CERTAIN FEATURES OF FUZZY CONTRA-CONTINUOUS FUNCTIONS

M. H. RASHID

Department Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh.

AND

D.M. ALI

Department of Mathematics, University of Rajshahi-6205, Bangladesh.

ABSTRACT

We deal with fuzzy topological spaces, fuzzy compact space, fuzzy S-closed space, fuzzy graph, fuzzy continuous functions and fuzzy LC-continuous functions. In this paper, we introduce the concepts of fuzzy contra-continuities and explore properties and relationships of such types of functions.

Keywords: fuzzy contra-continuity, fuzzy S-closed space, fuzzy graph.

AMS Subject Classification: 54A40.

1. INTRODUCTION

C L. Chang⁽¹⁾ defined fuzzy topological space in 1968 by using fuzzy sets introduced by Zadeh. In 1976, Thompson⁽²⁾ has introduced the notion of S-closed spaces via Levine's semi-open sets⁽³⁾. In 1981 Azad⁽⁴⁾ has introduced some weaker forms of fuzzy continuity in fuzzy topological spaces. He introduced fuzzy semi-continuous functions, semi-open functions, semi-closed functions, almost continuous functions and weakly continuous functions in fuzzy topological spaces. Using Azad's notion of fuzzy sets Abdulla and Bin Shahna⁽⁵⁾ have introduced fuzzy δ -open, fuzzy δ -closed, fuzzy pre-open, fuzzy pre-closed sets and have made preliminary study of fuzzy strong semi-continuous and fuzzy pre-continuous functions in their papers. In 1989, Ganster and Reilly⁽⁶⁾ introduced the notion of LC-continuous functions via the concepts of locally closed sets. In 1996, Dontchev⁽⁷⁾ studied a stronger form of LC-continuity called contra-continuity and proved that contra-continuous images of strongly S-closed spaces are compact as well as that contra-continuous, ρ-continuous images of S-closed spaces are also compact. In 2006, Ekici and Kerre⁽⁸⁾ studied the notion of fuzzy contra-ρ-continuous functions. In our study, we introduce several types of fuzzy contra-continuities, the notion of fuzzy contra-semi-continuous functions, fuzzy contra-pre-continuous functions and investigate of some of their properties.

2. Preliminaries

In this section, we recall some definitions and some results, which will be useful in our investigations.

- **2.1 Definition:** Let X be a non-empty set and I = [0, 1]. A fuzzy set in X is a function $\lambda: X \to I$ which assigns to each element $x \in X$, a degree or grade of membership $\lambda(x) \in I$. Fuzzy sets in X will be denoted by Greek letters as α , β , λ , μ , η , etc.
- **2.2 Definition**⁽¹⁾: Let X be a non-empty set and t be a collection of fuzzy sets in X. Then t is called a fuzzy topology in X if.
 - (i) $0, 1 \in t$
 - (ii) $\alpha, \beta \in t \Rightarrow \alpha \cap \beta \in t$ and (iii) $\alpha_i \in t \Rightarrow \psi \alpha_i \in t$.

Then the pair (X, t) is called a fuzzy topological space (in brief fts). Every member of t is called a fuzzy open set.

