234REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD STRUCTURAL AND DIELECRTIC PROPERTIES OF Zn_{1-x-y}Cd_xLi_yO SOLID SOLUTION

M. KAMRUZZAMAN^{1*}, M. K. R. KHAN², M. M. RAHMAN², M. SHAHJAHAN², M. A. S. KARAL¹

¹Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh

²Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh

ABSTRACT

 $Zn_{1-x-y}Cd_xLi_yO$ (x=0.30 and y=0.05, 0.10, 0.15, 0.20) have been prepared by solid state reaction method. The prepared samples have been characterized by structural and dielectric measurements. X-ray diffraction (XRD) patterns show a good crystalline nature having double crystal structure and indicates the phase mixing of the constituent components. The hexagonal phase corresponding to ZnO and cubic phase to CdO is well defined and the lattice parameters are consistent with the published values (Grant in Aid report 1987). The estimated lattice parameters, bond length and crystallite size are quite consistent corresponding to the hexagonal ZnO and cubic CdO which suggests the formation of super lattice structure of the system. Crystallite size at different crystallographic planes analyzed from XRD for both ZnO and CdO lie between (15-50) nm. The variation of the dielectric constant of the samples with frequency is systematic and the dielectric constant increases with the increase of Li in the solution.

INTRODUCTION

Electronic materials are extremely important type of materials for advanced science and technology. Microelectronic devices have made possible, by new products of electronic materials such as communication satellites, advanced computers, hand-held calculators, digital watches etc. ZnO and CdO have high transparency in the visible and near infrared region of the electromagnetic spectrum and show n-type conductivity, mainly due to oxygen deficiency and lattice defects. With a band gap ranging 2.2-2.7 eV⁽¹⁾, CdO has a direct band gap of 2.3 eV⁽²⁾ and presents the advantage of a low resistivity with respect to the high values obtained for ZnO, but this exhibits a higher transparency, having a band gap of ~3.2 eV.

Obviously, it is difficult to obtain a high transmission coefficient in the visible region and conductivity qualities simultaneously⁽³⁾, however, a ternary compound which combines these properties in a controlled way may allow the optimization of the window layer. Since ZnO shows ultra-violet excitonic emission at room temperature, therefore it has attracted enormous interests for its potential opto-electronic applications Light Emitting Diode (LED) and Laser Diode (LD) in ultra-violet or blue spectral⁽⁴⁻⁶⁾. It is also used in solar cell and transducer. ZnO is of hexagonal wurtzite-type structure and an excitonic binding energy of ~60 meV, much larger than ~25 meV, which permits the efficient excitonic stimulated ultra-violet emission even at room temperature⁽⁷⁻⁸⁾. To achieve applicable ZnO sample-based opto-electronic devices, there have been considerable experimental investigations focused on the preparation of p-type ZnO sample and its band gap engineering by impurity doping and various alloying methods⁽⁹⁻¹⁰⁾.

To date, a various means of oxide alloying with ZnO samples in thin film form have been investigated but to our knowledge there are no such reports in bulk form. Considering immense application of ZnO in fabrication of devices mentioned above, our aim is to prepare highly conducting ZnO bulk samples by solid state reaction method. Motivated with these facts, we are investigating the effect of Cd (x=0.30) and Li (y=0.05, 0.10, 0.15 and 0.20) doped ZnO samples by studying structural and dielectric properties.

EXPERIMENTAL

The materials used in the preparation of the samples with analytical grade were ZnO, CdCo₃ and Li₂Co₃. All the materials were procured from local market. Thus Zn_{1-x-y} Cd_xLi_yO (x=0.30; and y=0.05, 0.10, 0.15, 0.20) were prepared by solid state reaction method.

^{*} Author for Correspondence : mkzaman_phybuet@yahoo.com

REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD

235

XRD patterns of the samples were taken using an X-ray diffractometer at the Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Japan, to check the status and homogeneity. The lattice parameters of the samples were calculated by Hess-Lipson method.

