
 69 

 69 

CERTAIN FEATURES OF FUZZY CONTRA-CONTINUOUS FUNCTIONS  
 
M. H. RASHID 

 
Department Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh. 
 
AND  
 
D.M. ALI 

 
Department of Mathematics, University of Rajshahi-6205, Bangladesh. 
 

 
ABSTRACT 

 

We deal with fuzzy topological spaces, fuzzy compact space, fuzzy S-closed space, fuzzy 
graph, fuzzy continuous functions and fuzzy LC-continuous functions. In this paper, we introduce 
the concepts of fuzzy contra-continuities and explore properties and relationships of such types of 
functions. 
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1. INTRODUCTION  

C L. Chang(1) defined fuzzy topological space in 1968 by using fuzzy sets introduced 
by Zadeh. In 1976, Thompson(2) has introduced the notion of S-closed spaces via 
Levine’s semi-open sets(3). In 1981 Azad(4) has introduced some weaker forms of fuzzy 
continuity in fuzzy topological spaces. He introduced fuzzy semi-continuous functions, 
semi-open functions, semi-closed functions, almost continuous functions and weakly 
continuous functions in fuzzy topological spaces. Using Azad’s notion of fuzzy sets 
Abdulla and Bin Shahna(5) have introduced fuzzy δ-open, fuzzy δ-closed, fuzzy pre-open, 
fuzzy pre-closed sets and have made preliminary study of fuzzy strong semi-continuous 
and fuzzy pre-continuous functions in their papers. In 1989, Ganster and Reilly(6) 
introduced the notion of LC-continuous functions via the concepts of locally closed sets. 
In 1996, Dontchev(7) studied a stronger form of LC-continuity called contra-continuity 
and proved that contra-continuous images of strongly S-closed spaces are compact as 
well as that contra-continuous, ρ-continuous images of S-closed spaces are also compact. 
In 2006, Ekici and Kerre(8) studied the notion of fuzzy contra-ρ-continuous functions. In 
our study, we introduce several types of fuzzy contra-continuities, the notion of fuzzy 
contra-semi-continuous functions, fuzzy contra-pre-continuous functions and investigate 
of some of their properties. 
 
2. Preliminaries  

In this section, we recall some definitions and some results, which will be useful in 
our investigations. 
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2.1 Definition: Let X be a non-empty set and I = [0, 1]. A fuzzy set in X is a 
function λ:Χ → I which assigns to each element x ∈ X, a degree or grade of membership 
λ(x) ∈ I. Fuzzy sets in X will be denoted by Greek letters as α, β, λ, µ, η, etc. 

2.2 Definition(1): Let X be a non-empty set and t be a collection of fuzzy sets in X. 
Then t is called a fuzzy topology in X if. 

(i)  0, 1 ∈ t 

(ii)  α, β ∈ t ⇒ α ∩ β ∈ t and (iii) αi ∈ t ⇒ψ αi ∈ t. 

Then the pair (X, t) is called a fuzzy topological space (in brief fts). Every member of 
t is called a fuzzy open set. 

2.3 Definition: Let λ be a fuzzy set in fts (X,t). Then the closure of λ is denoted by 
cl(λ), is given by cl(λ) = ∩{µ : λ ⊆ µ and µ ∈ tc } and the interior of λ is denoted by 
int(λ), is given by int(λ) = ∪{µ : µ ⊆ λ and µ ∈ t}.  

2.4 Definition(9) : A fuzzy singleton in X is a fuzzy set in X which is zero 
everywhere, except at one point, say x, where it takes value, say r, with r ∈ (0, 1] i.e. 0 < 
r ≤ 1. We denote it by xr, where the point x is called its support and r its value. Also xr ∈α 
if and only if r ≤ α (x). 

2.5. Definition : A fuzzy singleton xr is called quasi-coincident (in short q-
coincident) with a fuzzy set a in X, denoted xr qa iff r + a (x) > 1. Similarly, a fuzzy set a 
in X is called q-coincident with a fuzzy set β in X. denoted α qβ  iff α  (x) + β (x) > 1, for 
some x ∈ X.  

2.6. Definition (4) :  Let (X, t) and (Y,s) be two fuzzy topological spaces and let ƒ: X 
→ Y be function between them. Then the function g: X → X × Y defined by g(xr) = (xr, ƒ 
(xr) is called the fuzzy graph of ƒ. 

2.7. Definition (4) : A fuzzy set α in an fts (X,t) is called fuzzy semi-open if a ⊆ cl(int 
(α)). The complement of a fuzzy semi-open set is said to be fuzzy semi-closed.  

2.8. Definition (5): A fuzzy set α in fts (X,t) is called fuzzy pre-open iff α ⊆ 
int(cl(α)). The complement of a fuzzy pre-open set is said to be fuzzy pre-closed.  

