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ABSTRACT

In this paper, the authors introduced two notions of fuzzy pairwise-Ty bitopological spaces and
compared them with other such concepts. The authors also studied some other properties of these spaces.
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INTRODUCTION

Kelly (1963) introduced bitopological spaces first time in 1963. The concept of fuzzy
sets was introduced by Zadeh (1965). Chang (1968) and Lowen (1976) developed the
theory of fuzzy topological spaces based on Zadeh’s concept. Fuzzy pairwise-T, (in short
FPT, i = 0, 1, 2) bitopological spaces have been introduced earlier by Kandil and El-
Shafee (1991). Fuzzy pairwise-T, separation axioms have also been introduced by Abu
Sufiya et al. (1994) and Nouh (1996). Here the present authors introduced two definitions
of fuzzy pairwise-T, bitopological spaces and obtained several of their properties.

PRELIMINARIES

Definition: A function u from X into the closed unit interval | is called a fuzzy set in
X. For every x € X, u (x) e | is called the grade of membership of x. The class of all
fuzzy sets from X into the closed unit interval | will be denoted by I* (Zadeh 1965).

Definition: A fuzzy set uin a set X is called a fuzzy singleton iff u(x)=r, (0<r<
1) for a certain x € X and u (y) = 0 for all points y of X except x. The fuzzy singleton is
denoted by x, and x is its support. The class of all fuzzy singletons in X will be denoted
by S(X). If u e I and X, € S(X), then we say that x, € uiff r <z (x) (Pau-Ming and Ying
Ming1980).

Definition: A fuzzy set pin aset X is called a fuzzy point iff u(x) =r, (0<r <1) for
a certain x, € X and u (y) =0 for all points y of X except x. The fuzzy point is denoted by
X; and x is its support (Wong 1974).
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Definition: Let | = [0, 1], x be a non-empty set, and I* be the collection of all fuzzy
sets in X. A fuzzy topology on X is defined as a family t of members of I* satisfying the
following conditions:

@i 01let
(i) If wi etforeachi e A then U, , piet;
(i) Iy, o e tthen uy N € t.

The pair (X, t) is called a fuzzy topological space (fts in short) and members of t are
called t-open (or simply open) fuzzy sets. A fuzzy set u is called a t-closed (or simply
closed) fuzzy set if 1 — i € t (Chang 1968).

Definition: Let f be a real valued function on a topological space. If {x: f (x) > a} is
open for every real « < 1y, then fis called lower semicontinuous function (Rudin 1974).

Definition: Let x be a non-empty set and T be a topology on X. Let t = o (T) be the
set of all lower semicontinuous (Isc in short) functions from (X, T) to I (with usual
topology). Thus @ (T) = {u e I*: 1i* (@, 1] € T} for each « € I;. It can be shown that
 (T) is a fuzzy topology on X (Lowen 1976).

Definition: A fuzzy singleton x, is said to be quasi-coincident with y, denoted by
xqu iff r + p (x) > 1.If x; is not quasi-coincident with y, we write (Kandil and El-Shafee
1991).

Definition: A fuzzy set u of (X, t) is called quasi-neighborhood (Q-nbd in short) of
X, iff there exists v e t such that x,qvand v c u.

If . is a fuzzy point, then N(x, t) = {u € t : X, € u} is the family of all fuzzy t-open
neighborhoods (t-nbds) of x,. Similarly, if x; is a fuzzy point, then

No(Xr, t) = {u € t: x.q u} is the family of all Q-neighborhoods (Q-nbd) of x, (Nouh
1996).

Definition: A system (X, ty, t;) consisting of a set x with two fuzzy topologies t;and
t, on X is called a fuzzy bitopological space (fbts in short) (Kandil et al. 1999).

Fuzzy Pairwise T,-Spaces
Definition: An fbts (X, ty, to) is called

(@) FPTo(i) iff for every pair of fuzzy singletons x,, yr € S(X) with x =y, there is a
t;-open fuzzy set or a t,-open fuzzy set which contains one of the fuzzy
singletons and not quasi-coincident with the other.

(b) FPTq(ii) iff for every pair of fuzzy singletons x,, y, € S(X) with x =y, there exists a
fuzzy set ety U tpsuch that (x,qgs yar N w=0) or (e xp N p=0).
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(c) FPTy(iii) iff for any two distinct fuzzy points p, g in X there exists a fuzzy set p e t;
U tosuchthat(p e . qN w=0)or (g e . p N u=0) (Abu et al. 1994).

