194REVERSIBLE LOGIC SYNTHESIS OF FAULT TOLERANT CARRY SKIP BCD

CHAOTIC BEHAVIOR OF DYNAMICAL SYSTEMS OF HOMEOMORPHISM ON UNIT
INTERVAL

PAYER AHMED

Department of Mathematics, Jaganath University, Dhaka, Bangladesh
AND

MD. SHAHIDUL ISLAM”

Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh

ABSTRACT
In this article, we studied that no homeomorphism on unit interval into itself is chaotic in the sense of R.L. Devaney.
We also studied the behavior of orbits of points in the dynamical system defined by homeomorphism on the unit interval.

INTRODUCTION

Chaotic dynamical systems have received a great deal of attention in recent years. Chaotic phenomena can
be found in nearly all branches of non-linear modeling of dynamical systems. Chaos explains how very small
changes in the initial configuration of a system model may lead to great discrepancies overtime, called the
“putterfly effect”. This phenomenon accounts for our inability to make accurate prediction of weather. For
example, despite enormous computing power and loads of data, chaos reviews linear iteration and explains both
linear and nonlinear iteration with fixed points, cycles, and orbits through both graphical iteration and orbit
diagrams. A deeper look at chaotic behavior and its unpredictability is investigating a phenomenon known as
sensitive dependence on initial conditions.® If we look at the logistic iteration rule X ® 4x(1- X) with two
nearby seeds 0.5 and 0.5001, the orbit of first seed 0.5 is close to that of seed 0.5001, for first 13 or 50 iterations,
they move away very differently.

We studied mathematical theory concerning chaotic dynamical systems. Our attention is restricted to
continuous maps on one-dimensional space. Typical chaotic maps on one-dimensional space are unimodal maps
such as the tent map and logistic map on unit interval and the two-sided shift map of the Cantor set. The tent
map, logistic map and two-sided shift map of the Cantor sets are chaotic. But it is obvious that the tent map and
the logistic map on unit interval are not homoeomorphism of the unit interval into itself but the two-sided shift
map of the Cantor set is a homoeomorphism of the Cantor set into itself. In this paper, we show that no
homoeomorphism on unit interval into itself is chaotic. As the unit interval [0,1] is compact metric space and
has infinitely many points, we use the theorem of J. Banks et al ® instead of using Devaney's independent
chaotic three conditions. If metric space X is a finite set but not the unit interval and the case where metric
space X is homeomorphic to the Cantor set, there exists a lot of chaotic homeomorphisms on metric spaces.

We describe the behavior of orbits of point in the dynamical system defined by homeomorphism on the unit
interval. ® Taking into account all the cases, we find a lot of non-chaotic homeomorphisms on [0, 1].

PRELIMINARIES
Definition 2.1. Let X be a topological space and f be a continuous map of X into X. The pair (X, f) is
. . . . n ¥ . .
called a topological dynamical system. Given x in X, the subset {f (X)}n:1 of X iscalled the orbit of X
under X and is denoted by J(X) . Sometimes we need the expression X, = f"(x)forxin X and X, = X is

called the seed of the orbit. The function f "is called the n-th iteration of f. A function f is called a

homeomorphism if it satisfies the conditions (i) f is bijective (ii) f and f ' are continuous.

* Author for Correspondence
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Let f: X ® Xand g:Y ®Y be two functions. We say that f and g are conjugate if there exits a

homeomorphism h: X ®Y suchthathof=goh. The map h is called conjugacy. We note here that the

2 P

logistic map 1 and the tent map t on [0, 1] are topologically conjugate by conjugacy h(X) = sin EX on [0,

1].

Notation 2.2. We denote by R the set of all real numbers, Z the set of all integers, N the set of all positive
integers and | the unit interval. For k TN, the sets of periodic points for a continuous map f : X ® Xis

denoted as follows: P, () = {XTX o (X) = X}and
Q(f)={(TX:f,()=xf'(x)rx for i=12,..,k-1}and

Per(f):ka(f)_Namely, P, (f) is the set of all k-periodic points, Q, () is the set of those k-periodic points

whose prime period is k and Per(f)is the set of all periodic points. Obviously, Per(f) and {Qk (f )}f:l
are family of mutually disjoint subsets of X.