2.9. Definition (10,11): A fuzzy set α in its fts (X,t) is called fuzzy semi-pre-open or p-
open iff α ⊆  cl(int(cl(α)). The complement of a fuzzy semi-pre-open set is said to be 
fuzzy semi-pre-closed or fuzzy ρ-closed.  

2.10. Definition (8): Let µ be a fuzzy set in fts (X,t). The fuzzy ρ-closure and ρ-
interior ofµ  , denoted by ρ-cl(µ) and ρ-int (µ) are defined by ρλλµλΛ is ,:{ ⊆  -
closed}and λλµλ ,:{ ⊇∨   is ρ- open} respectively. 

2.11. Definition (8): Let X and Y be fuzzy topological spaces. A function ƒ : X → Y 
is said to be fuzzy contra-ρ-continuous if for each fuzzy singleton xr ∈ X and each fuzzy 
closed set µ in Y containing f (xr), there exists a fuzzy ρ-open set λ in X containing xr 
such that ( ) µλ ⊆∫  
3. Fuzzy contra-semi-continuous functions 
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In this section, we introduce several types of fuzzy contra-continuous functions and 
characterize the fuzzy contra-semi-continuous functions in particular.  

3.1. Definition: Let X and Y be fuzzy topological spaces. A function f : X → Y is  
said to be fuzzy contra-continuous if for each fuzzy singleton xr ∈ × and each fuzzy 
closed set µ in Y containing f (xr), there exists a fuzzy open set λ in X containing xr such 
that f (λ) ⊆ µ. 

3.2. Definition: Let X and Y be fuzzy topological spaces. A function f : X → Y is 
said to be fuzzy contra-semi-continuous if for each fuzzy singleton xr ∈ X and each fuzzy 
closed set µ in Y containing f(xr), there exists a fuzzy semi-open set λ in X containing xr 
such that f(λ) ⊆ µ. 

3.3. Definition: Let X and Y be fuzzy topological spaces. A function f : X → Y is 
said to be fuzzy contra-pre-continuous if for each fuzzy singleton xr ∈ X and each fuzzy 
closed set µ in Y containing f(xr), there exists a fuzzy pre-open set λ in X containing xr 
such that f(λ) ⊆ µ. 

3.4. Theorem : Let (X,t) and (Y, s) be fuzzy topological spaces and let f : X → Y be a 
function. Then the following statements are equivalent.  

(1) f is fuzzy contra-semi-continuous function. 

(2) For every fuzzy closed µ in Y, f-1 (µ) is fuzzy semi-open in X,  

(3) For every fuzzy open set λ in Y, f-1 (λ) is fuzzy semi-closed in X.  

Proof : (1) ⇔ (2): Let α be fuzzy closed set in Y and let xr ∈ f-1(α). Since f (xr) ∈ α, 
by (1), there exists a fuzzy semi-open set µ xr in X containing xr such that f (µ xr) ⊆ α ⇒ 
µ x ⊆ f-1 (α). Therefore, f-1 (α) is fuzzy semi-open, which proves (2).   

Conversely, let xr ∈ X and µ be a fuzzy closed set in Y containing f (xr). Then by (2), 
f-1 (µ) is fuzzy semi-open. Put λ = f-1 (µ). Then λ is a fuzzy open set in X containing xr 
and hence f(λ) ⊆ µ . This shows that f is fuzzy contra-semi-continuous function. 

(2) ⇔ (3) Let λ is a fuzzy open set in Y. Put µ = λc. Then µ is a fuzzy closed set in Y. 
Then by (2), f-1(µ) is fuzzy semi-open. Now, f-1(µ) = f-1(λc) ⇒ f-1(µ) = (f-1(λ))c 

⇒ f-1(µ))c =. This implies that (f-1(λ) is fuzzy semi-closed, which is (3). The converse 
is similar.  

3.5 Theorem: Let (X, t) and Y, s) be fuzzy topological spaces and let f : X → Y be a 
function. Then the following statements are equivalent: 

(1) For any fuzzy closed set µ in Y and for any xr ∈ X, f(xr)qµ implies that xr q s-int 
(f-1(µ)). 

(2) For any fuzzy closed set µ in Y and for any xr ∈ X, if f(xr)qµ, there exists a fuzzy 
semi-open set λ such that xrqλ and f(λ) ⊆ µ.. 

Proof : Suppose (1) is true. Let µ be fuzzy closed set in Y and let f(xr)qµ, for any xr 
∈ X. Then by (1), we have xrq s-int(f-1(µ)). Put λ = s-int (f-1(µ)), then f(λ) = f(s-int(f-1(µ))) 
⇒ f(λ) ⊆ f(f-1(µ)) ⊆ µ, which proves (2). 
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Conversely, suppose that (2) is true. Let µ be fuzzy closed set in Y and let f(xr)q µ, 
for any xr ∈ X. Then by (2), there exists a fuzzy semi-open set λ such that xrq λ and f(λ) 
⊆ µ . This implies that µ ⊇ f (f -1(µ)),⊇ f (s-int (f -1(µ)) = f (λ) ⇒ λ = s-int (f -1(µ)). Hence, 
xr q s-int (f -1(µ)), which proves (1). 

