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ABSTRACT

The purpose of this paper was to construct seven concepts of T2-space in L-topological spaces.

After giving the fundamental definitions, the authors established some relations among them.

Further, the authors proved that all these definitions satisfy ‘good extension’ property. Finally, it is
shown that these definitions are hereditary, productive and projective.
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INTRODUCTION

American mathematician Zadeh (1965) for the first time in 1965 introduced the

concept of fuzzy sets. Chang (1968) and Lowen (1976) developed the theory of fuzzy

topological space by using fuzzy sets. Separation axioms in fuzzy topological spaces

have been developed and studied by many researchers from different view points (Jin-

xuan, and Ren Bai-lin 1998, Kandil and El-Shafee 1991). FP-T2 separation axioms have

been introduced earlier by Kandil and El-Shafee (1991) and Nouh (1996). In this paper

the workers defined possible seven definitions of T2 space in L-topological space. All

these definitions satisfy ‘good extension’ property and the authors established some
implications among them. Finally it was shown that all these definitions are hereditary,

productive and projective and preserved under one-one, onto and continuous maps.

Definition: Let X be a non-empty set and I = [0, 1]. A fuzzy set in X is a function u :

X  I which assign to each element x  X, a degree of membership, u(x)  I (Zadeh

1965). Example: Let X = {a, b, c} and I = [0, 1]. If u(a) = 0.2, u(b) = 0.4, u(c) = 0.5 then

{(a, 0.2), (b, 0.4), (c, 0.5)} is a fuzzy set in X.

Definition: Let X be a non-empty set and L be a complete distributive lattice with 0

and 1. An L-fuzzy set in X is a function a : X L which assign to each element x  X,  a

degree of membership,  (x)  L.

Definition: Let  be an L-fuzzy set in X. Then 1 –  =  is called the complement

of  in X (Zadeh 1965).

Definition: If r  L and  is an L-fuzzy sets in X defined by  (x) = r x  X then

we refer to  as a constant L-fuzzy sets and denoted it by r itself.

1 Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh.



204 ISLAM et al.

In particular, the workers had the constant L-fuzzy sets 0 and 1.

Definition: An L-fuzzy point p in X is a special L-fuzzy sets with membership

function p(x) = r if x = x0, p(x) = 0 if x  x0  where r  L (Zadeh 1965).

Definition: An L-fuzzy point p is said to belong to an L-fuzzy set  in X(p  ) if

and only if p (x) <  (x) and p (y)   (y). That is xr   implies r <  (x).

Definition: Let I = [0, 1], X be a non-empty set and IX be the collection of all

mappings from X into I, i.e. the class of all fuzzy sets in X. A fuzzy topology on X is

defined as a family t of members of IX,  satisfying the following conditions:

(i) 1, 0  t (ii) if ui  t for each i   then tuii   (iii) if u1, u2  t then u1 u2  t.

The pair (X, t) is called a fuzzy topological space (fts, in short) and the members of t are

called t-open (or simply open) fuzzy sets. A fuzzy set v is called a t-closed (or simply

closed) fuzzy set if 1 – v  t (Chang 1968).

Definition: Let X be a non-empty set and L be a complete distributive lattice with

0 and 1. Suppose that  be the sub collection of all mappings from X to L i.e.   LX .

Then  is called L-topology on X if it satisfies the following conditions:

(i) 0*, 1*  

(ii) If u1, u2    then u1  u2  

(iii) If ui  for each i   then i ui  .

Then the pair (X, ) is called a L-topological space (lts, for short) and the members of

 are called open L-fuzzy sets. An L-fuzzy sets v is called a closed L-fuzzy set if 1 – v 
 (Jin-xuan, and Ren Bai-lin 1998) .

Definition: Let  be an L-fuzzy set in 1st (X, ). Then the closure of  is denoted by

 and defined as }:{ c  .

The interior of  written 0 is defined by 0 =  { :   ,   }.

Definition: If (X, ) is an lts and A  X then A = {u | A : u  } is called the sub

space L-topology on A and (A, A) is referred to as an L-sub space of (X, ).

Definition: Let xr be an L-fuzzy point in an lts (X, ). An L-fuzzy set  in X is called

an L-fuzzy neighborhood (in short, nhd) of xr if and only if there exists an open L-fuzzy

set  in Y such that xr    .

