaw stream function; this is in fact an 
extension of Rayleigh [2] problem which consists of the two-dimensional Stokes flow 
within a circular cylinder due to a line source and sink of equal strength situated at 
opposite ends of a diameter. The two-dimensional Stokes flow inside and outside a 
circular cylinder induced by a pair of line singularities (rotlets or Stokeslets) has been 
extensively studied by Daripa and Palaniappan [3]. Relevantly, Dorrepaal et al [4] 
showed that a uniform stream emerges when a rotlet or a Stokeslet is located in front of a 
circular cylinder in a viscous fluid. Similarly, Smith [5] and Avudainayagam et al [6] also 
found that, when the potential flow singularity such as a line source or a sink etc., is 
placed before a fixed circular cylinder, a uniform stream is generated at large distances 
from the cylinder. Chowdhury and Sen [7] have analytically solved the problem of Stokes 
flow due to the presence of a rotlets or Stokeslets inside a circular cylinder by taking the 
partial support of the circle theorem for external Stokes flow in Sen [8]. Ranger [9] 
extensively studied the flow structure within a circular cylinder due to a line rotlet. Again 
for the three-dimensional analogous cases (i.e. viscous fluid motions within a spherical 
container) some literature is available; in this respect Collins [10, 11] for axi-symmetrical 
viscous fluid motion, and Palaniappan et al [12] for the non-axi-symmetrical fluid are 
remarkable. Hacborn et al [13] have solved the problem of a three-dimensional rotlets in 
viscous fluid within a sphere, highlighting the phenomenon of separation and flow 
reversal. Later Shail [14] rederived the solution of the same problem by a relatively easy 
method, and also gave the solution of the problem of the Stokeslets within a spherical 
container. Here it is noteworthy that when the singularities are placed in viscous fluid 
between two cylinders or spherical boundaries or different ones, the solutions of the 
corresponding flow problems are not available in the literature. In an attempt towards 
solving such problems, we first present in this paper the solution to the problem of the 
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viscous fluid motion due to the presence of a line source and a sink of equal strength 
between two co-axial circular cylinders. 

SLOW VISCOUS FLOW WITHIN A CIRCULAR CYLINDER 

At first it is necessary to determine the flow due to the combination of a source of 
strength m at the point A ( 1a ,α ) and a sink of the same strength at the point B ( 1a , - 

α ), where 1a < a , a  being the radius of the circular cylinder.  
 
 
 

 

 

 

 

 

            
 
 
 Fig. 1. Sketch of the flow along the fluid bed between  two co-axial circular cylinders. 
 
Now the basic stream function due to these singularities in the absence of rigid 
boundaries is given by Thomson [15] 
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When the stream function 0ψ (r,θ ) is expanded for large r, we find that  
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Here we observe that 0ψ (r, θ ) ∼ O 







r
1  for large r. Thus the circle theorem I for the 

interior Stokes flow in Sen [8] and Golam [16] applies. If the cylinder ar =  is 
introduced the flow field of the singularities, the stream function for the flow interior to 
the cylinder is given by the formula 
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Thus substituting the basic stream (2.1) in (2.3) yields the stream function, which is given 
by  
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Now to use the stream function i.e. ),(1 θψ r in next section we present it in a summation 
form as  
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THE FLOW BETWEEN A PAIR OF CO-AXIAL CYLINDERS 
Now  we  may  introduce  a  cross-section  of  a  circular cylinder with radius  b (< a)  

into the  flow  and  is  fixed  in  a  co-axial  position  with  respect to the outer cylinder. 
As a result of this situation, the Earnshaw stream function for a new flow field in the 
region common to the cylinders becomes, say 
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A1 , B1 , C1 , D1,  An , Bn , Cn , and Dn  being constants to be determined. 
The stream function 1ψ  satisfies the condition of the flow interior to the outer boundary ; 

