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ABSTRACT

A perturbation technique has been developed based on the Krylov-Bogoliubov-Mitropolskii
(KBM) method to investigate the solution of fourth order near critically damped nonlinear systems
in the case of 4 —»1,, 4, =4,+24 but 4,(24, among the eigenvalues A, 1,,1,,4,. The
solutions obtained by this technique were compared with those obtained by numerical method. The
method has been explained by an example.
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INTRODUCTION

The Krylov-Bogoliubov-Mitropolskii method (Krylov and Bogoliubov 1947, Bogoliubov
and Mitropolskii 1961) is one of the widely used techniques to obtain analytical
approximate solution of weakly nonlinear systems and this method was originally
developed for finding periodic solutions of nonlinear systems with small nonlinearities. The
method was extended by Popov (1956) to damped oscillatory systems. Murty et al. (1969)
investigated an over-damped nonlinear system using Bogoliubov’s method. Murty (1971)
presented a unified KBM method for solving second order nonlinear systems which cover
the un-damped, damped and over-damped cases. Alam and Sattar (1996) extended the
KBM method for third order critically damped nonlinear systems. Alam (2002) also
investigated the solution of third order nonlinear systems when two of the eigenvalues are
almost equal and the other is small. Haque et al. (2011) investigated the solution of fourth
order critically damped oscillatory nonlinear systems when two of the eigenvalues are real
and equal and the other two are complex conjugate. Akbar et al. (2007) extended the KBM
method for solving fourth order more critically damped nonlinear systems. Recently,
Rahman et al. (2009) developed a technique for solving of fourth order near critically
damped nonlinear systems. For the relation 4, = 4, + 24, , the solution obtained in Rahman
et al. (2009) broke-down. The aim of this article was to fill this gap, that is, the authors
were interested to investigate the solution when the relation 4, ~ A, + 24, exists among the
eigenvalues A, 4,, 4;, 4,. The solutions obtained by this technique showed good
coincidence with those obtained by numerical method.
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MATERIALS AND METHOD

Let us consider the fourth order weakly nonlinear ordinary differential equation in
the following form
d*x  d3 d?x dx
—+C——+C,—+C;—+C,x=—¢f(x), 1
dtt  tdt® Pdt2 Cdt ! ) W
where ¢ is a positive small parameter, c,, ¢c,, c;, C, are constants and f (x) is the
given nonlinear function. The constants are defined in terms of the eigenvalues —/;
i=1, 2,34 of the unperturbed Eq. of Eq. (1) as

4 4 4
C =24, C=2A4, C= Y44
i=1 i i,jk=

i#] i#j#k
4
and c, =114, .
i=1

The Eq. (1) becomes linear when & =0, and suppose the eigenvalues —4, and -4,
are almost equal (4, =A,) and other two eigenvalues —A, and -1, are distinct.
Therefore, the unperturbed solution is

~ut _ a-ipt

e

x(t,0) = %am(e""1I +e72h)+ azyo(e P
2

J+a&0 e +a, e, )

where a, ,(i=1,2,3,4) are arbitrary constants.

Whene =0, following Alam (2002) technique we choose the solution of Eq. (1) in
the form

X(t, &) = La ™ +e ") +a,(t) etoe +a,(t)es!
2 ’ b=, ’ @)
+a,(t)e ™ +cu,(a,,a,,8,,8,,t)+&7 ...,
where a,(i =1, 2, 3, 4) satisfy the following first order differential equations:
9%§2=8ﬁﬁaﬁpayamw+sz~u i=1234. (4)

Confining only to a first few terms 1, 2, 3,...,n in the series expansions Egs. (3) and
(4), we calculate the functions u, and A, i=1 2, 3,4 such that a(t),i=1, 2, 3,4
appearing in Egs. (3) and (4) satisfy the given differential Eq. (1) with an accuracy of
order ™. To determine the unknown functions u,, A, A,, A;, A,, it is assumed (as
customary in the KBM method) that the correction term u, does not contain secular-type