(d) FPTo(iv) space iff for every pair of fuzzy singletons x,, yr € S(X) such that x =y,
there is a t;-open fuzzy set or a t,-open fuzzy set which is Q-nbd of one of the
fuzzy singletons and not quasi-coincident with other (Nouh 1996).

(e) FPTo(v) space iff for every pair of fuzzy singletons x,, yr € S(X) with x =y,
there exists a fuzzy set u e t; U tosuch that (x, € u (1)) or (X € . uc
(¥r)°) (Abu et al. 1994).

(f) FPTy(vi) iff for any two distinct fuzzy points p, g in X there exists a fuzzy set u
ety U tysuchthat (p e i, qc 1) or (q € w1, q < 1F) (Abu et al. 1994).

Theorem: Let (X, t;, t,) be an fbts. Then the workers have the following
implications:

() < (b) < (c) < (d) < (e) and (d) = (f), but (f) = (d).

Proof: (a) = (b): Let (X, t;, t)) be FPTy(i)-space. Then by definition, for the

singletons X, yr € S(X) with x =y, choose r*e (0, 1) such that r*> 1 —r. Since (X, t, tp) is
FPT(i), then there exists a fuzzy set € t; U tp such that x« € pand y,qu.

Since p(x) = r=and r*> 1 —r, then u(x) > 1 —r, that is, r + z(X) > 1 and so x.q

Also, y,qu=1+ u(y) <1= u(y) <1-1=0, thatis, 1(y) = 0. Now for any fuzzy
singletons X, ys € S(X), it is seen that, x,qu and y;Nu = 0. Hence (X, ty, to) is FPT(ii)-
space.

(b) = (c): Let x,, ys be two distinct fuzzy points in X. Choose r* e (0, 1) such that r*
<1-r.Since (X, ty, t5) is FPTo(ii) and X+, ys are distinct fuzzy singletons, then

(EIIU € NQ(Xr*’tl)’:uU ys = 0) or (EIIU € NQ(Xr*’tZ)’(:uU ys :0))

Now, let 11 € No(Xe=, t1) (N ys =0). That is, r* + 4(x) > 1 and (u N ys = 0). Since r*
+ u(X)>1and r*<1-r, then u(x) > rand so x; € u Hence (X, ty, tp) is FPTy(iii)-space.

(c) = (d): Let x;, ys € S(X) with x = y. Choose r*, s* € (0, 1) such that r* > 1 —r and
s* > 1 —s. Since (X, ty, ty) is FPTy(iii) and X, ys« are distinct fuzzy points, then there
exists a fuzzy set p e t; U t, such that x» € pand ys« N = 0. Since pu(x) >r*and r*> 1
—r, then we have u(x) > 1 —r, thatis, r + g(x) > 1 and so X.qut

Again, ye N p =0 implies ys N © =0, since w(y) = 0. So, y,gu. Hence (X, ty, tp) is
FPTo(iv)-space.

(d) = (e): Let x,, ys be two distinct fuzzy singletons in X. Choose r* e (0, 1) such
that r= <1 —r. Since (X, t;, t,) is FPTo(iv), then there exists a u e t; U t, such that r=qu



212 AMIN et al.

and y,qu.

Now, since r* + p(x) >1 and r* <1 —r, then u (X) >r. So, X € w. Also, y.qu =5
+u(y) <1=s<1-pu(y). So, uc (ys)°. Hence (X, ty, tp) is FPTo(v)-space.

(e) = (a): Let X, ys € S(X) with x = y. Since (X, t, t,) is FPTo(v), then there exists a
fuzzy set u et Ut,such that x, € pand uc (y5)°.

Also, pc (ys)° = u(y) <1-s=s+u(y) <landso, yqu.Hence (X, ty, t) is
FPTo(i)-space.

(d) = (f): Let X, s be two distinct fuzzy points in X. Choose r* € (0, 1) such that r*
< 1-r. Since (X, ty, t,) is FPTy(iv) and X+, ys are distinct fuzzy singletons, then there
exists a fuzzy set e t; U t, such that x~quand y.qu .

Since r* + y(x) > 1L and r* <1 —r, then one has u(x) > r and so x, € . Also,
Y au= s+ uy) <1 =<1 - puly). So, ys < . Hence (X, ty, t,) is FPTo(vi)-space.