2.3. Examples of topological Dynamical Systems

Example 2.3.1. Let X = [0, 1] and the 1 be the tent map which is defined by 1(x) = 4x(1 - x).

Example 2.3.2. Let X = [0, 1] and t be the tent map which is defined by t(x) =1 - |1 — 2x|.

Example 2.3.3. Let X = [0, 1] and f be a continuous map of X into itself.

Example 2.3.4. Let X=Rand f be continuous map of X into itself.

Example 2.3.5. Let X=Nand f be the map of X into itself defined by f(n) =n+1, for **nIN.
Example 2.3.6. Let X = {1,2,3,..,n} and f be the map of X into itself defined by f(k)=k+1 for
1£Kk£n-1and f(n)=1.

Example 2.3.7. Let X = {esz 0EXE 1} be the unit circle in the complex plane and f, be the map defined
by f,(e*™) =e***? The map f, s called the g-rotation on the unit circle.

In the above examples, we considered the usual metrics, that is, d(x, y) = |[x —y] in [0, 1] and R (Examples 2.3.3
and 2.3.4),

R ¢ A | N
d@,j))=1. .. . . inNand{123...,n} (Examples 2.3.5 and 2.3.6)
70 if 0=

and d(ez”ix,ez"iy): | e%* — Y |in the unit circle (Example 2.3.7).
The metric d induces a canonical topology O(d) in X. The family O(d)is defined by the open balls
U(x,e) :{yTX d(y,x) < 6’} Namely, O(d)is the family of those subsets U which satisfies the
following conditions: for any x in U there exits € > 0 such that U (X, €) T U. The infinite product of two
points is called the Cantor set and in this paper we use two kinds of Cantor sets with matrices, namely
é.+={(xn)nTN :x, 140, 1}} with metric d,, where d,(X,y) = g_xn;ny”'
n=1

Yy=(Y,)mnin  S: and a={x)s :x, T{O, 3} with metric d,  where

forx = (X,), 5y and

¥ _ ¥ _ _ _ A
d(xy)= & annyn 4! X-ﬂzny-n [ for x = (%) i3, and Y = (¥,)myz inS.
n=0 n=1

The following is a typical dynamical system on the Cantor set.
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Example 2.3.8. Let X = S, and S, be the map of X into itself defined by y = S.(x) where

X =(X,)min Té+, and Y = (Y,) iin Té+ and Y, = X,,,forallninN.
Example 2.3.9. (Chaotic dynamical systems)

(Tentmap) £:[0,1] ®[0, 1], £(X) = 1-|1-2x|.

(Logistic map) 7:[0, 1] ® [0, 1], #(X) = 4x(L - X).

(shift map) C = Pypnf0, 13, S, & (X, X, X, vvees) ® (X, X, ovnv.)

07172

Definition 2.4. (Devaney) Let X be a metric space. A continuous map f : X ® X is said to be chaotic on

X if f satisfies the following properties @

(C-1) Periodic points of f are dense in X.

(C-2) f is one-sided topologically transitive.

(C-3) f has sensitive dependence on initial conditions.

Using notation, conditions (C-1) and (C-2) can be re-written as follows:

(C-1) Per(f)isdenseinX.

(C-2) For any pair of non-empty point sets U and V in X there exists k T Nsuchthat f*(U) TV * F,

(C-3) There exists d > 0 which satisfies for any x T X and any neighborhood N, of x there exist yT N, and

kT Nsuchthat d(f*(x), f*(y))3 @.

The Conditions (C-1) and (C-2) are topological properties but the Condition (C-3) is not a topological property
but metric one. However, if X is a compact metric space, the Condition (C-3) becomes as a topological property.

Theorem 2.5. (J. Banks et al. ) Let X be compact and has infinitely many points. If f : X ® X is transitive

and has dense periodic points, then f has sensitive dependence on initial conditions. Namely, Conditions (C-1)
and (C-2) implies Condition (C-3)

REMARK: If X is a subset of R and finite, then there exists a homeomorphism of X which satisfies Conditions
(C-1) and (C-2) but does not satisfy Condition (C-3). Namely the above result does not hold and is shown in
Example 3.1.3.