At

term te ", which make them large. Differentiating Eq. (3) four times with respect to t,
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I - d*x  d®% d*x dx . .
substituting the derivatives ——, ——, ——, — and x in the original Eqg. (1),
g dt* " dt® " dt® " dt g ¢ W
utilizing the relations presented in Eq. (4) and finally equating the coefficients of ¢, we
obtain

%(e’}“l’(D 4 A,)(D g+ A5)(D— Ay 4 2) +€ (D~ 2y + (D~ 4y +25) (D~ 1y + ) A,

+(D +/”L‘1)(e’)“11(21 -, —gD)+e’)“21(/”L2 -, —gD)JA2 +e ¥ (D—Ag+ 4,)(D— A +A,)x

At ot
(D=2 + A) A+ (D2, + 4)(D— A, + 2,)(D— 2, + ;) A, Jr[e‘jl

2

(D+Z€ _%;/IJAQ _[%ez:ize}“ﬂjp(DJr%_%z”jAz +(D+4)(D+24,)(D +4;) %

](D+/14)D>< ®)

(D+2A)u, =—F©,
where f© = f(x,)

At A, t
1 _ 2 t

and x, =%a1(t)(e'ill +e'izl)+a2(t)[e ]+a3(t) e’ va,t)e .

ﬂ1 - /12
It is assumed that the function f© can be expanded in power series (Taylor’s
series) in the form (Bogoliubov and Mitropolskii 1961 for details)

-2,

n - - 1 2t it et _ee! f
fO = YF (ae ™ ae ™) aE ™ +e ) +a, —— |1, 6
2F (3 € )l )+a, Py 6)

where n is the order of polynomial of the nonlinear function f . This assumption is
certainly valid when f isa polynomial function of x. Such polynomial functions cover
some special and important systems in mechanics. Following Alam’s (2002), in this
paper the authors assumed that u, does not contain the terms F,and F, of f(©, since the

system is considered to near critically damped. Substituting the value of f© from Eq.

22'[

At
(6) into Eq. (5) and equating the coefficients of like powers of (ei;e

, the present
=2,

authors obtained
8%31([)_;13 +’11)(D_;Ls +;Lz)(D_;Ls +;LA)A3 +e%at(D_;LA +;L1)(D_/14 +;Lz)(D_;LA +/L\3)A4

+ 2 DAy 2 DAy + 2D Ay 2, e D1y 4 ) DAy 4 2 )
At At )
g - a —2Dyre et (1, -2, — S DA, (A8 A8 T
(D=7 + 2 bA+(D+ A He™ (4~ & =7 D)+ (=4 = DIYA ~ (B —75—)

xD(D%—%)AZ :—Fo—éaue*l‘ +e 2R,
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D(D%)[D%—%}Aﬁ—azﬁ, ®)

and

(D+4)(D +4,)(D + 43)(D + 4,)u

-2,

B e e e Lot re ) ra St ©
= " o 2a1 ’ M=4 .

KBM (Krylov and Bogoliubov 1947, Bogoliubov and Mitropolskii 1961), Alam
and Sattar (1996) and Alam (2002) have imposed the condition that u, does not contain

the fundamental terms (the solution presented in Eq. (2) is called generating solution
and its terms are called fundamental terms) of f(®. The solution of Eq. (8) gives value
of the unknown function A,. If the nonlinear function f and the eigenvalues
—A,—A,, — Ay, — A, Of the corresponding linear equation of Eq. (1) are not specified then
it is not easy to solve the Eq. (7) for the unknown functions A, A, and A,. When these
are specified, the values of A, A, and A, can be found subject to the condition that the
coefficients in the solutions of A, A, and A, do not become large (Akbar et al. 2007,
Alam and Sttar 1996, Alam 2002 for details), as if A, A, and A, do not contain terms

involving te™. In this article, we have imposed the conditions that the relation

Ay = Ay + 22, but 4,(24, exists among the eigenvalues 4,,4,,4, (also 4, — A, since the
system is near critically damped). These relations are important, because under these
relations the coefficients in the solutions of A, A, and A, do not become large. Under

these imposed conditions, the authors obtained the values of A, A, and A, from Eq. (7).
Substituting the values of A, A,, A, and A, in the Eq. (4), the authors obtained the

. da, . . .
solutions of di;l (i=1 2, 3, 4), which are proportional to the small parameter & .

