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ABSTRACT

This paper reports the decay of temperature fluctuation in homogeneous MHD turbulence in
the presence of dust particles before the final period. We have considered the two and three point
correlation equations and solved them after neglecting the fourth order correlations in comparison
with the second and third order correlations. Finally, the energy decay law for temperature
fluctuation of MHD turbulence in the presence of dust particles at times before the final period is

obtained.
1. INTRODUCTION

Saffman®® observed the effect of dust particles on the stability of the laminar flow of
an incompressible fluid with constant mass concentration of dust particles and derived an
equation which described the motion of a fluid containing small dust particles. It is of
great interest of the behavior of dust particles in turbulent flow to many branches of
science and technology, particularly if there is a substantial difference in density between
the particles and the fluid. This behavior depends on the concentration and size of the
particles with respect to the scale of turbulent flow. Deissler® developed a theory “Decay
of homogeneous turbulence for times before the final period”. He considered two and
three point correlation equations neglecting fourth and higher order correlation terms.
Using Deissler’s theory, Kumar and Patel® studied the “ First order reactants in
homogeneous turbulent flow before the final period” for the case of multipoint and
single time correlation. Corrsin®® has already made an analytical attempt on the problem
of turbulent temperature fluctuations using the approaches employed in the statistical
theory of turbulence. Loeffler and Deissler® studied the decay of temperature fluctuation
in homogeneous turbulence before the final period. In their approach they considered the
two and three point correlation equations and solved these equations after neglecting the
fourth and higher order correlation terms. Following Deissler’s approach, Sarker and
Rahman” also studied the decay of temperature fluctuations in MHD turbulence before
the final period. In this problem, we studied the decay of temperature fluctuation in
MHD turbulence before the final period in the presence of dust particles as an extension
of the work of Sarker and Rahman.” Finally, the energy decay law for temperature field
fluctuation of dusty fluid MHD turbulence before the final period is obtained.

2. Two point correlation and spectral equations
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The induction equation of a magnetic field at the point p is

oh, oh, ou; 1% 62hi
— U -h—=(—)

ot OX, OX,  Pu OX 0%
and the energy equation at the point  is

!

' 2
aTJ/ +uk’£=(L) a TJ

ox,  Pr axklaxk'

where
Uy (x,t) = component of turbulent velocity,

h; (x, t) = component of magnetic field,

Py = % = magnetic Prandtl number,

p, =~ = Prandtl number,
Y
V = kinematics viscosity,
A = (4zuo) ™ = magnetic diffusivity,
y =K =thermal diffusivity,
PCp
C, = heat capacity at constant pressure,
T =component of temperature fluctuation,
J

Xy = Space co-ordinate.

p

Fig.1. Vector configuration for two point correlation equations.
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Multiplying equation (2.1) by Tj'and (2.2) by hi , adding and taking ensemble average,

we get
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bo) T ) 1 T T ) T
a(hiTj )+£(ukhi1—j ) hih; )—a(uihij )

X (2.3)
1 ?
=V —/—— ( il ) T (hiTj )
Pm (3X K O%y pr 0%y OX
The continuity equation is
ZA _ M g, (2.4)
Xk axk

Substituting equation (2. 4) into equation (2.3) yields

(hT e~ (Uk

[ [ a [
hiTj )—a*(uihij )
OXy. k

., az(hT) 1 %(hT)) (2.5)
n X% P X %

Using the transformations
o o 8

6rk 6xk an
and the relation (cf. Chandra Sekhar®)

uhiTj =—hu,T; in equation (2.5), we get

T )= 2.6
(hT)+2 (ukhT>+ k(u.hkT,) (PM P)akak(.J) (2.6)

Now, we erte this equation in spectral form by use of the three dimensional Fourier
transforms

hiT;(l’)= Ilirlj(k yexp(ik.r )dk 27
uhT; = [ o, (Kyexp(ik ok 2.8)

Interchanging the subscripts i and j and then interchanging the points p and p/ , we have

BT =y (1) = [ gyl (k) expkrdk (2.9)
Putting (2.7), (2.8) and (2.9) into equation (2.6), we get

