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ABSTRACT

By introducing the notions of left k-derivation and right k-derivation of a gamma ring, we
determine some significantly important results on the commutativity of prime I'y-rings of
characteristic not equal to 2 and 3 with left k-derivation and right k-derivation, and also with the
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1 INTRODUCTION

The purpose of introducing the concept of a I'-ring is to generalize that of a classical
ring. In the last few decades, a number of modern algebraists have determined a lot of
fundamental properties of I'-rings and extended numerous significant results in classical
ring theory to gamma ring theory. Note that the notion of a I'-ring was first introduced by
N. Nobusawa'" and then generalized by W. E. Barnes®. They obtained many important
fundamental properties of I'-rings, and also S. Kyuno™, J. Luh®, G. L. Booth® and some
other prominent mathematicians characterized much more significant results in the theory
of gamma rings. Here, we start with the following definition.

Let M and T be two additive abelian groups. If there exists a mapping (@, a,b) —> aab

of M xI'x M — M which satisfies the conditions
(@(a+b)ac=aac+bac,a(a + f)b=aab+apb,
aa(b+c)=aab + aac and

(b) (aab)pfc=aa(bpc) forall a,b,ce M and o, f T,

)

then M is called a I'-ring in the sense of Barnes® , or simply, a I"-ring.

For example, suppose that R is a ring with identity 1 and M mon (R) is the set of all

m X n matrices over R. Then M is a I'-ring with respect to the usual addition and
multiplication of matrices if we choose M =M, (R) and I'=M, , (R). In

particular, if we let M =M ,(R) and _ {("Olj pisan integer} , then M is a I'-ring.

In addition to the definition of a I'-ring given above, if there exists another mapping
(a,a,B)—> aafp of ' x M xT" — T satisfying the conditions
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(a*%) (a+ Pay =aay + Pay, ala+b)f=aaf +abf,
caa(f+y)=aaf +aay,

(b*) (aab)fc = a(abf)c =aa(bpfc), and
(c*) aab =0 implies @ =0 forall a,b,ce M and o, S,y €,

then M is called a I'-ring in the sense of Nobusawa'”, or simply, a I  -ring. Note that G.
L. Booth® has also used this notation to express Nobusawa I'-rings.

For example, let D be the set of all rectangular 72 X 7 matrices over some division

m,n

ring D. Considering M =D, and I'=D

m,n n,m>

usual addition and multiplication of matrices.

we see that M is a I'y -ring under the

It follows easily from the definitions of I'-ring and I'y -ring that M is a I-ring does not

imply I is an M-ring in general, but M is a I"y, -ring always implies I is an M-ring.

If M is a T'-ring, then M is called prime if al’' MT'b =0 (with a,b € M ) implies either

a =0 or b=0.Note that this concept of prime I'-ring were introduced by J. Luh®, and

some analogous results corresponding to the prime rings were obtained by him as well as

by S. Kyuno®.

An additive subgroup U of M is said to be a left (or, right) ideal of M ift MT'U c U (or,
UI'M c U ), whereas U is called a two-sided ideal, or simply, an ideal of M if U is a
left as well as a right ideal of M (i.e., if mu €U and upmeU for all me M ,

yel and ueU). Similarly, an additive subgroup € of an M-ring T (if M is
considered as a I'y -ring) is said to be a left (or, right) ideal of T if I'MQ c Q (or,

QMI" < Q, and Q is called a two-sided ideal, or simply, an ideal of I" if 2 is both a
left and a right ideal of T (i.e., if ym@ €2 and wmy € forall yel', me M

and @ € Q).

Recall that a I'-ring M is said to be of characteristic not equal to n (where n is a positive
integer greater than 1), written as charM #n, if nx=0 implies x=0 for all

X €M . Moreover, the set Z(M) = {ae M :aam=maaforalla eTand me M} is
called the center of the I'-ring M.

Consider again that M is a I'-ring. Then M is called a commutative I'-ring if Xyy = yyx
holds for all x,y€M and yel'. If a,beM and a€l, then [a,b], =
aab — baa is called the commutator of a and b with respect to o .

In a T-ring M, an element m € M is called a left nonzero divisor ift mfx =0 implies
x=0 forall # el . Similarly, an element m € M is called a right nonzero divisor if
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xfm =0 implies x =0 for all /€I . When this said element is both a left nonzero
divisor and a right nonzero divisor, then it is called a two-sided nonzero divisor, or simply
a nonzero divisor. In other words, a I'-ring M is said to have no zero divisor if ayb =0
implies @ =0 or b=0 forall a,be M and y €.