- **2.3 Definition:** Let λ be a fuzzy set in fts (X,t). Then the closure of λ is denoted by $cl(\lambda)$, is given by $cl(\lambda) = \bigcap \{\mu : \lambda \subseteq \mu \text{ and } \mu \in t^c \}$ and the interior of λ is denoted by $int(\lambda)$, is given by $int(\lambda) = \bigcup \{\mu : \mu \subseteq \lambda \text{ and } \mu \in t \}$.
- **2.4 Definition**⁽⁹⁾: A fuzzy singleton in X is a fuzzy set in X which is zero everywhere, except at one point, say x, where it takes value, say r, with $r \in (0, 1]$ i.e. $0 < r \le 1$. We denote it by x_r , where the point x is called its support and r its value. Also $x_r \in \alpha$ if and only if $r \le \alpha(x)$.
- **2.5. Definition :** A fuzzy singleton x_r is called quasi-coincident (in short q-coincident) with a fuzzy set a in X, denoted x_r qa iff r + a (x) > 1. Similarly, a fuzzy set a in X is called q-coincident with a fuzzy set β in X. denoted $\alpha q\beta$ iff α (x) + β (x) > 1, for some $x \in X$.
- **2.6. Definition** ⁽⁴⁾: Let (X, t) and (Y,s) be two fuzzy topological spaces and let $f: X \to Y$ be function between them. Then the function $g: X \to X \times Y$ defined by $g(x_r) = (x_r, f(x_r))$ is called the fuzzy graph of f.
- **2.7. Definition** ⁽⁴⁾ : A fuzzy set α in an fts (X,t) is called fuzzy semi-open if $a \subseteq cl(int(\alpha))$. The complement of a fuzzy semi-open set is said to be fuzzy semi-closed.
- **2.8. Definition** ⁽⁵⁾: A fuzzy set α in fts (X,t) is called fuzzy pre-open iff $\alpha \subseteq \operatorname{int}(\operatorname{cl}(\alpha))$. The complement of a fuzzy pre-open set is said to be fuzzy pre-closed.
- **2.9. Definition** ^(10,11): A fuzzy set α in its fts (X,t) is called fuzzy semi-pre-open or p-open iff $\alpha \subseteq \operatorname{cl(int(cl(\alpha))}$. The complement of a fuzzy semi-pre-open set is said to be fuzzy semi-pre-closed or fuzzy ρ -closed.
- **2.10. Definition** ⁽⁸⁾: Let μ be a fuzzy set in fts (X,t). The fuzzy ρ -closure and ρ -interior of μ , denoted by ρ -cl(μ) and ρ -int (μ) are defined by $\Lambda\{\lambda: \mu \subseteq \lambda, \lambda \text{ is } \rho \text{ closed}\}$ and $\vee \{\lambda: \mu \supset \lambda, \lambda \text{ is } \rho \text{ open}\}$ respectively.
- **2.11. Definition** ⁽⁸⁾: Let X and Y be fuzzy topological spaces. A function $f: X \to Y$ is said to be fuzzy contra- ρ -continuous if for each fuzzy singleton $x_r \in X$ and each fuzzy closed set μ in Y containing $f(x_r)$, there exists a fuzzy ρ -open set λ in X containing x_r such that $\int (\lambda) \subset \mu$
- 3. Fuzzy contra-semi-continuous functions

In this section, we introduce several types of fuzzy contra-continuous functions and characterize the fuzzy contra-semi-continuous functions in particular.

- **3.1. Definition:** Let X and Y be fuzzy topological spaces. A function $f: X \to Y$ is said to be fuzzy contra-continuous if for each fuzzy singleton $x_r \in \times$ and each fuzzy closed set μ in Y containing $f(x_r)$, there exists a fuzzy open set λ in X containing x_r such that $f(\lambda) \subseteq \mu$.
- **3.2. Definition:** Let X and Y be fuzzy topological spaces. A function $f: X \to Y$ is said to be fuzzy contra-semi-continuous if for each fuzzy singleton $x_r \in X$ and each fuzzy closed set μ in Y containing $f(x_r)$, there exists a fuzzy semi-open set λ in X containing x_r such that $f(\lambda) \subseteq \mu$.
- **3.3. Definition:** Let X and Y be fuzzy topological spaces. A function $f: X \to Y$ is said to be fuzzy contra-pre-continuous if for each fuzzy singleton $x_r \in X$ and each fuzzy closed set μ in Y containing $f(x_r)$, there exists a fuzzy pre-open set λ in X containing x_r such that $f(\lambda) \subseteq \mu$.
- **3.4. Theorem :** Let (X,t) and (Y,s) be fuzzy topological spaces and let $f:X\to Y$ be a function. Then the following statements are equivalent.
 - (1) f is fuzzy contra-semi-continuous function.
 - (2) For every fuzzy closed μ in Y, $f^{I}(\mu)$ is fuzzy semi-open in X,
 - (3) For every fuzzy open set λ in Y, $f^{1}(\lambda)$ is fuzzy semi-closed in X.