(i) Lattice parameters calculation by Hess-Lipson method:

The interplanar spacing d_{hkl} for the hexagonal system with diffraction angle q is given as

$$\frac{1}{d_{hki}} = \stackrel{\acute{e}4}{\underline{\hat{e}}_{3}} \stackrel{\acute{e}h^{2}}{\underline{\hat{e}}_{3}} + \frac{hk + k^{2}}{\underline{\hat{o}}_{3}} \stackrel{\acute{o}}{\underline{\hat{e}}_{3}} + \frac{1^{2}}{\underline{\hat{v}}_{3}} \stackrel{\acute{u}\bar{\hat{v}}_{3}}{\underline{\hat{v}}_{3}} + \frac{1^{2}}{c^{2}} \stackrel{\acute{u}\bar{\hat{u}}_{3}}{\underline{\hat{v}}_{3}}$$
(1)

where, the wavelength (1) of X-ray was used 1.5405 Å [CuKa line]

$$\frac{4\sin^2 q_{hki}}{I^2} = \frac{4}{3} \underbrace{\frac{\partial^2 + hk + k^2}{\partial a^2}}_{i=0}^{i=0} + \frac{1^2}{c^2}$$
(2)
(1)
(2)
(3)
where, $X = h^2 + hk + k^2$
 $A = \lambda^2/3a^2$
(5)
 $C = \lambda^2/4c^2$
(6)

and

 $\sin^{2} q_{100} = A \qquad \sin^{2} q_{010} = A \qquad \sin^{2} q_{001} = C$ $\sin^{2} q_{200} = 4A \qquad \sin^{2} q_{020} = 4A \qquad \sin^{2} q_{002} = 4C \qquad \dots \dots \dots (7)$ $\sin^{2} q_{300} = 9A \qquad \sin^{2} q_{030} = 9A \qquad \sin^{2} q_{003} = 9C$ $\sin^{2} q_{110} = 3A \qquad \sin^{2} q_{220} = 12A \qquad \sin^{2} q_{330} = 27A \text{ and so on.}$

Using relation (7) in equations (5) and (6), we have calculated lattice parameters a and c for hexagonal phase.

The interplanar spacing d_{hkl} for the cubic system with diffraction angle q is given as

$$\frac{1}{d_{hki}} = \overset{\acute{e}e}{\underset{\breve{e}\breve{e}}} \frac{h^2 + k^2 + l^2}{a^2} \overset{\breve{o}\check{u}^{1/2}}{\underset{\breve{e}\check{u}}{\overset{\ddagger}}} \qquad (8)$$

$$\sin^2 \theta_{hkl} = \lambda^2 / 4a^2 (h^2 + k^2 + l^2)$$
 (9)

Again, using relation (7) in equation (9), we have also calculated lattice parameter, a for cubic phase.

236REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD

The Zn-O bond length has been calculated by the relation $^{(11)}$.

$$\sqrt{\frac{a^2}{3} + \overset{\text{ad}}{c}}_{\overset{\text{b}}{e} \overset{\text{c}}{2}} - u \overset{\overset{\text{o}}{}}{\overset{\text{o}}{\sigma}}^2 c^2$$

where, $u = a^2/3c^2 + 0.25$, u is the positional parameter of hexagonal structure. The d_{hkl} values of the Zn_{1-x-y} Cd_xLi_yO are shown in the Tables 1-4.

(ii) Calculation of crystallite size:

The XRD patterns clearly indicate that the samples are of crystalline type, the reflection line profiles were subjected to calculate crystal or grain size perpendicular to the different crystallographic planes. The crystallite size, x, of the samples were determined quantitatively using the formula⁽¹²⁾.

$$x = \frac{k/B}{B\cos q}$$

where, I is the wavelength of the incident X-ray beam κ is a constant equal to unity and q is Bragg angle. In general, B is full width at half-maximum (FWHM) of a diffraction peak expressed in radians.

(iii) Calculation of dielectric constant:

The dielectric constants were calculated from the capacitance, measured at room temperature by Precision Impedance Analyzer, Model, Agilen 429 A (40 Hz-110 MHz) using the relation

$$\hat{\mathbf{I}} = \frac{C \, \dot{\mathbf{I}}}{\hat{\mathbf{I}}_0 A}$$

where, C is the capacitance, d is the thickness, A is the area of the sample and $\hat{1}_{0}$ is the permittivity of the free space.