The notions of derivation and Jordan derivation of a I'-ring have been introduced by M.
Sapanci and A. Nakajima(ﬁ). Later, in view of the concept of Jordan left derivation of a
usual ring developed by K. W. Jun and B. D. Kim”, some important results due to left
derivation and Jordan left derivation of a I'-ring has been determined by Y. Ceven®. But,
H. Kandamar has been introduced the notion of k-derivation of a I'-ring and he obtained
a number of important results on this concept. Here, we introduce the notions of left &-
derivation and right k-derivation of a I'-ring and we construct some characterizations of

these concepts on certain I'y -rings to extend some significant results of certain I'-rings

with left derivation and right derivation shown by M. Asci and S. Ceran'”.

Let M be a T-ring and let d : M —> M and k:T" —> T be two additive mappings.
Then d is called a lefi derivation of M if d(aab)=aad(b) + bad(a) holds for all
a,beM and ael', and d is called a right derivation of M if
d(aab)=d(a)ab + d(b)aa is satisfied for all a,beM and el . But, if
d(aab)=acad(b) + ak(a)b+ bad(a) holds forall a,be M and o €I, thend
is called a left k-derivation of M, and if d(aab)=d(a)ab + ak(a)b+ d(b)aa is
satisfied for all @,b € M and a €I, then d is called a right k-derivation of M.

Finally, fora T-ring M, if d : M — M and k:I" —> I' are two additive mappings such
that a,beM and o€l , then d is called a derivation of M if
d(aab)=d(a)ab+aad(b) and d is called a k-derivation of M if
d(aab)=d(a)ab + ak(a)b + aad(b).

To determine a number of significantly important results on the commutativity of prime
I') -rings of characteristic not equal to 2 and 3 with left k-derivation and right k-

N g q g
derivation, and also with the composition of such two k-derivations, we proceed as
follows.

2. MAIN RESULTS

For the sake of completeness of the study of this paper we recall some necessary
important results already proved earlier which are needed to reach our goal. To start the
discussion we state first the following well-known lemma proved by M. Soyturk""
[Lemma 1].

Lemma 2.1 Let M be a I'-ring and Z the center of M. Then the following are true for all

a,b,ceM and B,y el
(1) [ayb’c]ﬁ :a}/[b’c]ﬂ +[a,c]ﬂ7b+a7(cﬂb)—aﬂ(cyb);

(i) If a € Z , then [aph,c]z =aylb,cly;
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(i) If a € Z , then ay[b,c]; = ap[b,c],.

Especially, if M is a prime T-ring, then for all a,b,c € M and B,y €T :
(iviifaeZ and al’b=0, theneither a =0 or b=0;

WIfaeZ and al'b < Z ,theneither a=0 or be Z;

(vi)If a€ Z and aylb,c], =0, theneither @ =0 or [b,c], =0.

Except otherwise mentioned, throughout the article hereafter, M represents a prime
I -ring (implying from the very definition that I' is then an M-ring), Z is the center of

M, U is a nonzero ideal of M, and Q is a nonzero ideal of the associated M-ring T'.

Now, we state some useful results that have already been discussed and proved by H.
Kandamar® and by M. Soyturk!'" as follows.

Lemma 2.2 Forall a,be M and a0, f €T,

(i) aQb=0 = ecither a=0 or b=0; (i) aUF=0 = ecither @ =0 or f=0;
(iiiy al’UT'b=0 = either a=0 or b=0; (ivy aMOMF =0 = either
a=0or f=0;

W Ifuav=0 forall u,velU ,then ¢ =0; (vi) If yjad =0 forall y,0 €, then
a=0.

As the immediate consequences from (iii) and (iv) of this lemma, we get

Corollary 2.1 Forall a,be M and o, B €T,

(i) aQUQb =0 = either a=0 or b=0; (i) aUQUL =0 = either 2 =0
or #=0.

Also, we need the following important results proved in H. Kandamar” and M.
Soyturk!'":

Lemma23Forallae M and d el

(@) al’'U (or, U'a)=0 = a=0;(Gi) aUl (or, TUx)=0 = a=0;

(i) aQM (or, MQa)=0 = a=0;(iv) aMQ (or, QMa)=0 = a=0.
Consequently, it follows from this lemma that

Corollary 2.2 Forall ae M and a €1,

(i) aQU (or, UQa)=0 = a=0;Gi) aUQ (or, QUa)=0 = a=0.