Proof : (1) \Leftrightarrow (2): Let α be fuzzy closed set in Y and let $x_r \in f^l(\alpha)$. Since $f(x_r) \in \alpha$, by (1), there exists a fuzzy semi-open set μx_r in X containing x_r such that $f(\mu x_r) \subseteq \alpha \Rightarrow \mu x \subseteq f^l(\alpha)$. Therefore, $f^l(\alpha)$ is fuzzy semi-open, which proves (2).

Conversely, let $x_r \in X$ and μ be a fuzzy closed set in Y containing $f(x_r)$. Then by (2), $f^I(\mu)$ is fuzzy semi-open. Put $\lambda = f^I(\mu)$. Then λ is a fuzzy open set in X containing x_r and hence $f(\lambda) \subseteq \mu$. This shows that f is fuzzy contra-semi-continuous function.

- (2) \Leftrightarrow (3) Let λ is a fuzzy open set in Y. Put $\mu = \lambda^c$. Then μ is a fuzzy closed set in Y. Then by (2), $f^I(\mu)$ is fuzzy semi-open. Now, $f^I(\mu) = f^I(\lambda^c) \Rightarrow f^I(\mu) = (f^I(\lambda))^c$
- $\Rightarrow f^{1}(\mu))^{c}$ =. This implies that $(f^{1}(\lambda))$ is fuzzy semi-closed, which is (3). The converse is similar.
- **3.5 Theorem:** Let (X, t) and Y, s) be fuzzy topological spaces and let $f: X \to Y$ be a function. Then the following statements are equivalent:
- (1) For any fuzzy closed set μ in Y and for any $x_r \in X$, $f(x_r)q\mu$ implies that $x_r q$ s-int $(f^1(\mu))$.
- (2) For any fuzzy closed set μ in Y and for any $x_r \in X$, if $f(x_r)q\mu$, there exists a fuzzy semi-open set λ such that $x_rq\lambda$ and $f(\lambda) \subseteq \mu$.

Proof : Suppose (1) is true. Let μ be fuzzy closed set in Y and let $f(x_r)q\mu$, for any $x_r \in X$. Then by (1), we have x_rq s-int($f^1(\mu)$). Put $\lambda = \text{s-int}(f^1(\mu))$, then $f(\lambda) = f(\text{s-int}(f^1(\mu))) \Rightarrow f(\lambda) \subseteq f(f^1(\mu)) \subseteq \mu$, which proves (2).

Conversely, suppose that (2) is true. Let μ be fuzzy closed set in Y and let $f(x_r)q$ μ , for any $x^r \in X$. Then by (2), there exists a fuzzy semi-open set λ such that x_rq λ and $f(\lambda) \subseteq \mu$. This implies that $\mu \supseteq f(f^{-1}(\mu)), \supseteq f(s-\text{int }(f^{-1}(\mu)) = f(\lambda) \Rightarrow \lambda = s-\text{int }(f^{-1}(\mu))$. Hence, x_r q $s-\text{int }(f^{-1}(\mu))$, which proves (1).