(k)+|kk{2¢kl,rj( K)+ ol (k)} = V|:Pi+—)K litj(K )} (2.10)
M
The tensor equation (2.10) becomes a scalar equation by contraction of the indices i and j
(e (K)-+ ik L2 (7K) + il ] = T+ Kl ()] (211)
M r

3. Three point correlation and equations.
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The momentum equation of MHD turbulence in the presence of dust particles at the point
p, the induction equation at the point p* and the energy equation at p~as

2
%+uk%_hka_m:_ﬂ+vﬂ+ﬂ(vi_ui). (31)
ot axk (3Xk axi anan P

! . ' . 2 .
My g O gy v O (3.2)
0 x oxe  Pmoaxox,
and
oT,  waT, 02T,
! + Uy IJI _(L) [ Ju (33)
x Pr ox, %
where,
P 12
W=—+— h‘ = total MHD pressure,
p 2

P(x,t) = hydrodynamic pressure,

P = fluid density,

K = stock registance,

N = number density of dust particles,

v, = component of the fluctuating velocity of dust particles.

A\Y

7/
>+p

p - r

Fig.2. Vector configuration for three point correlation equations.

Multiplying the equation (3.1) by hiT;', (3.2) by uiT}' , and (3.3) by uih; , adding three
equations and taking space or time averages, we obtain

a 1 n a 1 n a 1 n 6 1 1 n
Cuh T )+ =2 (uuh T )= (hhh T, )+ -5 (uuhT: )
ot il axk i ilj an i ilj an i ilj

o o o 2 o
_i-(uiuihk-rj )+$(uiukhiTj):_i(WhiTj )+V67(uihiTj )
5Xk 5Xk 5Xi 6Xk an

2 BT 2 T [T [T

Py OXy Oy, T OX OXy

where ¢ _ KN has the dimension of the frequency. Substituting the relations
Yo
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o0 _9 i_ 0 andﬂ:_(_Jr_) into equation (3.4), we get

ox, I o, ark X M or,

(uhl P FC PR ”_(unT A TNCIES) aZ.(UihzT}')
Pv OO roonon

2 wunt )= (uukh )+i,(uiukh;T}') (hhkhl )
arkark ark

T T T Kol T
(h hhiT; )— (h hehiT; ) - (U uchiT; )+8_((uiuihij )S
6rk i

(U T, )+ (Wh S (WRT, )+ F(uh T, —uRT, ) (35).
or, 6,

Now, we write equation (3.5) in spectral form in order to reduce it to an ordinary
differential equation and because of the physical significance of spectral quantities. For
this, we use six dimensional Fourier transforms:

uihy (F)T, (1 )= j j #5.(K)0, (K ).exp[i(k.r+kl..r' )}dkdki : (3.6)
Uit (FR(ET, (1 )= T Tg},q},'(k)ﬂ;((k)al;(kl ).exp[i(k.r ko )}dkdk' : (37)
Uit (P ()T (r )= T qul(p{((k)ﬂi‘(k)elj‘(kl ).ex{i(k.r K )}dkdkl (3.8)
WUy (0T, () = [ I¢I¢Kﬂ;(k)e';(k' ).exp [i(k.r s )]dkdkl (3.9)
hhh (F)T, (r )= J’ jﬂ,ﬂkﬁ:é;(kl)exp[l(kr+k r )}dkdk (3.10)
Wh (r)T; (1 )= [] 18, (K)0, (K ).exp[i(k.r K )}dkdkl , (3.11)
and o
V(0T ()= [ s (08 (K ).exp[i(k.mk' r )}dkdki (312)

Interchanging of points p and p" along with the indices i and j , result in the relations

Uiuk hITj == ulukthJ
By use of these facts and relations (3.6) - (3.12), one can write equation (3.5) in the form

¢ﬁ,'<9'1'+v(1+P )2 +(1+?)k +2kkkk:|¢ﬂ_: ;

M r
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=ik + kk Y505 —i(ky + kk VBB B0 —i(ky + kk )b B 0,