The following result plays a pivotal role in this article.
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Lemma 2.4 If U C Z , then M is commutative.

Proof. Please refer to the proof given by M. Soyturk"" [Lemma 2(i)].

Then we go forward with our main results step by step as follows:

Lemma 2.5 With our notations as above, the following are true:

(i) If d is a left k-derivation of M such that d(U)=0 along with k(Q)=0, then
d=0;

(i) If d is a right k-derivation of M and d(M) is a right nonzero divisor such that
aQd(U) =0 forall a € M along with k(Q2)=0,then a=0;

(iii) If d is a left k-derivation of M and d(M) is a left nonzero divisor such that
d(U)Qa =0 forall a e M along with k(Q2)=0,then a=0;

(iv) If charM # 2 and d is a right k-derivation of M such that d 2 (U) =0 along with
k(€)=0,then d =0;

(v) If d, is a left k, -derivation of M and d, is a right k, -derivation of M such that
charM #2, d*(U)cU and d,d,(U)=0 along with k (Q)=0 and
k,(Q) =0, then either d; =0 or d, =0.

Proof. () Let u €U, & € Q) and m € M . Then we have 0 = d(uam) = uad(m)
+ uk(a)ym + mod(u) = uad(m). This implies, UQd(M)=0. Hence, by
Corollary 2.2(i), we obtain d(M)=0,ie., d =0.

(i) Let ueU, a,fe€Q and a,meM . Then we get 0 = aadupfm) =
acdw)pm + acuk(f)ym + aad(m)Pu = aoad(m)Pu. Hence,
(aad(M))QU =0. So, by Corollary 2.2(i), this yields aad(M)=0. But, since
d(M) is aright nonzero divisor, therefore @ = 0.

(iii) Let uelU, a,f€Q and a,me M . Then we obtain 0 = d(mpPu)aa =
mpd(w)aa + mk(fluaa + ufdm)aa = upfd(m)aa. So,
UQ(d(M)aa)=0. Thus, by Corollary 2.2(i), we get d(M)aa =0. But, since
d(M) is aleft nonzero divisor, we get a = 0.

(iv)Let u €U and @ € Q. Then we have 0 = d > (uow) = d(d(u)ou + uk(@)u +
dw)au) = 2dw)ad(u) . Since charM # 2, we get d(u)ad(u)=0. Thus, we
obtain d(U)Qd(U)=0, and consequently, d(U)=0. Hence, by (i), we conclude
that d =0.
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(v) Let u,veU and a€Q. Then we get 0 = d\d,(uav) = d,(d,(w)av +
uk,(a)v + d,(viou = d,(u)od,(v) + d,(v)ad,(u). Putting d, (1) for u, we
have d; (u)ad,(v)=0. That is, d;(U)Qd,(U)=0. Hence, by Lemma 2.2(i),

either d22 (U)=0 or d;(U)=0, and therefore, we obtain either d, =0 or d; =0
[by (iv) and (i), respectively]. This completes the proof of the lemma.

Theorem 2.1 Let d be a nonzero right k-derivation of M such that £(€2)=0 and
charM #2 .1t d(U) < Z , then M is commutative.

Proof. Let uc U, y€Q, z€ Z and y € M . Then we have

0=[d(uyz),y], = [dW)yz +uk(y)z + d(2)y, y], = d(2)y[u, y], .
That means, d(Z)Q[U,M], =0. Hence, by Lemma 2.2(i), either d(Z)=0 or
[U,M],=0.1f d(Z)=0, then d*>(U) =d(Z)=0, implying d>(U)=0, and
so, d =0 [by Lemma 2.5(i)], which is a contradiction to our assumption. Therefore,

[U,M]y =0 forall ¥ €2, and consequently, U < Z , and hence, by Lemma 2.4, M

is commutative.
Theorem 2.2 Let d be a nonzero right k-derivation of M such that £(2)=0 and
charM #2,3 .1t d*(U) = Z and d(U) c U , then M is commutative.

Proof.Let ucU ,y€Q, f el and y € M . Then we get

0= [d*(d()d W),y = [d(d* w)yd ) + dWk(y)d(u) +d* ) w), ¥,

= 2d(d* @y ), v, = 2Ld° @) @) +d* @k(y)d @) + d* @)y ), y] ,
= 2d° (w)y[d(u), y1,.