In order to describe the behavior of orbits of given points on the unit interval, we need the following lemma.
Lemma 2.6. Let f be continuous map on I = [0, 1] with f(0) =0and f (1) =1.1f f(X,) > X, (resp.
f(X,) < X,) for some x, T I, then there exist x; and X, in I such that

(i) X, <X, <X, (i) f(x)=x and f(X,)=x,,(ii) f(x)>x foral xT (X, X,)

(resp. f(X) < X).

Proof: It is sufficient here to note only that x =max{xTI:f(x)=xand x< x, }and
x, =min{xT1: f(x) = xand x> x, }

Now we confirm the following theorem and the proof is given according to the cases may be considered, in
which we show that the map does not satisfy Condition (C-1) or (C-2). In order to describe the behavior of
orbits in the unit interval I, we use the following lemma.

Lemma 2.7. Let U be a bounded open set in the real line with usual topology. Then U is of the form
U =U(x,,y,), where A is at most countable set and {(Xi, y):il A}is family of mutually disjoint open

iTA
intervals.
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Proof: Since the set of all rational numbers in U is countable, that is, Q I U is countable, we can write,

QIU :{ri i¥:1. For each I, there existt €>0 such that (ri -er +e)‘l U. Let
a, =min{a:(a,x) TU} b, =maxfp: (x,b) TU} Then DY (a,b) TU. Next we show that
U T DX(a,b).
Let x T U. Since U is open, there exists € >0 such that (X - &,X + €) T U. since Q is dense, there exists
rrTQ T U suchthat 1, T (x-e,x+e).Thus (x-e,x+¢) I (a,b,) thatis, U T DY, (a;,b,).
Now we show that if (a,,b) T (@;,b;) * K then (a,b)=(a;,b;). Suppose that there exists
zT(a,b) 1 (@;,b;)andlet a=min(a,, b,), andb = max(a,, b;).
Then (a;,b;) E (a;,b;) = (a,b).sincer, T(a,,b,) 1 (a,b) TU, r, T(a,,b,) T (a,b) TU and
(a;, b;) is maximal, we have (a,,b,) = (a, b)and (a,,b,) = (a, b).
Therefore, if (a;,b;) 1(aj,bj) then (ai,bi)‘l (aj,bj): K. This means, (ai,bi):(aj,bj) or
(a,b) 1 (a;,b;) * K. Now we define a finite or infinite sequence {k; }as follows:

ki =1

k, =minfi >1:(a,,b) T (a,,b,) = 7}
By the mathematical induction,

k, =min{i >k, :(a,b) T (a,,b,) = Flork =k, K, ...k, }
Now we put A ={k_}. Then A is finite or countable and U = |J (a,b,).

1 )
iTA

MAIN RESULTS

3.1. Existence of chaotic homeomorphisms on the unit interval

Theorem 3.1.1. Let f be a homeomorphism of [0, 1]. Then f is not chaotic.

Proof: Case (A) [ fis increasing, thatis, f(0) =0and f (1) =1]

Case (A-1) [ f(X) =X forallx T 1]

Let U and V be two non-empty disjoint open sets in I. Then f*U)TVv =U TV = F for any k T N. Therefore, f

is not topologically transitive. Hence f does not satisfy (C-2).
Case (A-2) [ There exists xo T I such that f(X,) T X, ]

First we suppose that f (X,) > X,. Then by Lemma 1.1, there exist X, and X, in I such that

i) x, T(x,x,), (i) f(x)=x, f(x,)=x, i) f(x)>x for all xT(x,X,). In this case we
have Inl®rg f"(x) =x, forall X T (x,,X,).Namely,x T P, (f)forall K TN. Thus x T D%, P, (), so that
(x,,X%,) G Per(f)=F. Therefore, Per(f) is not dense in I. Hence f does not satisfy (C-1). In the case
where f (Xo) < X,, itcan be proved in same way as the above case that f does not satisfy (C-1).

Case (B) [ f is decreasing, that is, f(0) =1]

We note that P, () = Q,(f) ={x,}forsome x, T (0, 1).