ar = . 
Hence it is sufficient that the stream function 2ψ  must also satisfy the following 
conditions  
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Again, on the inner boundary, the stream functionψ , represented by equation (3.1) must 
satisfy the following boundary conditions, 
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Now using the boundary conditions (3.6), we have two cases, 
 one case 02 =ψ  on ar = , which implies 
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Now in order to use the boundary conditions (3.7), we express the stream function (3.1) 
in the following form, incorporating the stream function (2.6) and (3.3). 
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Now the boundary condition 0),( =θψ r  on br = , yields 
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where the prime denotes differentiation with respect to r. 
Now equations (3.8), (3.9), (3.11) and (3.12) constitute a set of following linear equations 
to determine the coefficients A1, B1, C1 and  D1. 
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Also equations (3.8), (3.9), (3.11) and (3.12) constitute another set of following 
linear equations to determine the coefficients An , Bn , Cn   and  Dn  where n = 2,3,4, ... etc. 
Thus we have 
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On solving the equations (3.13), (3.14), (3.15) and (3.16), we obtain the constants as 
shown below. 
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Also solving the equations (3.17), (3.18), (3.19) and (3.20) yields, 
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Now the evaluated stream function for the flow pattern in the region bounded by the 
concentric cylinders takes the form 
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the values of the constants A1, B1 ,C1  & D1 and An, Bn ,Cn  & Dn  being given in (3.21), 
(3.22), (3.23) and (3.24) also (3.26), (3.27), (3.28) and (3.29). 

DRAGS AND TORQUES ON THE BOTH CYLINDERS 
The components of the forces exerted on the inner and outer cylinders can be 

expressed as ( )11 ,YX , ( )22 ,YX  respectively, and that for the torque is ( )21 ,TT  which 
can be calculated with the help of  Ranger [1] and these are   
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Here we see that the force components X1 and X2 represented by equations (4.1), 
which will be zero for all positive integers. 
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Finally, with the assistance of the equations (2.7) and (3.4) the force components (4.6) 
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After calculation the torques equation (4.5) which appear as zero, 
i.e., 021 == TT .                                                                                                          (4.9) 
Now by taking the locations of the singularities at the points 







 α,

4
3  A  and 






 −α,

4
3  B , we 

now display the variation of the forces Y1 and Y2  with the change of the inner boundary , 
keeping the radius of the outer boundary fixed with constant radius unity, i.e. 
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Some numerical results are displayed in the Table 2.1 and Table 2.2 below. 
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Finally, it is of  interest to study the variation of the forces Y1 and Y2 with the change of 
the outer boundary, keeping the radius of the inner boundary fixed with constant radius 
unity, i.e., 
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Again some numerical results are exhibited in the Table 2.3 and Table 2.4 below. 
 

 

 

 

 

 

 

 

 

Table 2.4. Numerical values of the 
force Y2 on the outer variable circular 
boundary when its radius changes with 
in the domain,1. 2 ≤  a < ∞ . 

a )(
2

iiY  
1.2 910.8531204 
1.4 178.0975376 
1.6 74.3816331 
1.8 41.8526700 
2 27.5806734 
3 9.0685700 
4 5.4103590 
5 3.9685003 
6 3.2126204 
7 2.7494529 
8 2.4364530 
9 2.2103111 
10 2.0388307 
100 0.7398624 

1000 0.4513562 

Table 2.3. Numerical values of the force Y1 
on the outer variable circular boundary when 
its radius changes with in the domain, 
1. 2 ≤  a < ∞ . 

a )(
1

iiY  

1.2 909.2905125 
1.4 176.9495784 
1.6 75.50272684 
1.8 41.1582351 
2 27.01817335 
3 8.818570195 
4 5.26973404 
5 3.87800259 
6 3.150120352 
7 2.703534576 
8 2.401296744 
9 2.182533275 
10 2.014973052 
100 0.739637405 

1000 0.451383924 

 

Table 2.2. Numerical values of the force 
)(

2
iY   on the outer boundary of fixed 

radius unity with the variation of the inner 
boundary. 

b 
)(

2
iY  

0 0 

0.1 3.246375430 

0.2 4.108557009 

0.3 5.526743387 

0.4 8.112192883 

0.5 13.343554670 

0.6 25.518769440 

0.7 60.614559800 

Table 2.1. Numerical values of the 
force )(

1
iY  on the inner variable circular 

boundary when its radius changes with in 
the domain 0<b<3/4 

b )(
1

iY  
0 0 

0.1 1.994093673 
0.2 3.717114017 
0.3 6.553486701 
0.4 11.724385770 
0.5 22.187109330 
0.6 46.5375322502 
0.7 116.729102000 
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DISCUSSION OF THE NUMERICAL RESULTS 
 In the both sets of the tables, we observe that the force on the both cylinders is gradually 
increasing when the cylinders become closure to each other and decreasing in the reverse 
case, as was to be expected. 
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