GROWTH AND YIELD PERFORMANCE OF BARI MUNG-5 UNDER DIFFERENT TIME OF SOWING

NARGIS JAHAN AND A. M. M. GOLAM ADAM

Plant Physiology Laboratory, Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh

ABSTRACT

A field experiment was carried out at University of Dhaka from March to July, 2011 to study the effect of time of sowing on the growth and yield of BARI mung-5. The treatments consisted of three dates of sowing viz. March 15, April 15 and May 15. The crop responded significantly to sowing time and 15 April sowing seeds produced plants having maximum plant height (68.4 cm), leaves/plant (29.33), total dry matter/plant (17.99), branches/plant (8.17), pods/plant (11.33), pod length (8.78 cm), seeds/pod (11.17), 1000 seed weight (46.52 g), seed yield/plant (5.33 g), yield/ha (1.77 t) and harvest index (29.58 %) at harvest. The seed yield decreased by 36.8 and 49.9% when seed sown early (15 March) or late (15 May) due to production of lower yield components.

Key words: BARI mung-5, Sowing time, Growth, Yield

INTRODUCTION

Mungbean (Vigna radiata L. Wilczek) is one of the major pulse crops supplementing protein in cereal-based diet of the poor people in Bangladesh. Seed contains carbohydrate (51%), protein (26%), minerals (4%), and vitamins (3%). It is potentially useful in the predominant rice-based farming system because of its short duration (Ahmed et al. 1978). Yield potential of mungbean is generally low. Various factors responsible for low yield of mungbean at the farmer’s field are: lack of awareness of farmers about optimum time of sowing, using high yielding variety, improper planting patterns, insufficient plant protection measures and imbalanced use of fertilizers. Sowing time, a non-monetary input is the single most important factor to obtain maximum yield from mungbean (Samanta et al. 1999). Early or late sown crop may not germinate properly followed by lower growth and development producing lower yield (Hussain et al. 2004, Islam 1983).

In Bangladesh research has been done on growth, yield attributes and yield of different varieties of mungbean in relation to variation of sowing time (Ahmed et al. 1978, Miah et al. 2009, Nag et al. 2000). However, optimum time of sowing of

1 Corresponding author: Department of Botany, Jagannath University, Dhaka, <adam_du04@yahoo.com>
mungbean may vary from variety to variety and season to season under different agroecological conditions. Therefore, the present investigation was undertaken to study the growth and yield variations in mungbean with a view to identifying the optimum sowing time of BARI mung-5 in Kharif-I season.

MATERIALS AND METHODS

The experiment was carried out in the research field of the Department of Botany, University of Dhaka during March to July, 2011. The treatment comprised of three dates of sowing: 15 March (S₁), 15 April (S₂), and 15 May (S₃). The experiment was laid out in RCBD with six replications. Fertilizers at the rate of 45, 100 and 60 kg/ha of N, P₂O₅ and K₂O were applied at the time of final land preparation of each sowing. Seeds of BARI mung-5 were collected from BARI, Joydebpur, Gazipur. Seeds were sterilized with 0.5% calcium hypochlorite before sowing. The seeds were sown in rows 30 cm apart. Weeding was done at 15 days after sowing followed by thinning to keep plant to plant distance of 10 cm.

Data on plant height, branches/plant, leaves/plant and total dry matter (TDM)/plant were recorded from the age of 30 days after sowing at an interval of 7 days. Pods/plant, length of pod, dry weight of pods/plant, seeds/pod, seeds/plant, 1000-seed weight, yield/plant and yield were recorded at harvest. Data were analyzed statistically to determine the significance of the characters studied. LSD test was applied for the comparison of means (Steel and Torrie 1960) at the 5% level of significance.

RESULTS AND DISCUSSION

The early growth and development (plant height, branches/plant and leaves/plant) was very slow at 30 DAS, then it started rapidly from 44 DAS and highest at harvest. The 15 April sown crop always showed maximum growth of these parameters and was significantly comparable to the other treatments (15 March and 15 May) at all growth stages (30 DAS to first harvest) (Figs 1 and 2). Different scientists reported that majority of crops can utilize the factors of favourable environment which ultimately influences plant to have more growth and development in mungbean plants (Miah et al. 2009, Soomro 2003, Sarker et al. 2004, Quresh and Rahim 1987).