(f) = (d): Example: Let X =1, =t, ={0, 1 : AX) >0, V x € X}. Let x, and ys be
distinct fuzzy singletons in X and y =min{l—r,1-s}

Now, if y # 0, the authors define p as follows: p(x) =1 and u(y) = % ify=x

Again, if y=0, one can define was follows: n(x) =1 and n(y) = 0.1, if y = x.

Then u € t; = tp. For any pair of distinct fuzzy points x;, ys is X, it is seen that x, € u
and ys c 4£. Therefore, (X, t, t,) is FPT(vi)-space. But if one takes xy, y, € S(X), then it
can be seen that x,q7n and y:q7. Hence (X, ty, t;) is FPTo(iv)-space.

Theorem: Let (X, s, t) be a fuzzy topological space, Ac X,and

Sp= Yives b= Y.vet!. Then
A A

@ (X, s,1)isFPTo(i) = (A, Sa, ta) is FPTo(i).
() (X, s, 1) isFPTo(ii) = (A, Sa, ta) is FPT(ii).
(€) (X, s, 1) isFPT(iii) = (A, Sa, ta) is FPT(iii).
(d) (X, s,1)isFPTo(iv) = (A, Sa, ta) is FPTo(iv).
) (X, s, 1t)isFPTo(v) = (A, Sa, ta) is FPTo(V).
) (X, s, 1) isFPTo(vi) = (A, Sa, ta) is FPTo(vi).

Proof: (a) Suppose (X, s, t) is FPTo(i). One has to show that (A, Sa, ta) is FPTo(i). Let
ar, b, € S(A) with a=b. Since (X, s, t) is FPTy(i), there exists a u e s Ut such that a, € u
and b,qu, thatis, u(@) > rand u(b) +p<1.
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u u u
Now " eS,Ut, and A (a) =u(a). Then (u/A) (&) >r. So, a, EX'

Also (EAJ (b)+ p <1, since (%] (b) = u(b). Hence (A, Sa, ta) is FPTo(i).

(f) Suppose (X, s, t) is FPTy(vi). The authors have to show that (A, Sp, ta) is FPTq(vi).
Let a;, by be two distinct fuzzy points in A. Then a, b, are two distinct fuzzy points in X.
Since (X, s, t) is FPTy(vi), there exists a uesUt such that a, € u and b, u®, that is,
u(@ >rand 1-u(b) >p.

Now % eS, Ut, and [%] (a)=u(a). Then (u/A) (a) >r. So, a, e%.

Also 1—[%) (b) > p. since [%) (b)=u(b)and so b, g[%}c. Hence (A, Sp, ty) is
FPTo(vi).

The proofs of (b), (c), (d) and (e) are similar.

Theorem: Let (X, Ty, T,) be a bitopological space. Then

(@) (X, Ty, Tp) is PTo < (X, aTy), a(To) is FPTo(i).

(b) (X, Ty, To) is PTo < (X, o(T1), o(Ty) is FPToii).

() (X, Ty, Tp) is PTo < (X, a(Ty), o(T,) is FPT(iii).

(d) (X, Ty, To) is PTo <= (X, o(T1), aTy) is FPTo(iv).

() (X, Ty, Tp) is PTo < (X, a(T1), a(T2) is FPTo(v).

(f) (X, Ty, T2) is PTo < (X, o(Ty), aX(T2) is FPTo(vi).

Proof: (a) Suppose that (X, Ty, Ty) is PTo. Then the authors are to show that (X,
o(Ty), a(T,) is FPTo(i). Let Xy, yr € S(X) with x = y. Since (X, Ty, T2) is PTo then

AUeNExT), (yeU)or (3V eN(x,T,), (yeV) Then 1, e N(x,,o(T,)), y,qlu),
or 1, e N(x,,o(T,)), ¥,glv). Thus (X, a(T1), o(T,) is FPTo(i).

Conversely, suppose that (X, o(Ty), o(T,) is FPT(i), then one has to show that (X,
Ty, Ty) is PTy. Let x, y € X such that x = y. Since (X, o(Ty), a(T,) is FPT(i), then
@ApeNXLo(T)), yiau) or (3n € N(xLo(T,)), y,dn).

Now, let 1 e N(x,o(T1), y,gu.ie ux)=21and u(y) =0. Hence xe u*(0,1) €T,
and y ¢ u™(0,1)eT,. Hence (X, T, T,) isPT,.

(f) Suppose that (X, T, T,)is PTo. One has to show that (X, (T,), o(T,))is
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FPTo(vi).
Let X, yr be two distinct fuzzy points in X. Since (X, T, T,) is PT,,
then (U e N(x, Ty), (Y, U) or (3V e N(x, T,), (y = V).

