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ABSTRACT

In this paper, He’s homotopy perturbation method has been extended for obtaining the
analytical approximate solution of second order strongly nonlinear generalized duffing oscillators

with damping based on the extended form of the Krylov-Bogoliubov-Mitropolskii (KBM) method.

Accuracy and validity of the solutions obtained by the presented method are compared with the

corresponding numerical solutions obtained by the well-known fourth order Rangue-Kutta method.

The method has been illustrated by examples.

Key words: Homotopy perturbation, KBM methods, Second order strongly nonlinear
generalized Duffing oscillator

INTRODUCTION

The study of nonlinear problems in all areas of applied mathematics, physics,

engineering, medical science, economics  and other disciplines is of crucial importance,

since most of the phenomena in the real world are essentially nonlinear and described by

the nonlinear differential systems with small damping. It is difficult to handle nonlinear

problems and in general, it is often very difficult to get an approximate analytical solution

for strongly nonlinear generalized differential systems with damping than a numerical

one. The most well-known common methods for constructing the approximate analytical

solutions to the nonlinear oscillators are the perturbation techniques. Among of these

techniques are the Krylov-Bogoliubov-Mitropolskii (KBM) (Krylov 1947, Bogoliubov

and Mitropolskii 1961, Mitropolskii 1964) method, the Lindstedt-Poincare (LP) method

(Nayfeh 1981, Murdock 1991), and the method of multiple time scales (Nayfeh 1981).

Perturbation methods are based on an assumption that small parameters must exist in the

equations, which is too strict to find wide application of the classical perturbation

techniques. It determines not only the accuracy of the perturbation approximations, but

also the validity of the perturbation methods itself. However, in science and engineering,
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there exist many nonlinear oscillatory problems which do not contain any small

parameter, especially those appear in nature with strong nonlinearities. Therefore, many

new techniques have been proposed to eliminate the “small parameter” assumption.
Among them, the homotopy perturbation method (HPM) is a popular one. Recently He

(1998) obtained the approximate solution of nonlinear differential equation with

convolution product nonlinearities. He (1999) also developed some new approaches to

Duffing equation with strongly and high order nonlinearity and presented a new

interpretation of homotopy perturbation method (He 2006). Belendez et al. (2007)

presented the application of He’s homotopy perturbation method to Duffing harmonic
oscillator. Lim et al. (2003) also presented a new analytical approach to the Duffing-

harmonic oscillator. Alam et al. (2006) presented a general Struble’s technique for
solving an nth order weakly nonlinear differential systems with damping. Azad et al.

(2006) presented KBM asymptotic method for over-damped processes in biological and

biochemical systems. Uddin et al. (2011) developed an approximate technique for

solving strongly cubic nonlinear differential systems with damping effects. Uddin and

Sattar (2011) also presented an approximate technique to Duffing equation with small

damping and slowly varying coefficients. Uddin (2011) applied He’s homotopy
perturbation method to Duffing equation with small damping and high order strongly

nonlinearities. Recently Uddin et al. (2012) developed an approximate analytical

technique for solving certain type of fourth order strongly nonlinear oscillatory

differential systems with small damping and cubic nonlinearity. Younesian et al. (2010)

described frequency analysis of strongly nonlinear generalized Duffing oscillators using

He’s frequency- amplitude formulation and He’s energy balance method. In present study

it has been seen that the most of the authors (He 1998, 1999, 2006, Belendez et al. 2007,

Younesian et al. 2010) studied nonlinear differential systems without considering any

damping effects. Most of the physical and engineering problems occur in nature as

nonlinear differential systems with small damping. The aim of this work was to develop

an analytical approximate technique by coupling the homotopy perturbation and the

extended form of the KBM methods for solving the second order strongly nonlinear

generalized Duffing equation with small damping.