3.6. Definition: Let (X,t) and (Y,s) be two fuzzy topological spaces. A function f: X 
→Y is called a fuzzy s-irresolute if the inverse image of each fuzzy semi-open if the 
direct image of each fuzzy semi-open set is fuzzy semi-open. 

3.7. Definition: Let (X,t) and (Y,s) be two fuzzy topological spaces. A function f: X 
→Y is called a fuzzy semi-open if the direct image of each fuzzy semi-open set is fuzzy 
semi-open. 

3.8. Theorem: Let (X,t), (Y,s) and (Z,u) be fuzzy topological spaces and let f: X →Y 
and g: Y → Z be functions. If f is fuzzy s-irresolute and g is fuzzy contra-semi-
continuous, then g o f is fuzzy contra-semi-continuous function.  

Proof: Let µ be a fuzzy closed set in Z and let (g o f) (xr) ∈µ, for every fuzzy 
singleton xr in X. Then, we have g(f(xr)) ∈µ. Since g is fuzzy contra-semi-continuous, 
there exists a fuzzy semi-open set λ containing f(xr) such that g (λ) ⊆ µ. Again, since f is 
fuzzy s-irresolute, there exists a fuzzy semi-open set η containing xr such that f(η) ⊆λ. 
Hence, we have (g o f) (η) = g(f(η))⊆ g (λ) ⇒ (g o f) (η) ⊆ µ. This shows that g o f is 
fuzzy contra-semi-continuous function. This completes the proof of the theorem,  

3.9. Theorem: Let (X,t), (Y,s) and (Z,u) be fuzzy topological spaces. If f: X →Y is a 
surjective fuzzy semi-open function and g: Y → Z is a function such that g o f is fuzzy 
contra-semi-continuous, then g is fuzzy contra-semi-continuous.  

Proof: Let µ be a fuzzy closed set in Z let (g o f)(xr) ∈µ, for every fuzzy singleton xr 
X. Then, we have g(f(xr)) ∈µ. Since g o f is fuzzy contra-semi-continuous, there exists a 
fuzzy semi-open set λ in X containing xr such that g(f(λ)) ⊆ µ. Again since f is a 
surjective fuzzy semi-open, f(λ) is a semi-open set in Y containing  f(xr) such g(f(λ)) ⊆ µ. 
This shows that g is fuzzy contra-semi-continuous function. This completes the proof of 
the theorem.  

3.10. Theorem: Let (X,t) (Y,s) and (Z,u) be fuzzy topological spaces and let f: X →Y 
and g: Y → Z be functions. If f is fuzzy continuous and g is fuzzy contra-semi-continuous, 
then g o f is fuzzy contra-semi-continuous function. 

Proof: Let µ be a fuzzy closed set in Z and let g o f)(xr) ∈µ, for every fuzzy singleton 
xr in X. Then, we we have g(f(xr)) ∈µ. Since g is fuzzy contra-semi-continuous, there 
exists a fuzzy open set λ in Y containing f(xr) such that g(λ) ⊆ µ. Again, since f is a fuzzy 
continuous, there exists a fuzzy open set η in X containing xr such that 

( ) ( ) ληλ ⊆∫⇒∫⊆ −1 . Now, we have (g o f) (η) = g (f(η))⊆ g (λ) .⊆ µ, so that g o f is 
fuzzy contra-semi-continuous.  

3.11. Theorem:  Let f: X →Y be a function and let g: X→ X × Y be the fuzzy graph 
of f, defined by g(xr) = (xr,f (xr)) for every xr ∈X. If g is fuzzy contra-semi-continuous, 
then f is fuzzy contra-semi-continuous.  
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Proof: Let µ be a fuzzy closed set in Y containing f(xr) for every xr ∈X. Then X× µ 
is a fuzzy closed set in X × Y and ( ) ( )µµ ×= −− Xgf 11 . Since g is fuzzy contra-semi-
continuous, then there exists a fuzzy semi-open set λ in X containing xr such that g(λ) ⊆ 
X × µ. This implies that ( )µλ ×⊆ − Xg 1 . Thus, we have ( ) ( ) µλµλ ⊆∫⇒⊆ −1f . It 
follows that f is fuzzy contra-semi-continuous function. 
 
4. Properties of fuzzy contra-continuous functions  

In this section, we investigate the properties and preservation theorems of fuzzy 
contra-semi-continuous function.  