Then 1, e N(x, o(T), 4, Ny, =0)or 1, & N(x,,a(T,), &Ny, = 0)) which
implies 1, & N(x,,o(T). ¥, =(1y)%) or 1, € N(x,0(T,), ¥, <(@,)°). Thus (X, o(Ty),
o (T3)) is FPTo(vi).

Conversely, suppose that (X, @ (T1), @ (T2)) is FPTo(vi) is FPTo(vi). One has to show
that (X, T,, T,) is PTo. Let x, y € X such that x = y. Take r such that 0.5 < r < 1. Since
X, € (Ty), e (T) is FPTo(vi) is FPTo(vi), then (Fue N(x,,e(T,), y,cu’) or
(@n e N(x,,e (T,), ¥, <n®).

Now, let o N(X,,o(T,)), y,cu’. i.e. t{x) >rand wy)<1-r.
Hence x € 4i*(0.5,1) € Ty) andy ¢ 4* (0.5, 1) € Ty. Hence (X, T,, T,) isPTo.
Proofs of (b), (c) and (e) are similar and for the proof of (d) (Nouh 1996).

Theorem: Product of any two FPT(j)-spaces is FPT(j)-space where j = i, i, iii, iv,
V, Vi.

Proof: Suppose (X, s, t;)and (X,, s,, t,) are FPT(i), then one has to show that
(X, xX,,8, x8,,t, xt,) is FPTo(i). Let (X, y)p, (X1, Y1)g € X1 x Xz with (X, y) # (X1, ya). It
can be assumed without loss of generality that x = x;.

Since Xp, (X1)q € S(X1) with x = x; and (X, s;, ;) is FPTo(i), then (3u e N(x,,s,),
((Xl)q qu))or 3ne N(Xp’tl)l ((Xl)q an)).

Now, let u e N(x,,s,), ((x,),0n)- Thatis, x(x) = pand u(x;) +q <1.

Since ux X; € 51 x5 and (u x Xz) (X, y) = min{(x), Xa(y)} = u(x) > p, then one has
(X! y)P € ux Xa.

Also, (1 x Xz) (X1, Y1) + 0 = X)) + q < 1. Hence (X, xX,,s,xS,,t, xt,)is FPTy(i).

Suppose (X, s, t,)and (X,,s,, t,) are FPTo(vi), then one has to show that
(X, xX,,8, %x8,,t, xt,) is FPTo(vi). Let (X, ¥)p, (X1, Y1)q be two distinct fuzzy points in X;
x X,. One assumes without loss of generality that X = X;. Since X,, (X;)q are two distinct
fuzzy points in X, and (X, s, t)is FPTo(vi), then (IFuN(x,,s), ((x),<x))
or @ N(x,.t), (%)q =n°))-

Now, let 1 € N(Xp, S1), (X1)q < &£ That is, ¢(x) > p and q < 1 — p(Xy).

Since ux X, € sy x s and (ux Xz) (X, y) = min {u(x), Xo(y)} = (x) > p, the authors
have (X, y), € ux X,.
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Also, for all (x, y) € Xy x X,, we have 1 —(ux Xp) (X,¥) =1— 1(X) > Q.
S0, (X1, Y1) < (1 x Xo)°. Hence (X, x X,,s, xS,,t, xt,) is FPTo(vi).
Proofs of the other claims are similar.

Theorem: A bijective mapping from an fts (X, t) to an fts (Y, s) preserves the value
of a fuzzy singleton (fuzzy point).

Proof: Let c, be a fuzzy singleton in X. So, there exist a point a € Y such that f(c) = a.
Now f(c,) (a) = f(c) (f(c)) = sup c:(c) = cr(c) =, since f is bijective. Hence a, has same
value as c,.

Note: Preimage of any fuzzy singleton (fuzzy point) under bijective mapping
preserves its value.

Theorem: Let (X, s, t) and (Y, s3, t;) and be two fuzzy bitopological spaces and let f :
X — Y be bijective and FP-open. Then

(@) (X, s, t)is FPTo(i) = (Y, s1, tr) is FPTo(i).
(b) (X, s, t)is FPTo(ii) = (Y, s, ta) is FPToii).
(¢) (X, s, t)is FPTo(iii) = (Y, s1, t1) is FPT(iii).
(d) (X, s, t)is FPTo(iv) = (Y, 1, ty) is FPT(iv).
() (X, s, t)isFPTo(v) = (Y, 1, tz) is FPTo(v).
) (X, s, t) is FPTo(vi) = (Y, s1, ty) is FPTo(vi).