- **3.6. Definition**: Let (X,t) and (Y,s) be two fuzzy topological spaces. A function $f: X \to Y$ is called a fuzzy s-irresolute if the inverse image of each fuzzy semi-open if the direct image of each fuzzy semi-open set is fuzzy semi-open.
- **3.7. Definition:** Let (X,t) and (Y,s) be two fuzzy topological spaces. A function $f: X \to Y$ is called a fuzzy semi-open if the direct image of each fuzzy semi-open set is fuzzy semi-open.
- **3.8. Theorem:** Let (X,t), (Y,s) and (Z,u) be fuzzy topological spaces and let $f: X \to Y$ and $g: Y \to Z$ be functions. If f is fuzzy s-irresolute and g is fuzzy contra-semicontinuous, then $g \circ f$ is fuzzy contra-semi-continuous function.
- **Proof:** Let μ be a fuzzy closed set in Z and let $(g \circ f)(x_r) \in \mu$, for every fuzzy singleton x^r in X. Then, we have $g(f(x_r)) \in \mu$. Since g is fuzzy contra-semi-continuous, there exists a fuzzy semi-open set λ containing $f(x_r)$ such that $g(\lambda) \subseteq \mu$. Again, since f is fuzzy s-irresolute, there exists a fuzzy semi-open set η containing x_r such that $f(\eta) \subseteq \lambda$. Hence, we have $(g \circ f)(\eta) = g(f(\eta)) \subseteq g(\lambda) \Rightarrow (g \circ f)(\eta) \subseteq \mu$. This shows that $g \circ f$ is fuzzy contra-semi-continuous function. This completes the proof of the theorem,
- **3.9. Theorem:** Let (X,t), (Y,s) and (Z,u) be fuzzy topological spaces. If $f: X \to Y$ is a surjective fuzzy semi-open function and $g: Y \to Z$ is a function such that $g \circ f$ is fuzzy contra-semi-continuous, then g is fuzzy contra-semi-continuous.
- **Proof:** Let μ be a fuzzy closed set in Z let $(g \circ f)(x_r) \in \mu$, for every fuzzy singleton x_r X. Then, we have $g(f(x_r)) \in \mu$. Since $g \circ f$ is fuzzy contra-semi-continuous, there exists a fuzzy semi-open set λ in X containing x_r such that $g(f(\lambda)) \subseteq \mu$. Again since f is a surjective fuzzy semi-open, $f(\lambda)$ is a semi-open set in Y containing $f(x_r)$ such $g(f(\lambda)) \subseteq \mu$. This shows that g is fuzzy contra-semi-continuous function. This completes the proof of the theorem.
- **3.10. Theorem:** Let (X,t) (Y,s) and (Z,u) be fuzzy topological spaces and let $f: X \to Y$ and $g: Y \to Z$ be functions. If f is fuzzy continuous and g is fuzzy contra-semi-continuous, then $g \circ f$ is fuzzy contra-semi-continuous function.
- **Proof:** Let μ be a fuzzy closed set in Z and let $g \circ f(x_r) \in \mu$, for every fuzzy singleton x_r in X. Then, we we have $g(f(x_r)) \in \mu$. Since g is fuzzy contra-semi-continuous, there exists a fuzzy open set λ in Y containing $f(x_r)$ such that $g(\lambda) \subseteq \mu$. Again, since f is a fuzzy continuous, there exists a fuzzy open set η in X containing x_r such that $\subseteq \int_{-1}^{-1} (\lambda) \Rightarrow \int_{-1}^{\infty} (\eta) \subseteq \lambda$. Now, we have $(g \circ f)(\eta) = g(f(\eta)) \subseteq g(\lambda) \subseteq \mu$, so that $g \circ f$ is fuzzy contra-semi-continuous.
- **3.11. Theorem:** Let $f: X \to Y$ be a function and let $g: X \to X \times Y$ be the fuzzy graph of f, defined by $g(x_r) = (x_r, f(x_r))$ for every $x_r \in X$. If g is fuzzy contra-semi-continuous, then f is fuzzy contra-semi-continuous.

Proof: Let μ be a fuzzy closed set in Y containing $f(x_r)$ for every $x_r \in X$. Then $X \times \mu$ is a fuzzy closed set in $X \times Y$ and $f^{-1}(\mu) = g^{-1}(X \times \mu)$. Since g is fuzzy contra-semi-continuous, then there exists a fuzzy semi-open set λ in X containing x_r such that $g(\lambda) \subseteq X \times \mu$. This implies that $\lambda \subseteq g^{-1}(X \times \mu)$. Thus, we have $\lambda \subseteq f^{-1}(\mu) \Rightarrow \int (\lambda) \subseteq \mu$. It follows that f is fuzzy contra-semi-continuous function.