4.1. Definition: Let (X, t) be a fuzzy topological space. Then the fuzzy topological 
space (X,t) is said to be fuzzy s-compact if every fuzzy semi-open cover of X has a finite 
subcover.  

4.2. Definition: An fts (X,t) is said to be fuzzy strongly s-closed if every fuzzy semi-
closed cover of X has finite subcover. 

4.3. Definition: An fts (X, t) is said to be fuzzy strong countably s-closed if every 
fuzzy countable semi-closed cover of X has a finite subcover. 

4.4. Definition: An fts (X, t) is said to be fuzzy countably s-compact if every fuzzy 
countable semi-open cover of X has a finite subcover.  

4.5. Definition: An fts (X, t) is said to be fuzzy s-LindelÖf if every fuzzy semi-open 
cover of X has a finite countable subcover.  

4.6. Definition: An fts (X, t) is said to be fuzzy strongly s-Lindelof if every fuzzy 
semi-closed cover of X has a finite countable subcover.  

4.7. Theorem: Let (X, t) be a fuzzy s-compact space. If f: X→Y is a surjective fuzzy 
contra-semi-continuous, then the image of f is fuzzy strongly s-closed space.  

Proof: Let {µi : i ∈I} be any fuzzy closed cover of Y. Since f is fuzzy contra-semi-
continuous, there exists a fuzzy semi-open set {f -1 (µi) : i ∈I} which is a fuzzy semi-open 
cover of X. Again, since (X,t) is a fuzzy s-compact space, there exists a finite subset I0 of 
I such that X = V{f -1 (µi) : i ∈I0}. It follows that f(X) = V{µi : i ∈I0}. Since f is 
surjective, then we have Y = V{µi) : i ∈I0} and therefore the image if f is fuzzy strongly s-
closed. This competes the proof of the theorem.    

4.8 Theorem: Let (X,t) be a fuzzy countably s-compact space. If f : X → Y is a 
surjective fuzzy contra-semi-continuous function, then the image of f is fuzzy strong 
countably s-closed space. 

The proof of this theorem can be obtained following the proof of Theorem ([4.7]). 

4.9. Theorem: Let (X, t) be a fuzzy s-Lindelof space. If f : X → Y is surjective fuzzy 
contra-semi-continuous, then the image of f is fuzzy strongly s-Lindelof space. 

The proof is similar to that of Theorem ([4.7]). 

4.10. Definition(12) : A fts (X, t) is called fuzzy connected if X is not the union of two 
disjoint non-empty fuzzy open sets. 

4.11. Definition : A  fts (X, t) is called fuzzy s-connected if X is not the union of two 
disjoint non-empty fuzzy semi-open sets. 
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4.12. Theorem: Let (X, t)- and (Y, s) be two fuzzy topological spaces. If f : X → Y is 
a subjective fuzzy contra-semi-continuous function and X is fuzzy s-connected, then Y is 
fuzzy connected.  

Proof: Suppose Y is not a fuzzy connected space. Then there exists non-empty 
disjoint fuzzy open sets µ1 and µ2 such that Y = µ1 ν µ2. Therefore, µ1 and µ2 are fuzzy 
clopen in Y. Since f is fuzzy contra-semi-continuous and onto, then f -1 (µ1) and f -1 (µ2) 
are fuzzy semi-open in X. Moreover, f -1 (µ1) and f -1(µ2) are non-empty disjoint and X = 
 f -1 (µ1) ν f -1(µ2). This shows that X is not fuzzy s-connected, which contradicts our 
assumption. Therefore, Y is fuzzy connected. 

4.13. Definition: Let (X, t) be a fuzzy topological space. An fts (X, t) is called a 
fuzzy s-ultra-connected if every pair of non-empty fuzzy semi-closed subsets of X 
intersects.  

 4.14. Definition(8): Let (X, t) be a fuzzy topological space. An fts (X, t) is called 
fuzzy hyper-connected if every fuzzy open set is dense. 

4.15. Theorem: Let (X, t) and (Y, s) be two fuzzy topological spaces. If f : X → Y is a 
surjective fuzzy contra-continuous function and X is fuzzy s-ultra-connected, then Y is 
fuzzy hyper-connected. 

 Proof: Suppose Y is not a fuzzy hyper-connected space. Then there exists a fuzzy 
open set µ such that µ is not dense in Y. Therefore, there exists non-empty fuzzy semi-
open subsets µ1 and µ2 in Y. Since f is fuzzy contra-semi-continuous, then by  

Theorem ([3.4]) we can write λ1 = f -1 (µ1) and λ2 = f -1(µ2) are disjoint non-empty 
fuzzy semi-closed sets in X, which contradicts the fact that λ1 and λ2 interesect i.e. X is 
fuzzy s-ultra-connected. Therefore, we conclude that Y is fuzzy hyper-connected. 
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