So these are slowly varying functions of time t, that is, these are almost constants and by
integrating the values of a, (i=1, 2, 3,4) are obtained. It is laborious work to solve the
Eqg. (9) for u,. However, as 4, — A, it takes the following simple form

r

(D+4)*(D+A4)(D+ 2,)u, :—iE(age‘iﬂ‘,a4e‘*4‘){e‘“‘<a1 ~ a0 (10)

Solving Eg. (10), we obtain the value of u,. Finally, substituting the values of
8, (i=12,3 4) and u, inthe Eqg. (3), we obtain the complete solution of Eq. (1).
EXAMPLE

For an example of the above method, we consider the following fourth order
nonlinear differential equation,
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d*x d3x d?x dx 3

—+4C, —+C +C +C,X=—¢ X". 11

dt*  td® | Pt Cdt (1)
1 At At gt g At it

Here f(x)=x*and x,==a,(e * +e 2 )+a, +a. P +aet.
2 =2y

gt _ gt 3
Thus, f© = al(e‘l11 e +a,| —— |+ae ™ +ae '},
j'1 - j'2
F,=(ae ™ +a,e ), F, =3(ae ™ +a,e )2. (12)
According to the Egs. (7) - (9), we obtain
-2, t

e'lSl(D—Ls+Al)(D—L3+AZ)(D LS+A)A3+e +(D- i +ﬂ,l)(D i +A)><
(D—a+AG>A4+1{e‘“‘<D—A¢+@><D—@+@)(D—z¢+a>

+e72 (D=2, + 4)(D— A, + 25)(D — 4, + A)}A + (D + 4, ){e " (4, — %——D) (13)

(ﬂqe ) A+ Az
i D 21 "2 A\D(D
+e (A, - Ay — NA, —( (11 A ) )D(D+ 4, —2—%2)A,

— e v ) e rae ) S e'lzl)],
D(D +A )(D +7\. 2)A2 _‘?,az(a?,e_kéll +a4e_;‘41)2' (14)

and

(D+4)(D+24,)(D +25)(D + A,)u,

gt )"
S et g2 (15)
=-YF (a,e ™', ae™ et ey | = L
Ez (@, 4 ){ ay( )+ ( PR ]}
Solving Eq. (14), we obtain
A, =a,[naZe " +n,aa,e " 4 njaZe ], (16)
where
n = 3 . 12
VA A 22) @0 =) T AU+ Ay + Ay 4 22)

3 (17)

S G a2 1 an)
2+ A, =2, +44,)

Substituting the value of A, from Eq. (16) into Eq. (13). In order to separate the Eq.
(13) for determining the unknown functions A, A, and A,, we use the conditions as
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discussed in the method (see also Akbar et al. 2007 and Alam 2002). It is to note that our
solution approaches toward critically damped solution (see Alam 2002) if A, —>X,.
However, Eq. (13) has not an exact solution unless X, > A,. Now we consider
Ay =Xy +2h, but X,(2),. Under these imposed conditions and by equating like terms
on both sides of the Eg. (13), we obtain

e (D =h, +2,)(D =y +A:)(D =y +2,)A

—gert 1

=—a,a N0y + A, + 245)te - a,858,M,A, (205 + 200, + A kg + Aohs (18)

A, +Ah te PR _ g aZna nL (A, — 2, + 40, et

e (D =2y + 1) (D =y +1,)(D = Ay +1,)A,

= [a,n{(hy + 203) Ay + 20y = A) + g (hy + Ay + 2053 — gal] aZe M) (19)
+[a,n (b, +205)(y + 20, —Ay) — % a] a,je'(xfzxﬁ)I —ale ™' —3aZa,e @t
and

e (D=2, +0,)(D—h, +A,)(D =2, +15)A,

= [% anN{(A +25)(20; + A, +3h,) + (2734 + 20k + MAg + XA + A A, +A,0,)}

—(hy+h+h Ot

-3a]a;ae "t o +lana (A + A )M =Ry +30,) + 2, (A + X, — 205 +44,)} (20)