Hence, the hypothesis charM # 2 implies that d 3(u)}/[a’ (u),¥]15 =0, and so,

d’ (w)Qd(u),y], =0. By Lemma 2.2(i), either d”(u)=0 or [d(u),y]5=0;

e, either d>(u)=0 or d(u)e Z forall u €U .1f d>(u)=0 forall u € U , then

we obtain 0 = [d*(uBd()),y], = [d(d(u)fd()+uk(Bdw)+d>@pu),y], =

3d* (u)Bld (), y],. Again, since charM =3, we get d”(u)B[d(u),y], =0.

Hence, by Lemma 2.1(vi), either d’(u)=0 or [d(u),y], =0; ie., either

d*(u)=0or d(u)e Z forall uecU .
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Let H={u eU:dz(u)=O} and K={uecU:d(u)eZ}. Then H and K are
additive subgroups of U, and also U = H U K . But, if U = H , then by Lemma
2.5(iv), d =0, which is a contradiction to our hypothesis. Hence, by Brauer's trick
[meaning that a group cannot be a set-theoretic union of its two proper subgroups so that

U =H UK implies either U = H or U =K in this case], we have U = K , and
s0, by Theorem 2.1, M is commutative.

Theorem 2.3 Let d; be a nonzero left k, -derivation of M and d, a nonzero right k, -
derivation of M such that d,d,(U)c Z, d*(U)cU and charM #2,3 along
with £, (Q)=0 and &k, (Q)=0.1If d1d22 (U)=0, then M is commutative.

Proof.Let uc U, y€Q, f €T and y € M . Then we obtain
0= [d,d,(d,)pd, W),y = [d,(d; W), W)+ dy Wk, (7)d, () + d3 w)yd, (W), ¥] 5
= 20d, (d2 (uyd, (), ¥, = 21d3 )y dy (u) + d5 Wk, (1)d (u) + d, (w)yd d5 (), ¥] 5
= 2} (uydydy ), 1, = 2ldidy 3 (), ¥] 5 = 2dydy (w)yld3 (w), ¥]4-
So. dyd, (u)y[d3 (), y], =0 (since charM #2). Thus, d,d,(u)Q[d? ), ], =0.
By Lemma 2.2(i), either d,d, (1) =0 or [d; (u),y]; =0 ie., cither d\d,(u)=0

or dyw)eZ. Let H={ueU:dd,(u)=0} and K={uecU:d3(u)eZ}.
Then H and K are subgroups of U and U=H UK . If U =H , either d; =0 or

d, =0 [by Lemma 2.5(v)], a contradiction. Hence, U = K , by Brauer's trick (as stated
earlier), and therefore, by Theorem 2.2, M is commutative.

Lemma2.6Leta€M and Z#0.1f [U,a], =0 forall y€I',thenae Z.

Proof. Please see the proof given by M. Soyturk(] Y [Lemma 5].

Lemma 2.7 Let a € M, d| anonzero left k| -derivation of M and d, a nonzero right

k, -derivation of M such that d,d,(U) © Z and dZ(U)CU with &, (€2) =0 and
charM #2 .1f [d,(U),a] 3 =0, then [d, (U),a] ; =0 forall Sel".

Proof.Let ae M ,ueU, y€Q and f €. Then we have
0=[d,(dy )y, (W), al 5 = [d, u)d,d, () + dy W)k, (7)d5 () + d (w)dyd (u), al 5
= 2[d, (u)yd,d,(u),a]z = 2[d,d, (u)yd, (u),a]; = 2d,d, (u)y[d, (u),a].

Thus, d,d, (u)y]d,(u),a], =0 (as charM #2).So, d,d, (u)Qd, (u),a]; =0.
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Applying Lemma 2.2(i), either d,d, (1) =0 or [d,(u), alp =0 forall ueU and
pel’. Let H={uelU:dd,(u)=0} and K={ueU:[d,(u),a]; =0}.
Then H and K are subgroups of Uand U = H U K . But, since d; #0 and d, #0,
U cannot be equal to H [by using Lemma 2.5(v)]. Therefore, we obtain U = K , by
Brauer's trick. As aresult, [d, (U),a]; =0 forall BeT.

Theorem 2.4 Let a € M, d, a nonzero left k, -derivation of M and d, a nonzero
right k,-derivation of M such that d,d,(U)cZ and d 2 U)cU with
k() =0, k) (©2)=0 and charM #2.1f [d,(U),a] ;3 =0 forall €T, then
aeZ.