MATERIALS AND METHOD

The authors were interested to consider the strongly nonlinear generalized Duffing

oscillator with small damping modeling in the following form

)),,(),(),(),((2 775533
2 xxfxxfxxfxxfxxkx nn    (1)

under the initial conditions

,0)0(,)0( 0  xbx  (2)
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where over dots denote differentiations with respect to time ,t   is a constant,   is

a parameter not necessarily small, k2  is the linear damping coefficient, i  are constants

0b  is an initial amplitude, and nixxfi  7,5,3),,(    are given nonlinear functions

which satisfies the following condition

).,(),( xxfxxf ii   (3)

To solve the Eq. (1), the present workers assumed the following transformation

tketyx  )( . (4)

Now differentiating Eq. (4) twice with respect to time t  and substituting xx  ,
together with x  into Eq. (1), we obtain

  


 n

i

tktk
ii

tk eykyeyfeyky
1

22 )(,)(   . (5)

According to the homotopy perturbation method, Eq. (5) can be re-written as

 ,)(,
1

2  


 n

i

tktk
ii

tk eykyeyfeyyy   (6)

where

.222   k (7)

Herein   is a constant for undamped nonlinear oscillators and known as the

frequency of the nonlinear systems and   is an unknown function which can be

determined by eliminating the secular terms. But for the damped nonlinear differential

systems   is a time dependent function and it varies slowly with time t . To handle this

situation, the authors used the extended form of the KBM (Krylov 1947, Bogoliubov and

Mitropolskii 1961, Mitropolskii 1964) method. According to this method. They chose the

solution of Eq. (6) in the following form

,cosby  (8)

where b  and   vary slowly with time t . In literature, b  and   are known as the

amplitude and phase variables respectively and they keep an important role to nonlinear

physical systems. The amplitude b  and phase   satisfy the following first order

ordinary differential equations
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









bCbC

bBbBb
(9)

where   is a small positive parameter and t   is the slowly varying time. Now

differentiating Eq. (8) twice with respect to time t , utilizing the relations Eq. (9) and

substituting yy ,  into Eq. (6) and then equating the coefficients of sin  and cos , the

authors obtained
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,0),2/( 11  CbB  (10)

where prime denotes differentiation with respect to slowly varying time  . Now

putting Eq. (8) into Eq. (4) and Eq. (10) into Eq. (9), the authors obtained the following

equations

,costkebx  (11)

).(

),2/(









 bkb
(12)

Thus, the first order analytical approximate solution of Eq. (1) is given by the

presented coupling technique by Eq. (11) with the help of Eqs (7) and (12). Usually the

integration of Eq. (12) is computed by well-known techniques of calculus (Nayfeh 1981,

Murdock 1991), but often these are calculated by a numerical procedure (Alam et al.

2006, Arya and Bojadziev 1981, Bojadziev 1983, Uddin et al. 2011).

Examples: 3.1 To apply the above procedure for the practical problems, one may

consider the strongly nonlinear generalized Duffing equation with a linear damping

effects for 5,3n  (He 1998, 1999, 2006, Younesian et al. 2010, Uddin et al. 2012) in

the following form

),(2 5
5

3
3

2 xxxxkx    (13)

where .),(,),( 5
5

3
3 xxxfxxxf    Now using the transformation Eq. (4) into Eq. (13)

and then simplifying them, one obtains

).()( 45
5

23
3

22 tktk eyeyyky    (14)

According to the homotopy perturbation technique, Eq. (14) can be written as

),( 45
5

23
3

2 tktk eyeyyyy    (15)

where   is given by Eq. (7). According to the extended form of the KBM (Krylov

1947, Bogoliubov and Mitropolskii 1961, Mitropolskii 1964) method, the solution of Eq.

(15) is obtained from Eq. (8).