3 o+ 1 o
_Eal]afe (20 )t Jr[zaznz(k2 T ,)(2h, + Ay +30,) — 3] 8, a,e et

+[ayng (b, + 2, ) (A, =Ry +31,) — % aJaZe “2*? 4! _[3a,a2e Mo H) 1 gl 4]

The particular solutions of Egs. (18)- (20) yield respectively

) o o .
A =iaalte M g atte M g aa te e et

(21)
. O . O s ) a2
+1,8,858,1€ (ahahathelt +iza,ajte Gy ha iyt +iga,ajte a7t A")l,
AS = (Mlaz + M zal)a??e‘(xl‘*xs)i + (M 3a2 + M 4al)a§e—(7tz+7ts)1 + M Sage_zx:ﬁ (22)
24 a-(haigt
+Maza,e ",
and
- - ~(hy
A = (5,8, +5,3)a,3,8 (urtolt 4 (S, + S4a1)a§e VGarhalt (Ssa, + Sga,)aza,e ve (23)

+(S,a, +Sga,)aze "2 1 S aaZe )t S ale M
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where
n=-nAA (ﬂq + 2, + 2}”3)1

1
=-3 My (225 + 2050 + Dadg + Do + Dudy + Do),
fy = —NgAyAy (A + Ay =205 +42,),

I

2 (A + Ay + 20— 2y

=

L r 1 1 1

= 2@(A+Ag><a+2zg—a4>(zzg+<A+Ag>+<al+2a—x4>}
. r2

5t 2) Ut Ag) U+ )

. r, ( S J
T T )t ) 2) (e 75) et ) Uyt 7))

— f3

5 20 et A+ 20— )

_ I3 i 1 1

o 224 (A + A,)(A4 + 24, —%)(2/14 ' (4L +2,) ' (4 +24, —%)J’
m, =0 (2 + 24,) (A + 225 — A) + (A + 4, +245)},  m, = —%,

My =N (24 + 4,)2A + 4, —A,),  m, = —%,

S =%nz{(ﬂq 4 1)+ + 3) + (R + 20+ Dy + Al dad + D) |

S, =-3, S3= na{(ﬂq"'ﬂa)(ﬂi — 4 +3A4)+A4(ﬂ1+ﬂ’z -2 +4A4)}1
3

1
54:_51 8525n2(12+ﬂg)(232+ﬂg+3i4), 56:—3,
3

S; = na(iz +A4)(Az _ﬂe +3A4)1 Sg = _51

_ ml M _ m2

Y20 (A 20— A (A + 205 - A) P 2 (A 22— Ay (A + 205 = Ay)
M, = my M, = m,

P 20(A + 20— M) (A + 20— Ay) f 28R+ 22— 2 (A, + 205 - 2,)

M. - 1
P (=3, -34,)B3% - 4,)

- S

3

Mo = ok (a2 1) 20— 2)’

S,

N At A A A A~y

S

S,=- :
? (2’1 +/14)(/13 +14)(_21+/12 _23 _14)

S

5 S P2y 1 2h) Aot A —27)
Ss

N h At D)t =20y

Se

S, =

(/12 +/14)(/13 +14)(21 _/12 _23 _14)’

. (et A+ 22— A=)
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Sy _ Sg
B N VR N 7 A N 7 N YN VRSP R 78 (R E 7R (24)
Sy = 3 Sp = !
T 214(% _ls _214)(12 _Ze _214)’ a (%_314)(12 _314)(23 _314).