Case (B-1) [f?(X)=x for all x T 1 ] Letx,<X, and Y, = f(x).Then y, >X, and
f(y,)=f*(x)=x.PutU =(0,x,)andV =(x,,X,).Then f (U) =(y,,1)and
f2U)=f(fU))=f(y,,1) =(0,x,) =U.Thus we have
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1y, ) C(x,x)=7F

H0.x)C(x,x,)=F

Therefore, f is not topologically transitive. Hence f does not satisfy condition (C-2).

Case (B-2) [ There exists xo T I such that f*(x,) T X, ] We suppose that f *(X,) > X,. Then by Lemma 2.6,

frU)cv =

there exist x; and X, in 1 such that (i) X, T (X,,X,), (i) f*(x)=x,, f*(x,)=x,, (i) f*(x)>x for
all xT (X, X,). Inthis case we have that |i®rLl f2"(x) = x,forall x T (X,,X,). Namely, x T P, (f)forall

kKTN. Thus X TE, P, (f).Thus (x,,X,) C Per(f) = 7. Therefore Per(f)is not dense in I. Hence f

does not satisfy Condition (C-1). In the case where f? (XO) < X,, it can be proved in the same way as the

above case that f does not satisfy Condition (C-1).

It goes without saying that no homeomorphisms of [a, b] are one-sided topologically transitive for all a and b
with a <b.

In the above theorem, we have proved that any homeomorphism of the unit interval does not satisfy the
Condition (C-1) or (C-2). There are a lot of homeomorphisms which are chaotic on metric spaces. The following
examples are of them, one of which is the case where metric space X is a finite set but not the unit interval and
the other is the case where X is homeomorphic to the Cantor set.

Example 3.1.2. Let X = {XO,XI,...., Xn_l} and f be the map on X defined by f(X;)=X,, for
OE£i£n-2and f(X,,)= X,.Thenfis chaotic and homeomorphism of X into itself.

Example 3.1.3. Let X = P;7,{0,1}, where Z is the set of all integers and f be the two sided shift of X. Namely,
for X=(X )5z and y=F(X)=(Y)g, we have Yy, =V, (K1Z).Then f is chaotic and
homeomorphism of X into itself.

3.2. Orbits of Points in dynamical systems defined by homeomorphism on unit interval.

In the preceding sub-section we have shown that any homoeomorphism of the unit interval is not chaotic.
However, our interest is to know the behavior of orbits of given points in the dynamical systems. Therefore, in
this sub- section, we describe the behavior of orbits for those homeomorphisms completely. In the following, we
show the behavior of orbits of points defined by homeomorphisms in unit interval I = [0, 1] according to the
cases in Theorem 3.1.1

Observation 3.2.1. Let f is a homeomorphism of | = [0, 1]. Then the orbits of points in unit interval | as
follows:

Case (A) [ fis increasing, thatis, f(0) =0and f (1) =1]
Case (A-1) [ f(X) =X forallx T 1] 'L;E} f"(X) =X forallxT I

n
Case (A-2) [ There exists xo T (0, 1) such that f(x,) T X,JPut U =1 - P,(f). Since P,(f)is a closed set
containing {0, 1}, the set U is non-empty and open. Thus, by Lemma 2.7, U is a union of mutually disjoint open
sets, that is, {y = | Jx,,y,)» Where (X, ¥i) 1 (X;,y;) =K fori2j. Now it follows that f(x) > x for all

iTA
X T(x,y,)or f(x)<xforall xT(x,y,)for each open interval. Then for X T (X, X, )we have
IHI@EQ f"(x) =X, (resp. X;)if f(X)>x (resp. f(X)<X). We note that in the case where P (f) is
finite, we have{X };, = P,(f)and {X,}5. can be arranged as follows: {X };. ={X }., where
0=x, <X, <...<X, =1

Case (B) [ fis decreasing, thatis, f(0) =land f (1) =0]
Case (B-1) [ f ?(x) = xforallx T 1]
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Since f is a decreasing homeomorphism, Pl(f) consists of only one point in (0, 1). Let p be the fixed

point. Then we have f ([0, p]) =[p,1]and f2(X) =X for all x T I. Thus we have |i®rQ f 2" (x) = xand
H 2n+l —_ T

LQQ f(x) = f(x) forallxT1.