+i(ky + kk )i B0 +i(k; + k WBi0; + F(upi0; —5i0;) (3.13)
The tensor equation (3.13) can be converted to scalar equation by contraction of the
subscripts i and j

¢ﬂ’,‘6’;+v{(l+—)k2+(l+—)k +2kkkk}¢ﬂ: =ik + K OdAB G,

r

Ci(Ke + K BB O, —i(Kie + K Vi B O, + iy ik iy

ik + ki B0, + F(BO; —hBl0,) (3.14)
If we take the derivative with respect to x; of the momentum equation (3.1) for the point
p , we obtain
o'w o2 d
- - U —hih )= f(v; —u; 3.15
pecax, a0~ ) (3.15)

Multiplying equation (3.15) by h.T, , taking averages and writing the equation in terms of
the independent variablesr and r

2 2
a ? [] 2 aaaz / ]WhIT
oot or, ar,

2 2 2 2 T n (KT
= a + (? + a T + a| T (uiukhiTj _hihkhiTj )
O r o, onon,  On oy

e 124D ) (vhT, —unT, ). (3.16)
{ ar
Taking the Fourier transforms of equation (3.16), we get

/B0, = [(k ke +ike ki + ik (G680 — BB, )

-if (kg +k W up,0; —450; )}/(k2+k +2kk ). (3.17)
Equation (3.1) can be used to eliminate yﬂ; alj' from equation (3.13).

4. Solution for times before the final period

To study the decay of MHD dusty fluid turbulence for times before the final period, the
three point correlations are considered and the quadruple correlations are neglected. If

this is happened then equation (3.17) shows that the term 60; associated with the
pressure correlations, should also be neglected. Thus we have from the equation (3.14)

M:a'; +v{(1+p—)k2+(1+—)k + 2kk —Rf}¢,b’,'9," —o0. 4.1)

r
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where
(ki +k)?

R={ . ~T(s-1)
k2 -+ k! + 2Kk!

and uf30; =s4p0; also R and s are arbitrary constants.

Integrating the equation (4.1) between to and t with inner multiplication by kk gives

KA B0, = k{Qﬁ;H;l} .exp{{—v{(l+pl)k2 +(1+$)kl2 +2kK c039}+ RF }(t—t, )} (4.2)
0 M

where g is the angle between k and k. Now, by letting ' —o in equation (3.6) and
comparing with the equation (2.8) and (2.9), we have

A (k)= [45,6, & (4.3)
and h
A (k) = [4f, (-0, (K (4.4)

Substituting equations (4.2), (4.3) and (4.4) in equation (2.9), we get

L (k) (K (k) = | {qﬁ.ﬂ!é' 284,06, (K )}
0

M r

—00

.exp{{ —v{(1+ pi)k2 1+ ﬁ)klz 2Kk cos&} + R Ht—t, )}dk' (4.5)
M

Now, dk =dk,dk,dk; can be expressed intersms of k and 9 @ as

/ /2 /
dk’ =-2zk" d(cosd)dk (4.6)
Substituting equation (4.6) to equation (4.5) to give

;Iir}(k)w(le+;)kzlir}(k)——lzﬂkk[aﬁ!é' L2045 (—K)B (K )lk'z

1
[j exp{{—v{(1+i)k2+(1+ﬁ)kz+2kk cose}+Rf}(t—to)}d(cosa)}dk. (4.7)

Pwm
-1
In order to find the solution completely and following Loeffler and Deissler®, we assume
that

ik{qﬁ.ﬂi 0 + 245, (K )6 (K )} Sk k) (4.8)
0 (27)
where & is a constant depending on the initial conditions.