RESULTS AND DISCUSSION

The XRD patterns for Zn_{1-x-y}Cd_xLi_yO are shown in Fig.1

Fig. 1. XRD pattern for Zn_{1-x-v}Cd_xLi_vO

It is seen that all samples are very good crystalline in nature and preferently oriented. The different peak positions oriented in the different crystallographic planes of synthesized samples are tabulated in Tables 1-4. The diffraction pattern was collected for 2q values in the scattering range (10-80) degree for Zn_{1-x-v}Cd_xLi_vO. For pure ZnO, diffraction peaks identified as (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3), (2 0 0) and (1 1 2) planes. There are three distinct peaks at around angles (20 values) 33.26°, 38.58° and 55.54°, correspond to planes (1 1 1), (2 0 0) and (2 2 0) appeared in addition to the ZnO peaks. Analyzing the peak positions of the spectrogram with standard JCPDS cards both for ZnO and CdO, it is clear that the spectrogram is the combination of two crystal structures-one for hexagonal ZnO and other for cubic CdO. Considering these two structures, the lattice parameters were found consistent with reported values for both structures. The lattice parameters, bond length, crystal volume and a/c ratio for ZnO are tabulated in Table 5. The reference values of lattice parameters, a and c for ZnO from JCPDS cards are, a = 3.24982 Å, c = 5.20661 Å. The lattice parameters determined in this study for cubic CdO is 5.359 for (2 0 0) plane. There are also four extra peaks found at around 20° , 30° , 35^{0} and 50° for Li content phase. The intensity of these extra peaks increases with the increase of Li in the solution.

Table1.The d_{hkl} values of Zn1-x-vCdxLivO (x=0.30, y=0.05)

D 1	20	1 (Å)	1 ()		C(1 1 MCII		C (11)
Peak	20	d _{hkl} (Å)	d _{hkl} (Å)		Standard Miller		Crystallite
No.	(degre)	expt.	(from	Intensity	indice (hkl)	Possible	size, ξ (nm)
			JCPDS)				
				(%) expt		phase	
1	18.80	4.7160	-		-		27
				22		Li	
						content	
2	29.58	3.015	-		-		39
				15		Li	
						content	
						content	
3	31.79	2.8124	2.8140		100		44
				49		ZnO	

238REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD

4	33.12	2.7024	2.7120		111		44
				65		CdO	
5	34.44	2.601	2.6030		002		47
				46		ZnO	
6	36.27	2.4776	2.4759		1 0 1		42
				100		ZnO	
7	38.40	2.3421	2.3490		200		35
				58		CdO	
8	47.53	1.9113	1.9111		102		35
				28		ZnO	
9	55.42	1.6564	1.6610		220		34
				40		CdO	
10) 56.56	1.6257	1.6247		110		33
				31		ZnO	
1	62.82	1.4779	1.4772		103		32
				38		ZnO	
12	2 66.04	1.413	1.4072		200		25
				28		ZnO	
13	68.88	1.3619	1.3782		112		33
				32		ZnO	

 $Table \ 2. \label{eq:table_t$

	1	a 1 11 (11)	1			•	
Crystallite		Standard Miller		d _{hkl} (Å)	d _{hkl} (Å)	20	Peak
size, ξ (nm)	Possible	indices (hkl)	Intensity	(from	expt	(degree)	No.
				JCPDS)			
	phase		(%) expt				
28		-		-	4.7160	18.80	1
	Li content		22				
39		-		-	3.018	29.51	2
	Li content		15				
42		100		2.8120	2.8167	31.74	3
	ZnO		49				
49		0 0 2		2.6600	2.6496	33.08	4
	ZnO		29				
35		-		-	2.5445	35.24	5
	Li content		30				
44		101		2.4759	2.4777	36.22	6
	ZnO		100				
38		200		2.3490	2.3444	38.36	7
	CdO		25				
46		102		1.9111	1.9132	47.48	8
	ZnO		29				
23		-		-	1.8573	49.00	9
	Li content		11				
38		220		1.6610	1.6570	55.40	10
	CdO		17				
33		110		1.6247	1.6268	56.52	11
	ZnO		30				

REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD

12	62.77	1.4790	1.4771		103		30
				37		ZnO	
13	67.86	1.3799	1.3782		112		33
				29		ZnO	