Definition: An L-fuzzy singleton in X is an L-fuzzy set in X which is zero

everywhere except at one point say x, where it takes a value say r with 0 < r  1 and

r  L. We denote it by xr and xr   iff r   (x).
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Definition: An L-fuzzy singleton xr is said to be quasi-coincident (q-coincident, in

short) with an L-fuzzy set  in X, denoted by xrq iff r + (x) > 1. Similarly, an L-fuzzy

set  in X is said to be q-coincident with an L-fuzzy set  in X, denoted by q if and

only if  (x) +  (x) > 1 for some x  X. Therefore iff  (x) +  (x)  1  for all x  X,

where denote an L-fuzzy set  in X is said to be not q-coincident with an L-fuzzy set  in

X.

Definition: Let f : X Y be a function and u be fuzzy set in X. Then the image f (u)

is a fuzzy set in Y which membership function is defined by

(f (u))(y) = {sup(u(x)) | f (x) = y} if f–1(y)  , x  X

(f (u))(y) = 0 if f–1(y) = , x  X (Chang 1968).

Definition: Let f be a real-valued function on an L-topological space. If  {x : f (x) >

} is open for every real , then f is called lower-semi continuous function (lsc, in short)

Definition: Let (X, ) and (Y, s) be two L-topological space and f be a mapping from

(X, ) into (Y, s) i.e. f :  (X, )  (Y, s). Then f is called –

(i) Continuous iff for each open L-fuzzy set u  s f–1(u)  .

(ii) Open iff f () s for each open L-fuzzy set   .

(iii) Closed iff f () is s-closed for each   c where c is closed L-fuzzy set in X.

(iv) Homeomorphism iff f is bijective and both f and f –1 are continuous.

Definition: Let X be a nonempty set and T be a topology on . Let  =  (T) be the set

of all lower semi continuous (lsc) functions from (X, T) to L (with usual topology). Thus

 (T) = {u  LX : u–1 (, 1]  T} for each   L. It can be shown that  (T) is a L-

topology on X. Let “P” be the property of a topological space (X, T) and LP be its L-

topological analogue. Then LP is called a “good extension” of P “if the statement (X, T)

has P iff (X,  (T)) has LP” holds good for every topological space (X, T).

Definition: Let {(Xi, i) : i  } be a family of L-topological space. Then the space

(Xi, i) is called the product lts of the family {(Xi, i) : i  } where i denote the

usual product L-topologies of the families {i : i  } of L-topologies on X.

T2 SPACE IN L-TOPOLOGY

We now give the following definitions of T2 L-topological spaces.

Definition: An lts (X, ) is called-

(a) L – T2(i) if x, y  X, x  y, u, v   such that u(x) = 1, u(y) = 0, v(x) = 0, v(y)

= 1 and u  v = 0.
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(b) L – T2(ii) if for any pair of distinct L-fuzzy points xr, ys  X, u, v   such that

xr  u, ys  u and xr  v, ys  v and u  v = 0.

(c) L – T2(iii) if for all pairs of distinct L-fuzzy singletons xr, ys  S(X) such that

 vuyqx sr ,, such that uqyux sr , and vqxvy rs , and u  v = 0.

(d) L – T2(iv) if for any pair of distinct L-fuzzy points xr, ys  S(X), u, v   such

that sr yquux , and rs xqvvy , and u  v = 0.

(e) L – T2(v) if for any pair of distinct L-fuzzy points xr, ys  S(X), u, v   such

that xr  u  coys, ys  v  coxr and u  cov.

(f) L – T2(vi)  if x, y  X, x  y, u, v   such that u(x) > 0, u(y) = 0 and v(x) > 0,

v(y) = 0.

(g) L – T2(vii) if x, y  X, x  y, u, v   such that u(x) > u(y) and v(y) > v(x).

Here, the present authors establish a complete comparison of the definitions

L – T2(ii), L – T2(iii), L – T2(iv), L – T2(v), L – T2(vi) and L – T2(vii) with L – T2(i).

Theorem: Let (X, ) be an lts. Then the authors have the following implications:

L – T2(iv) L – T2(ii)

L – T2(vii) L – T2(vi) L – T2(i)

L – T2(v) L – T2(iii)

The reverse implications are not true in general, except L – T2(vi) and L – T2(vii).