The requirement of no secular terms in particular solution of Eq. (15) implies that the

coefficients of the cos  terms are zero. Setting these terms to zero, one may obtain
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which leads to
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Putting the value of   from Eq. (17) into Eq. (6), then it leads to

.
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 (18)

From Eq. (18) it is clear that, the frequency of the damped nonlinear differential

systems depends on both amplitude b  and time t. When 0t  then Eq. (18) yields
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By integrating Eq. (12), one can get

,)(,
0

0
0

0 
t

dtbb 



(20)

where 0b  and 0  are constants of integration and is known as the initial amplitude

and phase of the systems. Now putting Eq. (20) into Eq. (18), one may obtain a

biquadratic algebraic equation in   in the following form

,024  rqp  (21)

where
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The solution of Eq. (21) is computed by using the well-known Newton-Raphson

method. Thus, the first order analytical approximate solution of Eq (13) is given by

,costkebx  (23)


t

dtbb
0

0
0

0 )(, 



(24)

where 0  is obtained by Eq. (19),   is calculated from Eq. (21), b  and   are

carried out by  Eq. (24).

3.2 As a second example, one may consider the strongly nonlinear generalized

Duffing oscillator with a linear damping effects (He 1998, 1999, 2006, Younesian et al.

2010, Uddin et al. 2012) modeling in the following form

).(2 7
7

5
5

3
3

2 xxxxxkx    (25)

Now by using the transformation Eq. (4) into Eq. (25) and then simplifying them,

one may obtain
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According to the homotopy perturbation method, Eq. (26) yields

),( 67
7
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2 tktktk eyeyeyyyy    (27)

where   is obtained by Eq. (7). According to the extended form of the KBM

(Krylov 1947, Bogoliubov and Mitropolskii 1961, Mitropolskii 1964) method, the

solution of Eq. (27) is performed by Eq. (8).

From the trigonometric identity, one can obtain

.64/)cos353cos215cos77(coscos7   (28)

The requirement of no secular terms in particular solution of Eq. (27) implies that the

coefficients of the cos  terms are zero. Setting these terms to zero, one may obtain
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which leads to
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Putting the value of   from Eq. (30) into Eq. (7), yields
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From Eq. (31), one may obtain (as 0t )
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By integrating Eq. (12) and using it into Eq. (31), one can obtain a fifth degree
algebraic equation in   in the following form

,0235  srqp  (33)

where
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The solution of Eq. (33) is obtained by using the well-known Newton-Raphson

method.

Thus, the first order analytical approximate solution of Eq (25) is given by

,costkebx  (35)
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,)(,
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


(36)

where 0  is obtained by Eq. (32),   is calculated from Eq. (33), b  and   are

given by Eq. (36).

RESULTS AND DISCUSSION

In this paper, the authors have extended He’s homotopy perturbation method to solve
second order strongly nonlinear generalized Duffing oscillators (He 1998, 1999, 2006,

Younesian et al. 2010, Uddin et al. 2012) with small damping. It is too much difficult to

solve the strongly nonlinear generalized Duffing type problems, especially with small

damping and high order nonlinearities by the classical perturbation methods (Krylov

1947, Bogoliubov and Mitropolskii 1961, Mitropolskii 1964, Nayfeh 1981, Murdock

1991, Alam et al. 2006, Arya and Bojadziev  1981, Bojadziev 1983). But the suggested

method has been successfully applied to solve second order strongly nonlinear

generalized differential systems with small damping and high order nonlinearities. The

first order approximate solutions of Eq. (13) and Eq. (25) are computed with small

damping and high order nonlinearities by Eqs. (23) and (35), respectively and the

corresponding numerical solutions are obtained by using fourth order Runge-Kutta

method. The variational equations of the amplitude and phase variables are appeared in a

set of first order ordinary differential equations. The integration of these variational

equations is carried out by the well-known techniques of calculus (Nayfeh 1981,

Murdock 1991). In a lack of analytical solutions, these are solved by numerical procedure