4. Properties of fuzzy contra-continuous functions

In this section, we investigate the properties and preservation theorems of fuzzy contra-semi-continuous function.

- **4.1. Definition:** Let (X, t) be a fuzzy topological space. Then the fuzzy topological space (X,t) is said to be fuzzy s-compact if every fuzzy semi-open cover of X has a finite subcover.
- **4.2. Definition:** An fts (X,t) is said to be fuzzy strongly s-closed if every fuzzy semiclosed cover of X has finite subcover.
- **4.3. Definition:** An fts (X, t) is said to be fuzzy strong countably s-closed if every fuzzy countable semi-closed cover of X has a finite subcover.
- **4.4. Definition:** An fts (X, t) is said to be fuzzy countably s-compact if every fuzzy countable semi-open cover of X has a finite subcover.
- **4.5. Definition:** An fts (X, t) is said to be fuzzy s-Lindelöf if every fuzzy semi-open cover of X has a finite countable subcover.
- **4.6. Definition**: An fts (X, t) is said to be fuzzy strongly s-Lindelof if every fuzzy semi-closed cover of X has a finite countable subcover.
- **4.7. Theorem:** Let (X, t) be a fuzzy s-compact space. If $f: X \rightarrow Y$ is a surjective fuzzy contra-semi-continuous, then the image of f is fuzzy strongly s-closed space.
- **Proof:** Let $\{\mu_i : i \in I\}$ be any fuzzy closed cover of Y. Since f is fuzzy contra-semicontinuous, there exists a fuzzy semi-open set $\{f^{-1}(\mu_i) : i \in I\}$ which is a fuzzy semi-open cover of X. Again, since (X,t) is a fuzzy s-compact space, there exists a finite subset I_0 of I such that $X = V\{f^{-1}(\mu_i) : i \in I_0\}$. It follows that $f(X) = V\{\mu_i : i \in I_0\}$. Since f is surjective, then we have $Y = V\{\mu_i\} : i \in I_0\}$ and therefore the image if f is fuzzy strongly s-closed. This competes the proof of the theorem.
- **4.8 Theorem:** Let (X,t) be a fuzzy countably s-compact space. If $f: X \to Y$ is a surjective fuzzy contra-semi-continuous function, then the image of f is fuzzy strong countably s-closed space.

The proof of this theorem can be obtained following the proof of Theorem ([4.7]).

4.9. Theorem: Let (X, t) be a fuzzy s-Lindelof space. If $f: X \to Y$ is surjective fuzzy contra-semi-continuous, then the image of f is fuzzy strongly s-Lindelof space.

The proof is similar to that of Theorem ([4.7]).

- **4.10. Definition**⁽¹²⁾: A fts (X, t) is called fuzzy connected if X is not the union of two disjoint non-empty fuzzy open sets.
- **4.11. Definition :** A fts (X, t) is called fuzzy s-connected if X is not the union of two disjoint non-empty fuzzy semi-open sets.