Proof: (a) Suppose (X, s, t) is FPTy(i). The authors shall now show that (Y, sy, t;) is
FPTo(i). Let a,, by € S(Y) with a = b. Since f is bijective, then there exists ¢, dy € S(Y)
such that f(c) = a, f(d) =b and c = d. Again since (X, s, t) is FPT(i), then

(@nN(c,,s). (d,au)or (3 N(c,.1),(dqn).

Now, let u e N(c,,s), (d,qu). That is, (c) = ramd p(d) +q<1.
Now f(x) (a) = f(u) (f(c) = supu(c) = u(c) = r. So, ar € f(u).
Also f(4) (b) +q=1f(x) (F(d)) +q=(d) +q<1.So, b,qf (n).
Since f is FP-open, then (1) € s1. Hence (Y, sy, ty) is FPTo(i).

() Suppose (Y, s, t) is FPTo(vi). We shall show that (Y, sy, t1) is FPTo(vi). Let a, bg be
two distinct fuzzy points in Y. Since f is bijective, then there exists ¢, d, € S(X) such that
f(c) = a, f(d) = b and ¢ = d. Again since (Y, s, t) is FPT(vi), then

B ueN(c,s), ([dycu))or 3neN(c.t), (d,=n)).
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Now, let i e N(c,, s), (dq < ££). That is, w(c) > rand g <1 - u(d).
Now f(x) (a) = f(u) (f(c)) = supu(c) = pc) > r. So, a, & f(u)..

Also, 1 —f(u) (b) =1 — () (f(d)) = 1 - z4d) > g. So, by = (f(12))°. Since ¢ is FP-open,
then (u) e s1. Hence (Y, sy, t1) is FPTq(vi).

Proofs of (b), (c), (d) and (e) are similar.

Theorem: Let (Y, s, t) and (Y, sy, t1) be two fuzzy bitopological spacesand f: X — Y
be FP-continuous and bijective. Then

@) (Y, 51, ty) is FPTo(i) = (Y, s, t) is FPT(i).
(b) (Y, s1, ) is FPTo(ii) = (¥, s, 1) is FPTo(ii).

(© (Y, 51, ty) is FPTiii) = (Y, s, t) is FPT(Giii).
(d) (Y, s, 1) is FPTo(iv) = (¥, s, t) is FPTo(iv).
©) (Y, 55, ty) is FPTo(v) = (Y, s, 1) is FPTo(v).

() (Y, 51, 1;) is FPTo(vi) = (Y, s, t) is FPTo(vi).
Proof: The authors shall prove (a) and (f) only.

(a) Suppose (Y, s, t) is FPTo(i). One has to show that (Y, s, t) is FPT(i). Let ¢, dq €
S(X) such that ¢ = d. Then there exist a, by € S(Y) such that f(c) = a, f(d) =b and a = b,
since f is one-one. Again since (Y, si, t1) is FPTo(i), then (3uN(a,,s,), (b,qu)) or
@EnN(@,.t,). (ban)).

Now, let € N(ay, s1), (b, qu). Thatis, x(a) >rand w(b) +q<1.
Since f™(1) () = u(f(c)) = 1(a) >, then ¢, e £(1). So, a,qf (1)
Also, (u) (d) + q = u(f(d)) + g = u(b) + q < 1. So, b,qu..

Since f is FP-continuous, then f(1) e s. Hence (Y, s, t) is FPT(i).

(f) Suppose (Y, sj, ty) is FPTo(vi). Then one has to show that (Y, s, t) is FPTy(vi). Let
Cr, dq be two distinct fuzzy points in X. Then there exists distinct fuzzy points a;, by in Y
such that f(c) + a, f(d) = b and a # b, since f is one-one. Again since (Y, sy, t1) is FPTo(vi),
then (3uN(a,.s), (b, € u°)) or (AnN(a,.t), (b, €7°)).

Now, let 12 € N(ay, s1), (bq € ), thatis, g(a) > rand 1 — u(b) > q.

Since f(1) () = u(f(c)) = (a) >r, then ¢, e F(1).
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Also, 1 - () (d) = 1 - (f(d)) = 1 - (b) > q. S0, dg € (F(1))".

Since f is FP-continuous, then £2(1) e s. Hence (Y, s, t) is FPTo(vi).
o)
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