Putting (4.8) in equation (4.7) and completing the integration with respect to c0s@,
we get
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o - 1 1, PN s
E(Zdiri(k)+v(a+p—r)k (2hzi (k) =~ (t 5 J(kk k%)

{exp[{ —v[(1+ L
p

M

)2 +(1+ﬁ)k'2 —2kk'}+ R }(t—t, )}

.exp{{ —v[(1+ 1
p

M

)k2+(1+%)k'2 1+ 2Kk T+ REHt—t, )]}dkl (4.9)

Multiplying both sides by k2, we have
Q —+ (—+—)k Q=F

ot Pw  Pr ’ (4.10)
where
Q = 21k Iz, (k) (4.11)

is the magnetic energy spectrum function and F is the energy transfer term given by

j(k|< k5K3{ am{{—vul+650k2+(1+JL)Kz

M r

V(t_ o)
—2kk "1+ Rf J(t—t,)] —exp[{—v[(1+pi)k2 + (1+pi)k’2 +2kk 1+ Rf Yt —t,)]1dk ' ..(4.12)

M r

Integrating equation (4.12) with respect to k/ , We obtain

=
Fo_ ”‘fosprz - eXp|:{—V(l+1—1 P k2 + Rf }(t—to)}
& d e +
202(t-t,)2(L+ p, )2 Pu S
4 2 6 3
| — 15 prl( + Sp; . _E} k + Pr - Pr }k8 (4.13)
i (t—to)(1+p,) ([A+p) 2" v(t-t) ~ (1+p ) (1+p,)

The series of equation (4.13) contains only even power of k.
It is interesting to note that

[Fdk=0
0 (4.14)
This indicates that the condition of continuity and homogeneity are maintained.

The linear equation (4.10) can be solved to give

Q:exp{vkz(tto )(i+i)]J'F.exp[w<2(i+i)(t —t,) |dt
Pv P Pm  Pr (4.15)

+C(k )exp{vkz(l+1)(t ~t, )}
Pv P

M
where c(k) :NOT“Z(4,16) is a constant of integration and can be obtained as by corrsin.®

Substituting the values of F from equation (4.13) in equation (4.15) and integrating with
respect to t, we get

EP: Pu(1+ ;)

QK t)=Noko ex{{ *VKZ(pi+pi)+Rf t—tg)] + ZE0Pe2 Jrbo _expl{—k2 L) g }(tto)}
M r
2 2
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(4.17)

3p.k* P.(7p, -6)k®  4(3p,°-2p, +3)k® 8y (3p,>-2p, +3)k°
5+ 3 T 5

J N(w)
23(t-t)2 3L+ p, )t-15)2  3(L+p, (t-t)? 3(1+p,)2p,2

w
where N (@) =exp(—a)2)[ exp(x?)dx and

0
1
a):k[ v(t-to) }2_
Pum (1+ Py )
The function F(») has been calculated numerically and tabulated in.® Let r =0 in

equation (2.7) and use is made of the definition of Q as given by equation(4.11), the
result is

2 TiT; w
— =1 — [Q(k)dk (4.18)
== ! Q(k)
Substituting equation (4.17) into (4.18) and after integration, one can obtain

_ 3 3 3

T2 NgPy 2v2(t-t) 2 -6 -5
— = +exp{ Rf (t—tg )}&Sv o(t -t (4.19)

5 8@ p{Rf(t—1t5 )} (t-ty)
where

7Py ° 9 5P, (7P, —6) 35P, (3P, %2R, +3)
S= =t - > + o
3|16 16(1+2PRy) 8(1+2Py )
(1+ Py )(1+2Py, )2

Thus, the decay law for magnetic energy fluctuation before the final period in the

presence of dust particle may be written as
3

T2 = At—ty) 2 +B(t—ty) S exp{Rf (t—t,)}» (4.20)
where, T2 is the mean square of the magnetic field fluctuation, t is the time,
3 3

a-NoPu?v 2 B_2z Qv and t, are constants determined by the initial conditions.

For larger times, the last terms in the equation becomes negligible, leaving the -3/2
power decay law for the final period.

The results of the present study, obtained by neglecting the quadruple correlation’s
in the three points correlation equation, appear to represent the MHD turbulence for times
before the final period. For clean fluid , i.e. in absence of dust particles we put f=0, the
equation (4.20) becomes

_ 3
TZoA(t—ty) 2 +B(t—ty)™

which was obtained earlier by Sarker and Rahman.® For larger times, the last term in the
equation becomes negligible, giving the —3/2 power decay law for the final period.
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