Proof. Given a € M , from Lemma 2.7, we get [d, (U),alg =0 for all pel.
Now,let u €U, y €Q and f €[ . Then we have

0=[d\d,(um),als = [d,(d, () +uk,(y)u + d,(u)m),al
= 2ld, (d; (u)m), al g = 20d, (u)d, (u) + d Wk () +updydy (), al g
= 2upd,d,(u),al 5 = 2[d,d, (W), al 5 = 2d,d, (w)ylu,al .

Since charM #2, we get d\d,(w)ylu,alz =0. Thus, d\d,(u)Qu,a]s; =0.
Using Lemma 2.2(i), either d,d, (u) =0 or [u,a]; =0 forall ueU and fel.
Ifwelet H={uelU:dd)(u)=0} and K ={ueU:[u,a]; =0}, then Hand K
are subgroups of U and U = H U K . But, since d; #0 and d, # 0, therefore, U

cannot be equal to H [by Lemma 2.5(v)]. Hence, by Brauer's trick, U = K . This means,
[u,a]; =0 forall S el’, and consequently, a € Z .

Theorem 2.5 Let ae M , d 1 a nonzero left kl -derivation of M and d 5 @ nhonzero

right k,-derivation of M such that d,d,(U)c Z and d*(U)cU with
ki (Q)=0, ky(©Q)=0 and charM #2,3. 1t [d,(U),al; € Z forall ST,
then a e Z .

Proof. If we consider Z =0, then d,d,(U)=0, implying d, =0 or d, =0 [by
Lemma 2.5(v)], a contradiction. Therefore, we can assume that Z # 0. Now, let

aeM,uelU,zeZ,yeQ and f €. Then we get

Z> [d\(upz),aly = [upd, (2) + uk,(y)z + z3d, (u),a) g = [upd, (2) + zpdd, (). al 5
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= [ud,(2),als +[2d,(w),als = [u,alzd,(2) + zyld,(u),al
This implies, [U,a]zd\(Z) = Z for all Bel" and y €€2. Hence, by Lemma
2.1(v), either [U,a] 5 < Z forall pel ord (Z)=0.

Now, if d,(Z)#0, then [U,aly cZ for all pel’. Then, for any uel,
meM and Bel’, weget [[u,a]z,m]; =0. Hence, by replacing u by ufiu , we

have
0= [[uﬂu,a]ﬁ’m]ﬂ = [uﬂ[u,a]ﬁ +[u,a]ﬂﬂu,m]ﬁ = Z[Mﬂ[u,a]ﬁam]ﬁ
Since charM #2, we obtain 0 = [uf[u,a]z,m]z = [u,m]zplu,al, for all
ueU, meM and f €T . Hence, by Lemma 2.1(vi), forall u €e U, me M and
P el either [u,m] ;3 =0 or [u,a] ; =0. This yields, [u,a]; =0 forall ueU
and f € I'. Therefore, by applying Lemma 2.6, we conclude that a € Z .
But, if d,(Z)=0,then d,(d,d,(U))=0.Forany u € U and y €, we get
0=d,(d\dy(d; (), )) = d,(d,(d3 )y ) + dy Wk (7)d () + d3 (w)yd (1))
= 2d,(d,(d5 ()pd, () = 2d,(d? (u)ydydy () + d3 )k, (7)d () + dy (u)dyd3 (1))
= 2[d, (d; (u)ydyd; () + dy (d, (u)yd,d3 ()]
= 2[d; (u)ydydydy () + d (ky (7)dydy () + dyd () (1)
+dy (u)dydyd3 )+ dy (ki (7)d d3 ) + dyd; (u)pdyd ()]

= 2[d\d, (u)7d1d22 (“)+d1d22 (u)yd,d, (u)] =
2[d,d, (u)yd,d5 (u) + d,d, (u)yd,d; (u)]

= 4d,d, (u)yd,d; (u)

Again, since charM #2, d,d,(u)yd,d; (u)=0. Thus, d,d,(u)Qd,d; (u)=0.
By Lemma 2.2(i), either d;d,(u)=0 or d1d22 (u)=0 for all u €U . Saying
H={uecU:dd,(u)=0} and K ={ucU :d,d; (u)=0}, we sce that H and K
are subgroups of U and U = H U K . But, since d; #0 and d, # 0, U cannot be
equal to H [by Lemma 2.5(v)]. Thus, by Brauer's trick, U = K , which implies that

d,d 22 (U)=0. Therefore, by Theorem 2.3, M is commutative, and hence, we obtain
a € Z . This completes the proof.
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