Here u, is a correction term and has also very small contribution in the solution.
However it is laborious work to solve the Eq. (9) for u, . So we neglect the calculation of
u, . Putting the values of A, A,, A, and A, from Egs. (21), (16), (22), (23) into Eq. (4)
and integrating, we obtain

iz(lfeHle% )t)
a ()= a o +g[a210 a:f,o x Y A A el )t g /(’11 7’12 +2;t3)
! A=A, +22,

i4(17 oAt s Ayt )

Ay Ay Ay
i [te(al+aza314)t N et At 1] /(’11 7’12 +’13 +’14)
—l3

A -4 +A +A
1 2 3 4
ie(lfe(7&1+1272&4)t)

(=4 +2y ~22g)t

_ oy 2 1} i, -2, +22,)],
—i.| te -~ =

A -4 +27
1 2 4

a,(t)=a,,+ca,,| na’ e +n,a,,a 71767(&3%4)1 +n,a? 71767“41
2 - Y20 2,0 13,0 2 “3,0 %4,0 34,0 1
21, A+ 27,

i 1— e*(h*%)‘ 1—p (o+i)t
a(t)=a5,+e a32,0 {MlaZ,O +M,a, {M + a32,0 {M 380+ M Aal,O} W
a2 _a(Za+ig)t
Jrag,oMs[l ¢ JJraaz,oaaMe[leJ ],
22, A+,
i 176*(11”&3)[ 1,67(}‘1”‘4)1
a,(t)=a,,+¢ _aa,o a0 {SlaZ,O +3,a5, }[M + ai,o {Saaz,o +3,8,, ﬁ
1_g Vet 1767(%2%1)t
+38308,, {85 8,0+ Ssay )[/M + ai,o {87 ay0+Sg al,U} ﬁ
L (1-e Ve ; 12! 25
+8508508s |~ |+ta0Sp| —— ||
A+, 22,
Therefore, we obtain the first approximate solution of the Eq. (11) is given by
1 R et _g! gt gt
x(t,g):zal(e +e ?)+a, P +a,e * +a,€ (26)
1 2

where a,, a,, a,, a, are given by the Eq. (25).
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RESULTS AND DISCUSSION

To test the accuracy of the approximate analytical solutions obtained by the
presented technique have been compared to the numerical solutions. Firstly, x(t,e)is
calculated by the Eq. (26) by using the imposed conditions A, —> X, , A, A, + 2, but
A {2\, in which a,a,, a,;,a, are calculated by the Eq. (25). Moreover, if we replace
- f(x) by ¢f(x) with ¢<<1, then the analytical approximate solutions will also be
conversed to the corresponding numerical solutions. The corresponding numerical
solutions of Eq. (11) are computed by fourth order Runge-Kutta method. The analytical
approximate solutions and numerical solutions are plotted in Fig.1 and Fig. 2 for different
initial conditions.

Fig.1. First approximate solution of Eq. (11) is denoted by —e— (dashed lines) by the
presented method with the initial conditions a,,=0.6, a,, =0.6, a5, =0.6,a,, =0.6
or [x(0) =1.80000, x(0) = —2.61561, X(0) = 3.33514, X(0) = —3.88353] When 2, =0.7,
A, =095 2,=118 1,=1.35¢=01and f= x®. Corresponding numerical solu-
tion is denoted by - (solid line).
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Fig. 2. First approximate solution of Eq. (11) is denoted by —e®— (dashed lines) by the
presented method with the initial conditions a, ,=1.0, a,,=0.5, a,, =1.0, a,, =0.5 Or

[x(0) = 2.50000, X(0) = —2.88042, X(0) = 3.13488, X (0) = —3.07011] When 3, =0.25 1, =0.8,
A, =1.2,2, =143, ¢=0.1 and  =x3. Corresponding numerical solution is denoted by -
(solid line).

CONCLUSION

The KBM method has been extended for solving the fourth order near critically
damped nonlinear systems under some special conditions with small nonlinearities, when
the four eigenvalues of the corresponding linear equation are real and negative numbers.
It is also noted that the analytical approximate solutions will be conversed to the
corresponding numerical solutions obtained by the fourth order Rangue-Kutta method
whether the small parameter is positive or negative. From the Figs 1 - 2, it is noticed that
the solutions obtained by the presented method show good agreement with those obtained
by the numerical method.
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