Proof: L – T2(i)  L – T2(ii), L – T2(i)  L – T2(iii) can be proved easily. Now

L – T2(i)  L – T2(iv) and L – T2(i)  L – T2(v),  since L – T2(ii)  L – T2(iv) and

L – T2(iv) L – T2(v). L – T2(i) L – T2(vi); It is obvious. L – T2(i) L – T2(vii), since

– T2(vi) L – T2(vii).

The reverse implications are not true in general, except L – T2(vi) and L – T2(vii), as

can be seen through the following counter-examples:

Example 1: Let X = {x, y),  be the L-topology on X generated by{ :   L} 
{u, v} where u(x) = 0.5, u(y) = 0 v(x) = 0, v(y) = 0.6, L = {0, 0.05, 0.1, 0.15, ..., 0.95, 1}

and r = 0.4, s = 0.3.

Example 2: Let X = {x, y),  be the L-topology on X generated by { :   L}  {u,

v} where u(x) = 0.5, u(y) = 0 v(x) = 0, v(y) = 0.4, L = {0, 0.05, 0.1, 0.15, ..., 0.95,1} and r

= 0.5, s = 0.4.
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Proof: )()( 22 iTLiiTL  : From example-1, we see that  the lts (X, ) is clearly

L – T2(ii) but it is not L – T2(i). Since there is no L-fuzzy set in  which grade of

membership is 1.

)()( 22 iTLiiiTL  : From example-2, we see the lts (X, ) is clearly L – T2(iii)

but it is not L – T2(ii). Since )()( 22 iiTLiiiTL  and )()( 22 iTLiiTL  so

)()( 22 iTLiiiTL  .

)()( 11 ivTLiTL  : As for the distinct L-fuzzy singletons x1, y1 in  there does

not exist u, v   such that uqyux 11 ,  and vqxvy 11 , .

)()( 22 iTLivTL  : This follows from the fact that

)()( 22 ivTLiiTL  and it has already been shown that )()( 22 iTLiiTL  so

)()( 22 iTLivTL  .

)()( 22 iTLvTL  : Since )()( 22 vTLivTL  and )()( 22 iTLivTL  so

)()( 22 iTLvTL  . But )()()( 222 iTviTLviiTL   is obvious.

The authors showed that all definitions L – T2(i), L – T2(ii), L – T2(iii), L – T2(iv),

L – T2(v), L – T2(vi)  and L – T2(vii) are ‘good extensions’ of T2, as shown below:

Theorem: Let (X, T) be a topological space. Then (X, T) is T2 iff (X,  (T)) is

L – T2(j), where j = i, ii, iii, iv, v, vi, vii.

Proof: Let (X, T) be T2. Choose x, y  X with x  y. Then  U, V  T such that x 
U, y  U and y  V, x  V and U  V = . Now consider the lower semi continuous

function 1U, 1V. Then 1U, 1V   (T) such that 1U (x) = 1, 1U (y) = 0 and 1V (x) = 1, 1v (y) =

1 and so that1U  1V = 0. Thus iff  (X,  (T)) is L – T2(i).

Conversely, let (X,  (T)) be L – T2(i). To show that (X, T) is T2. Choose x, y  X

with x  y. Then u, v   (T) such that u(x) = 1, u(y) = 0, v(x) = 0, v(y) = 1 and u  v =

0. Let u(y) < u(x) and v(x) < v(y). Choose r such that u(y) < r < u(x)  and v(x) < r < v(y)

and consider u–1 (r, 1] and v–1 (r, 1]. Then u–1 (r, 1], v–1 (r, 1]  T and is x  u–1 (r, 1], y

 u–1 (r, 1], x  v–1 (r, 1], y  v–1 (r, 1] and v–1 (r, 1]  v–1 (r, 1]  =  as u  v  = 0.

Hence (X, T) is T2.

 Similarly the authors can easily show that L – T2(ii), L – T2(iii), L – T2(iv), L – T2(v),

L – T2(vi), L – T2(vii), are also hold ‘good extension’ property.