(Lim and Wu 2003, Alam et al. 2006, Arya and Bojadziev 1981, Bojadziev 1983, Uddin

et al. 2011, Uddin and Sattar 2011, Uddin 2011, Uddin et al. 2012). The amplitude and

phase variables change slowly with time t . The behavior of amplitude and phase

variables characterizes the oscillating processes and amplitude tends to zero in presence

of small damping for large time t  ( ).,. tei . On the other hand, the proposed

technique can take full advantage of the classical perturbation methods. The solutions

obtained by the presented method show a good agreement with those obtained by the

numerical procedure with several damping effects. It is also noticed that the presented

method is also capable to handle the second order weakly nonlinear generalized Duffing

oscillators with damping effects and high order nonlinearities while the classical

perturbation methods are unable to handle such situations. Comparisons are made

between the solutions obtained by the presented technique and those obtained by the

numerical procedure in Figs 1 - 2 for both strongly )0.1(   and weakly )1.0( 
nonlinear generalized differential systems with small damping effects in graphically.

Also the solution of the Duffing equation for cubic nonlinearity is obtained from Eq. (13)
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and Eq. (25) by setting 0,0 75    with small damping (Figs 3) which agrees to the

previous results (Uddin et al. 2011).
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Fig. 1 (a). First approximate solution of Eq. (13) is denoted by –– (dashed lines) by
the presented analytical technique with the initial conditions b0 = 0.5, 0 = 0 or
[x(0) = 0.5, x (0) = –0.07194] with k = 0.15,  = 1.0, 3 = 1.0, 5 = 1.0 and f3 =
x3, f5 = x5. Corresponding numerical solution is denoted by - (solid line).
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Fig. 1 (b). First approximate solution of Eq. (13) is denoted by –– (dashed lines) by the
presented analytical technique with the initial conditions b0 = 0.5, 0 = 0 or [x(0)
= 0.5, x (0) = –0.07466] with k = 0.15,  = 0.1, 3 = 1.0, 5 = 1.0 and f3 = x3, f5

= x5. Corresponding numerical solution is denoted by - (solid line).
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Fig. 2 (a). First approximate solution of Eq. (25) is denoted by –– (dashed lines) by
the presented analytical technique with the initial conditions b0 = 0.5, 0 = 0 or
[x(0) = 0.5, x (0) = –0.013401] with k = 0.3,  = 1.0, 3 = 1.0, 5 = 1.0, 7 =
1.0 and f3 = x3, f5 = x5, f7 = x7. Corresponding numerical solution is denoted by -
(solid line).
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Fig. 2 (b). First approximate solution of Eq. (25) is denoted by –– (dashed lines) by the
presented analytical technique with the initial conditions b0 = 0.5, 0 = 0 or [x(0)
= 0.5, x (0) = –0.14781] with k = 0.3,  = 0.1, 3 = 1.0, 5 = 1.0, 7 = 1.0 and f3

= x3, f5 = x5, f7 = x7. Corresponding numerical solution is denoted by - (solid
line).
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Fig. 3 (a). First approximate solution of Eq. (13) is denoted by --- (dashed lines) by the
presented analytical technique with the initial conditions b0 = 0.5, 0 = 0 or [x(0)
= 0.5, x (0) = –0.07281] with k = 0.3,  = 1.0, 3 = 1.0, 5 = 0.0, and f3 = x3.
Corresponding numerical solution is denoted by - (solid line).

-0.5

-0.25

0

0.25

0.5

0 5 10 15 20

t

x

Series1

Series2

Fig. 3 (b). First approximate solution of Eq. (13) is denoted by --- (dashed lines) by the
presented analytical technique with the initial conditions b0 = 0.5, 0 = 0 or [x(0)
= 0.5, x (0) = –0.07476] with k = 0.15,  = 0.1, 3 = 1.0, 5 = 0.0, and f3 = x3.
Corresponding numerical solution is denoted by - (solid line).

CONCLUSION

The presented method has been successfully implemented to illustrate the

effectiveness and convenience of the suggested procedure and it is noticed that the first
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order analytical approximate solutions show a good agreement with those obtained by the

numerical procedure for second order strongly and weakly nonlinear generalized Duffing

oscillator with damping while the classical perturbation methods are unable to handle

such systems.
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