Case (B-2) [ There exists x, T (0, 1) such that f?(x,) T X, ]

In the above case, we put P,(f) ={p}. Since P,(f) is closed set which contains {0, 1}, the set 1 - P, ( f)
is non-empty and open. Moreover, we can see that there exists a bijective correspondence by the map f between

P,(f)C0.p)(=Q,(f)C(0, p)) and PR(F)C(p.D(EQ,(F)C(p,1)). Now we put
U, = (L= P,(f))C(0, p)and U, = (1- P,(F))C(p, D).
Then Uy and U, are non-empty open sets having following properties:

U,=Ux,.y,)U, =U@E.w), fx)=w, f(y;)=z.

Now it follows that (A) f2(x) > X forall X T (x;,Y;) or ) f*(x) <x forall x T (X,,Yy,)for each open
interval.
Thus in Case (A) (resp. Case (B)) we have, for X T (x.,y.), f*"(X) T(x,,Yy,)and lim f M(x)=y

(resp. X,), " (x) T (z,,w,) and |nl®rg f 2" (x) = w, (resp. ;). This completes the observation.

3.3. Classification of homeomorphism of |1 = [0, 1] with corresponding examples
We classify the homeomorphism of the unit interval and try to give examples of all possible classes (if any). By
this classification and Theorem 3.1.1, we find a lot of non-chaotic homeomorphisms of the unit interval.

Class3.3.1. [ f(X) = X forallxT1]
f(X)=X forxT1I.

Class 2. [There exists X, T (0,1)suchthat f(x,) 2 X,]

Class 2.1. [ f (X) > x forall x T (0, 1)]
Class 2.2.
f(x)=4x (n=234..) for xTI.
[f(x)<x forall xT(0,1)].
f(x)=x"(n=234.)for xTI.
Class 2.3. [ There exist finitely many x T (0, 1) such that f (X) = X ]
f@):?%ﬂano+xﬂ(TNmeTL

Class 2.4. [ There exist countable many x T (0, 1) such that f (X) = X ]

1, . 22D -
f(X):—X2$n8129+Xfmle
7 e X g
Class 2.5. [ There exist uncountable many x T (0, 1) such that f (X) = X 1.
1
-X, OEXE=
2

i
I
F(X) =1
T

Ve

alo 1 1
20 _ 1o lexen
(o (=D 2

Class3.[ f?(X) =X forallx T 1]
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Class3.1.[ f(X) =1- X forallx T 1]
f(x)=1-X forxTI.
Class3.2.[ f(x) >1- xforallxT (0, 1)]
f(X)=81-x" (n=234,.)forxTI.
Class3.3.[ f(X) <1-x forallx T (0, 1)]
f(x) = (1— ”\/;)n (n=234,.)forxTL.
Class 4. [ There exists x, T (0, 1) such that f*(x,) 1 X, ]

Class 4.1.[ f?(x) > X forall x T (0, 1)]
There is no example in this class since Pl( f) has only one point.

Class 4.2.[ f?(x) < x forall x T (0, 1)]
There is no example in this class because of the same reason as the above case.

Class 4.3. [ There exist finitely many x T (0, 1) such that f ?(X) = X]

F(X) = = sin(kp(L- X)) +1 X forx T 1.
kp

Class 4.4. [ There exist countable many x T (0, 1) such that f *(X) = X]

1 . R 200 —
f(x)==1-x)’sin I+1-xforxTI.
(9 =5 A=x)?sing.“ 2

Class 4.5. [There exist uncountable many x T (0, 1) such that f?(X) = X]

CONCLUSION

We have confirmed that there does not exist any chaotic homeomorphism on the unit interval into itself and if
metric space X is a finite set but not the unit interval or if X is homeomorphic to the Cantor set, there exist a lot
of chaotic homeomorphisms. As a result it is shown that there exists a chaotic homeomorphism of X into itself if

and only if X is homeomorphic to the Cantor set. Y Here we have described the behavior of orbits of given
points on the unit interval which are defined by homeomorphisms. The behavior of orbits of given probability

density functions instead of given points is shown in.®
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