Peak No.	2θ (degree)	d _{hkl} (Å) expt	d _{hkl} (Å) (from JCPD)	Intensit y (%) expt	Standard Miller indices(hkl)	Possibe phase	Crystallite size, ξ (nm)	Table 3. The d _{hkl} values of Zn _{1-x-} _y Cd _x Li _y O
1	18.80	4.7196	-	19	-	Li content	26	(x=0.30, y=0.15)
2	29.56	3.019	-	15	-	Li content	30	e i
3	31.80	2.8115	2.8140	52	100	ZnO	38	Table 4.
4	33.16	2.6992	2.7120	25	111	CdO	42	The d _{hkl} values of
5	34.48	2.5989	2.6030	72	0 0 2	ZnO	44	Zn _{1-x-} yCd _x Li _y O
6	35.31	2.539	-	25		Li content	32	(x=0.30 y=0.20)
7	36.30	2.4726	2.4759	100	101	ZnO	38	y=0.20)
Peak	38.45	d _{hkl} (A) ²	$d_{hkl}^{2:3490}$	23	Standard	CdO	Crystallite	1
No.	(degree)	expt	(from	Intensity	Miller indices	Possible	size ξ (nm)	
9	47.56	1.9102	JCP,ØØ)1	39 (%) expt	(hkl)) 2	ZnO phase	35	
10	14898102	41785601	-	23 13		Li content Li conten	2928 t	
21	25955487	3.6530	1.6610	12 7	220	CdO Li conten	3339 t	
B2	35464547	2. 62 \$4	2.602307	30 100	1 1000 2	ZnO ZnO	3344	
43	36562172	21544429	1.4160	27	200	ZnO Li conten	5032 t	
14 5	67.92 36.20	1.3788 2.4792	1.3782 2.4759	20 85	1 1 2 1 0 1	ZnO ZnO	26 40	
6	38.40	2.3421	2.3490	7	200	CdO	42	
9	47.47	1.9136	1.9111	27	1 0 2	ZnO	29	
10	56.49	1.6276	1.6247	20	110	ZnO	26	
11	62.76	1.4792	1.4771	37	103	ZnO	20	
12	66.04	1.413	1.4072	28	200	ZnO	25	

239

13	68.8	.88 1.3619 1.37		782	12 18		112		ZnO	28			
Table 5. Lattice bond		Zn _{1-x-y} Cd _x Li _y O			Li _y O Lattice constant of ZnO (Å) a c		.)	Bond lengt h (Å)	Bond length (Å) for $ZnO^{(1)}$	e Z	lum of nO ³)	a/c ratio	constants, length and
a/c rat _y Cd _x Li from X	i _y O	x=	0.0, y=0.0)	3.195 0	5	5.224 0	1.877	1.877	46	152	0.611	1 Zn _{1-x-} estimated
We h		x=	0.30, y=0.0)5	3.244	4	5.202	1.976 2		47.	507	0.624	2
					7								
		x=	0.30, y=0.1	10	3.252 4	2	5.299 2	1.990 2	1.977	8 48.	544	0.613	7
		x=	0.30, y=0.1	15	3.240	6	5.197 8	1.975 3		47.	439	0.624	5
		x=	0.30, y=0.2	20	3.253 9	3	5.208	1.979 6		47.	752	0.624	7

240REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD

calculated crystallite size for ZnO and CdO in different crystallographic planes and tabulated in Tables 6 and 7. The values obtained are consistent with the estimated values⁽¹³⁾.</sup>

Table 6.

Crystallite size of ZnO at different (hkl) planes for $Zn_{1-x-y}Cd_xLi_yO$

REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD **Table.7 Crystallite size of CdO at different (hkl) planes for Zn_{1-x-y}Cd_xLi_yO**

The dielectric constant of $Zn_{1-x-y}Cd_xLi_yO$ was calculated from measured values of the capacitances. Fig.2 shows the variation of dielectric constant with frequency at room temperature. The dielectric constant is found high at lower frequency and low at higher frequency regions. It increases with the increase of Li in the solution.

250	F II				_	• x=0.3). v=0.05	7	1
x and	Ē	Crysta							
y 200 (x=0.30 (1) 150 y=05	1-0 0)	(0 0 2)	(1 0 1)	(1 0 2)	(1 1 0)	(1 ^x 0 ³ 3)	, y 0.15 , y (2 [°] 0 0)	(1 1 2)	
5	44	46	42	35	33	32	25	26	
	42	49	44	46	33	30	-	33	
	38	₄ X ₄ a	nd ₃₈ Crys		ze (ngg) fo	r differe	nt (b <u>k</u> l)	26	
y=0.20	Ę₄₀i	4	(1		(200) 21	2 0)	28	
	0) 200 y=0.	05	10 Juency (F	600` (Hz)	800	1000		
		y=0.	10	42	38		38		
Fig. 2. Varia frequency for		y=0.	15	42	40		33	dielec	tric constant wi _y Cd _x Li _y O
CONCLUS	IONG	y=0.	20	42	42		32		