Theorem: Let (X, ) be an lts, A  X and A = {u | A : u  }, then

(X, ) is L – T2(i) (A, A) is L – T2(i)

(X, ) is L – T2(ii) (A, A) is L – T2(ii)

(X, ) is L – T2(iii) (A, A) is L – T2(iii)

(X, ) is L – T2(iv) (A, A) is L – T2(iv)
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(X, ) is L – T2(v) (A, A) is L – T2(v)

(X, ) is L – T2(vi) (A, A) is L – T2(vi)

(X, ) is L – T2(vii) (A, A) is L – T2(vii).

Proof: The authors proved only (a). Suppose (X, ) is L-topological space and

L – T2(i).

We shall prove (A, A) is L – T2(i). Let x, y  A with x  y, then x, y  X with x  y

as A  X. Since (X,  ) is L – T2(i), u, v   such that u(x) = 1, u(y) = 0, v(x) = 0, v(y) = 1

and u  v = 0. For A  X we find u | A, v | A A and u | A(x) = 1, u | A(y)  = 0 and v |

A(x) = 0, v | A(y)  = 1 and u | A  v | A = (u  v) | A = 0 as x, y  A. Hence it is clear that

the subspace (A, A) is L – T2(i).

Similarly, (b), (c), (d), (e), (f), (g) can be proved.

Theorem: Given {(Xi, i) : i  } be a family of L-topological space. Then the

product of L-topological space (Xi, i) is L – T2 (j) iff each coordinate space (Xi, i)  is

L – T2(j), where j = i, ii, iii, iv, v, vi, vii.

Proof: Let each coordinate space {(Xi, i) : i  } be L – T2(i). Then the writers

showed that the product space is L – T2(i). Suppose x, y  X with x  y, again suppose

x = xi, y = yi then xj  yj for some j  . Now consider xj, yj  Xj. Since (Xi, i) is

L – T2(i), uj, vj  j such that uj(x) = 1, uj (yj) = 0, vj(x) = 1, vj (yj) = 1 and uj  vj = 0.

Now take u = uj, v = vj where uj = uj, vj = vj and ui = vi = 1 for i  j. Then u, v  i

such that u(x) = 1, u(y) = 0, v(x) = 0, v(y) = 1 and u  v = 0. Hence the product

L-topological space (Xi, i) then is L – T2(i).

Conversely, let the product L-topological space (Xi, i) is L – T2(i). Take any

coordinate space (Xj, j), choose xj, yj  Xj, xj  yj. Now construct x, y  X such that x =

xi, y = yi where xi, yi for i  j and xj = yj, yj = yj. Then x  y and using the product

space L – T2(i)  u, v  i such that u(x) = 1, u(y) = 0, v(x) = 0, v(y) = 1 and u  v = 0.

Now choose any L-fuzzy point xr in u. Then  a basic open L-fuzzy set   j
r
j ru such

that uux r
jr   which implies that )(xur r

j or that )( j
r
jj xufinr  and hence

 jxur j
r
j )(  ... (i) and u(y) = 0 uj(y) = 0 ... (ii). Similarly, corresponding to a

fuzzy point ys  v there exists a basic fuzzy open set j
s
j rv  such that vvy s

js 
which implies that  jjvs s

j )(  ... (iii) and 0)(  yvs
j  ... (iv). Further,

0)(0)(  i
r
j

r
j yuyu , since for jj yxij  , and hence from (i),

rxuyu j
r
jj

r
j  )()( . Similarly, 0)(0)(  i

s
i

s
j xvxv using (iii). Thus we have

,)( rxu i
r
i  0)( i

r
i yu and 0)(,)(  i

s
ii

s
i xvsyv . Now consider ,sup i

r
ir uu 

ii
s
is vv sup then ui(xi) = 1, ui(yi) = 0, vi(xi) = 0, vi(yi) = 1 and ui  vi = 0 showing that

(Xi, i) is L – T2(i).
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Moreover one can easily verify that

(X, ), i   is L – T2(ii) (Xi,  i) is L – T2(ii).

(X, ), i   is L – T2(iii) (Xi,  i) is L – T2(iii).

(X, ), i   is L – T2(iv) (Xi,  i) is L – T2(iv).

(X, ), i   is L – T2(v) (Xi,  i) is L – T2(v).

(X, ), i   is L – T2(vi) (Xi,  i) is L – T2(vi).

(X, ), i   is L – T2(vii) (Xi,  i) is L – T2(vii).