Total dry matter (TDM) of a plant is an important parameter which influences the production of yield attributes and yield of plant. In this experiment, the early growth of TDM was very slow (30 - 44 DAS), then increased rapidly and picked at harvest. Crop sown on April 15 showed significantly greater TDM than other sown crop at all growth stages (Fig. 2) (Sarker et al. 2004). The late sown crop (15 May) showed significantly lower plant height, branches/plant, leaves/plant and TDM/plant at all growth stages.
Yield contributing characters viz. pods/plant, length of pod, dry weight of pods/plant, seeds/pod, seeds/plant, 1000-seed weight yield/plant and yield/ha were significantly affected by sowing time (Table 1).

Treatment $S_2$ (15 April) showed significantly maximum pods/plant (11.33), length of pod (8.78 cm), dry weight of pods/plant (6.25 g), seeds/pod (11.17) and seeds/plant (122.50) than the other days of sowing. The 15 May sowing treatment gave significantly lower yield-contributing characters, while 15 March sown crop gave significantly highest 1000 seed weight which was similar to $S_2$. Miah et al. (2009) and Rehman et al. (2009) reported higher number of pods in mungbean plant sown in March and April. Sarker et al. (2004) showed that pod length of mungbean was significantly influenced by planting time. Rehman et al. (2009) reported higher number of seeds/pod in mungbean plant sown in April. However, the results is contradictory to the findings of Miah et al. (2009) who
reported lower number of seeds/pod and lower number of seeds/plant when mungbean sown on April. They agreed that time of sowing had greater influence on plant to grow well coupled with favourable environment condition producing maximum yield contributing characters in mungbean plants.

Seed yield/plant was noticed significantly higher with $S_2$ (15 April) (5.33 g) than other treatments ($S_1 = 3.37$ g and $S_3 = 2.67$ g) and it was 58.16 and 99.62 % higher than treatment $S_1$ and $S_3$, respectively. Similar trends were recorded from yield/ha. This result affected increased yield contributing characters (Sarker et al. 2004, Miah et al. 2009 and Rehman et al. 2009).

Table 1. Effect of different sowing time on yield attributes and yield of BARI mung-5.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Pods/plant (no.)</th>
<th>Length of pod (cm)</th>
<th>Dry weight of pods/plant (g)</th>
<th>Seeds/pod (no.)</th>
<th>1000-seed weight (g)</th>
<th>Yield/plant (g)</th>
<th>Yield/ha (t)</th>
<th>Harvest index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1$</td>
<td>9.17 ab</td>
<td>7.43 b</td>
<td>4.87 b</td>
<td>8.87 b</td>
<td>80.01 b</td>
<td>46.78 a</td>
<td>3.37 b</td>
<td>1.10 b</td>
</tr>
<tr>
<td>$S_2$</td>
<td>11.33 a</td>
<td>8.78 a</td>
<td>6.25 a</td>
<td>11.17 a</td>
<td>122.50 a</td>
<td>46.52 a</td>
<td>5.33 a</td>
<td>1.77 a</td>
</tr>
<tr>
<td>$S_3$</td>
<td>7.17 b</td>
<td>7.33 b</td>
<td>3.82 c</td>
<td>8.09 b</td>
<td>58.15 c</td>
<td>44.67 b</td>
<td>2.67 c</td>
<td>0.89 c</td>
</tr>
<tr>
<td>CV (%)</td>
<td>27.22</td>
<td>13.24</td>
<td>26.15</td>
<td>18.64</td>
<td>33.52</td>
<td>3.47</td>
<td>31.94</td>
<td>14.28</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>2.68</td>
<td>1.02</td>
<td>0.97</td>
<td>1.68</td>
<td>14.78</td>
<td>1.28</td>
<td>0.50</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Harvest index was affected significantly due to different sowing time. Treatment $S_1$ and $S_2$ produced similar value of harvest index (30.92 and 29.58, respectively). This result agrees with the findings of Fraz et al. (2006) on mungbean. In soybean, Seijoon et al. (2000) also found similar results and suggested that the increased harvest index with late sowing could be related to high assimilate use efficiency due to increased sink capacity.

It can be concluded that mungbean seed is to be sown on 15 April to achieve maximum seed yield. Crop sown beyond this date fails to produce remarkable yield attributes and seed yield of mungbean.

REFERENCES


GROWTH AND YIELD PERFORMANCE OF BARI MUNG-5


(Received revised manuscript on 30 September, 2012)