CONCLUSIONS

From the XRD analysis, it is clear that there exists hexagonal ZnO and cubic CdO phase in the $Zn_{1-x-y}Cd_xLi_yO$. The estimated lattice parameters, bond length and crystallite size are quite consistent corresponding to the hexagonal ZnO and cubic CdO crystals which suggests the formation of super lattice structure of the system. The variation of the dielectric constant of the samples with frequency is systematic and also the dielectric constant increases with the increase of Li in the solution.

242REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD ACKNOWLEDGEMENTS

The authors would like to express their thanks to Professor Dr. Makoto Ishida, Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Japan and Dr. M. Shahjahan, a researcher under the supervision of Makoto Ishida, providing facility for X-ray diffraction experiment.

REFERENCES

- 1. K. L. CHOPRA AND S. RANYAN DAS, Thin Film Solar Cells, Plenum Press, New York, 1993.
- 2. C. SRAVANI, K. T. R. REDDY AND P. J. REDDY, Influence of oxygen partial pressure on the physical behaviour of CdO films prepared by activated reactive evaporation, *Mater. Lett.* **15**, 356-358, 1993.
- 3. K. L.CHOPRA, S. MAJOR AND D.K. PANDYA, Transparent conductors--A status review, *Thin Solid Films*, **102**, 1-46, 1983.
- 4. D. M. BAGNALL, Y. F. CHEN, Z. ZHU, T. TAO, S. KOYAMA, M. Y. SHEN AND T. GOTO, Optically pumped lasing of ZnO at room temperature, *Appl. Phys. Lett.* **70**, 2230, 1997.
- Z. K. TANG, G. K. L. WONG, P. YU, M. KAWASAKI, A. OHTOMO, H. KOINUMA AND Y. SEGAWA, Roomtemperature Ultraviolet Laser Emission from Self-assembled ZnO Microcrystalline Thin Films, *Appl. Phys. Lett.* 72, 3270-3272, 1998.
- 6. P. ZU, Z. K. TANG, G. K. L. WONG, M. KAWASAKI, A. OHTOMO, H.KOINUMA AND Y. SEGAWA, Ultraviolet spontaneous and stimulate emission from ZnO microcrystalline thin films at room temperature, *Solid State Commun.* **103**, 459-463, 1997.
- 7. J. NARAYAN, K. DOVIDENKO, A. K. SHARMA AND S. OKTYABRSKY, Defects and interfaces in epitaxial ZnO/alpha-Al₂O₃, *J. Appl. Phys.* **84**, 2597, 1998.
- M. KAWASAKI, A. OTTOMAN, I. OHKUBO, H. KOINUMA, Z.K. TANG, P. YU, G. K. L. WONG, B. P. ZHANG AND Y. SEGAWA, Excitonic Ultraviolet Laser Emission at Room Temperature from Naturally Cavity in ZnO Nanocrystal *Thin Films, Matter. Sci. Eng.* B 56, 249-245, 1998.
- 9. Y.YANTA, S.B. ZHANG AND S. T. PANTELIDES, Control of Doping by Impurity Chemical Potentials: Predictions for *p*-Type ZnO, *Phys. Rev. Lett.* 86, 5723-5726, 2001.
- 10. A. OHTOMO, M. 0KAWASAKI, T. KOIDA, K. MASUBUCHI, H. KOINUMA, Y.YOSHIDA AND Y. SEGAWA, Mg_xZn_{1-x}O as a II-VI wide gap semiconductor alloy, *Appl. Phys. Lett.* **72**, 2466-2464, 1998.
- 11. J. ALBERTSSON, S. C. ABRAHAMS AND A. KVICK, Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO, *Acta Cryst*, **B 45**, 34-40,1989.
- 12. B. D. CULLITY, Elements of X-ray diffraction, Addision-Wesley Publishing Co. Inc, 262, 1967.
- 13. M. K. R. KHAN, M. M. RAHMAN AND I. TANAKA, Preparation, structural and electrical properties of Zn_{1-x}Li_xO solid solution, *The Nucleus*, **39(3-4)**, 149-154, 2002.

Journal of Bangladesh Academy of Sciences, Vol. 32, No. 2, 183-191, 2008