- **4.12. Theorem:** Let (X, t)- and (Y, s) be two fuzzy topological spaces. If $f: X \to Y$ is a subjective fuzzy contra-semi-continuous function and X is fuzzy s-connected, then Y is fuzzy connected.
- **Proof:** Suppose Y is not a fuzzy connected space. Then there exists non-empty disjoint fuzzy open sets μ_1 and μ_2 such that $Y = \mu_1 \vee \mu_2$. Therefore, μ_1 and μ_2 are fuzzy clopen in Y. Since f is fuzzy contra-semi-continuous and onto, then $f^{-1}(\mu_1)$ and $f^{-1}(\mu_2)$ are fuzzy semi-open in X. Moreover, $f^{-1}(\mu_1)$ and $f^{-1}(\mu_2)$ are non-empty disjoint and $X = f^{-1}(\mu_1) \vee f^{-1}(\mu_2)$. This shows that X is not fuzzy s-connected, which contradicts our assumption. Therefore, Y is fuzzy connected.
- **4.13. Definition:** Let (X, t) be a fuzzy topological space. An fts (X, t) is called a fuzzy s-ultra-connected if every pair of non-empty fuzzy semi-closed subsets of X intersects.
- **4.14. Definition**⁽⁸⁾: Let (X, t) be a fuzzy topological space. An fts (X, t) is called fuzzy hyper-connected if every fuzzy open set is dense.
- **4.15. Theorem:** Let (X, t) and (Y, s) be two fuzzy topological spaces. If $f: X \to Y$ is a surjective fuzzy contra-continuous function and X is fuzzy s-ultra-connected, then Y is fuzzy hyper-connected.
- **Proof:** Suppose Y is not a fuzzy hyper-connected space. Then there exists a fuzzy open set μ such that μ is not dense in Y. Therefore, there exists non-empty fuzzy semi-open subsets μ_1 and μ_2 in Y. Since f is fuzzy contra-semi-continuous, then by

Theorem ([3.4]) we can write $\lambda_1 = f^{-1}(\mu_1)$ and $\lambda_2 = f^{-1}(\mu_2)$ are disjoint non-empty fuzzy semi-closed sets in X, which contradicts the fact that λ_1 and λ_2 interesect i.e. X is fuzzy s-ultra-connected. Therefore, we conclude that Y is fuzzy hyper-connected.

REFERENCES

- 1. C. L. CHANG, "Fuzzy Topological Spaces", J. Math. Anal. Appl., 24, 182-192, 1968.
- 2. T. THOMPSON, S-closed Spaces, Proc. Amer. Math. Soc., 60, 335-338, 1976.
- 3. N. LEVINE, "Semi-open Sets and Semi-continuity in Topological Spaces," *Amer. Math. Monthly*, **70**, 36-41, 1963.
- K. K. AZAD "On Fuzzy Semi-Continuity, Fuzzy Almost Continuity and Fuzzy Weakly Continuity," J. Math Anal. Appl., 82, 14-32, 1981.
- S. ABDULLA BIN SHAHNA, "On Fuzzy Strong Semi-Continuity and fuzzy pre-Continuity," Fuzzy Sets and Systems, 44, 303-308, 1991.
- M. GANSTER AND I. L. REILLY "Locally Closed Sets and LC-continuous functions" *Internat. J. Math. Sci.* 3, 417-424, 1989.
- J. DONTCHEV. "Contra-Continuous Functions and Strongly S-closed spaces. *Internat. J. Math. Math. Sci.*, 2, 303-310, 1996.
- 8. E. EKICI E. E. KERRE, "On Fuzzy contra-Continuities", Adv. Fuzzy Math., 1, 35-44, 2006.
- 9. P. PAO-MING AND L., YING-Ming "Fuzzy Topology I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence," *J. Math. Anal. Appl.*, **76**, 571-599, 1980.

- 10. A. S. Mashhour, M. H. Ghaim and M. A. Fath Alla "On Fuzzy Non-continuous Mappings," *Bull. Cal. Math. Soc.*, **78**, 57-69, 1986.
- 11. S. S. THAKUR AND S. SINGH, "Fuzzy Semi-preopen Sets and Fuzzy Semi-precontinuity," *Fuzzy Sets and Systems*, **98**, 383-391, 1998.
- 12. K. S. RAJA SETHUPATHY AND S. LAKSMIVARAHAN "Connectedness in Fuzzy Topology", *Kybernetika* **13**(3), 190-193, 1977.

Journal of Bangladesh Academy of Sciences, Vol. 32, No. 1, 71-77, 2008