Hence it is seen that

L – T2(i), L – T2(ii), L – T2(iii), L – T2(iv), L – T2(v), L – T2(vi), L – T2(vii) properties

are productive and projective.

MAPPING OF L-TOPOLOGICAL SPACES

The workers showed that L – T2(j) property is preserved under one-one, onto and

continuous maps for j = i, ii, iii, iv, v, vi, viii.

Theorem: Let (X, ), and (Y, s) be two L-topological space and f : (X, )  (Y, s)

be one-one, onto and L-open map, then-

(a) (Xi, i) is L – T2(i) (Y, s) is L – T2(i).

(b) (Xi, i) is L – T2(ii) (Y, s) is L – T2(ii).

(c) (Xi, i) is L – T2(iii) (Y, s) is L – T2(iii).

(d) (Xi, i) is L – T2(iv) (Y, s) is L – T2(iv).

(e) (Xi, i) is L – T2(v) (Y, s) is L – T2(v).

(f) (Xi, i) is L – T2(vi) (Y, s) is L – T2(vi).

(g) (Xi, i) is L – T2(vii) (Y, s) is L – T2(vii).

Proof: Suppose (X, ) is L – T2(i). Then the writers shall prove that (Y, s) is L – T2(i).

Let y1, y2  Y with y1  y2. Since f is onto, x1, x2  X such that f (x1) = y1, f (x2) = y2 and

x1  x2 as f is one-one. Again since (X, ) is L – T2(i) u, v   such that u(x1) = 1, u(x2) =

0, v(x1) = 1, v(x2) = 1 and u  v = 0. Now

f (u) (y1) = {sup u(x1) : f (x1) = y1} = 1

f (u) (y2) = {sup u(x2) : f (x2) = y2} = 0

f (v) (y1) = {sup v(x1) : f (x1) = y1} = 0

f (v) (y2) = {sup v(x2) : f (x2) = y1} = 1
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and

f (u  v) (y1) = {sup (u  v) (x1) : f (x1) = y1}

f (u  v) (y2) = {sup (u  v) (x2) : f (x2) = y2}

Hence f (u  v) = 0 f (u)  f (v) = 0

Since f is L-open, f (u), f (v)  s. Now it is clear that  f (u), f (v)  s such that f (u)

(y1) = 1, f(u) (y2) = 0,  f (v) (y1) = 0 f (v) (y2) = 1, and f (u)  f (v) = 0. Hence it is clear

that the L-topological space (Y, s) is L – T2(i).

Similarly (b), (c), (d), (e), (f), (g) can be easily proved.

Theorem: Let (X, ) and (Y, s) be two L-topological space and f : (X, )  (Y, s) be

L-continuous and one-one map, then-

(a) (Y, s) is L – T2(i) (X,  ) is L – T2(i).

(b) (Y, s) is L – T2(ii) (X,  ) is L – T2(ii).

(c) (Y, s) is L – T2(iii) (X,  ) is L – T2(iii).

(d) (Y, s) is L – T2(iv) (X,  ) is L – T2(iv).

(e) (Y, s) is L – T2(v) (X, ) is L – T2(v).

(f) (Y, s) is L – T2(vi) (X,  ) is L – T2(vi).

(g) (Y, s) is L – T2(vii) (X,  ) is L – T2(vii).

Proof: Suppose (Y, s) is L – T2(i). The authors shall prove that (X, ) is L – T2(i). Let

x1, x2  X with x1  x2 f (x1)  f (x2) as f is one-one. Since (Y, s) is L – T2(i) u, v  s

such that u(f(x1)) = 1, u(f(x2)) = 0, v(f(x1)) = 0 v(f(x2)) = 1 and u  v = 0. This implies that

f–1(u) (x1) = 1, f–1(u) (x2) = 0, f–1(v) (x1) = 0, f–1(v) (x2) = 1 and f–1(v) (x1) = 0 f–1(u)  f–

1(v) = 0. Hence f–1(u), f–1(v)   as f is L-continuous and u, v  s. Now it is clear that

f–1(u), f–1(v)   such that f–1(u) (x1) = 1, f–1(u) (x2) = 0, f–1(v) (x1) = 0, f–1(v) (x2) = 1, and

f–1(u)  f–1(v) = 0. Hence the L-topological space (X,  ) is L – T2(i).

Similarly (b), (c), (d), (e), (f), (g) can be proved.
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