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ABSTRACT 

A perturbation technique has been developed based on the Krylov-Bogoliubov-Mitropolskii 
(KBM) method to investigate the solution of fourth order near critically damped nonlinear systems 
in the case of ,21    134 2   but 34 2   among the eigenvalues .,,, 4321   The 
solutions obtained by this technique were compared with those obtained by numerical method. The 
method has been explained by an example.  
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INTRODUCTION 

The Krylov-Bogoliubov-Mitropolskii method (Krylov and Bogoliubov 1947, Bogoliubov 
and Mitropolskii 1961) is one of the widely used techniques to obtain analytical 
approximate solution of weakly nonlinear systems and this method was originally 
developed for finding periodic solutions of nonlinear systems with small nonlinearities. The 
method was extended by Popov (1956) to damped oscillatory systems. Murty et al. (1969) 
investigated an over-damped nonlinear system using Bogoliubov’s method. Murty (1971) 
presented a unified KBM method for solving second order nonlinear systems which cover 
the un-damped, damped and over-damped cases. Alam and Sattar (1996) extended the 
KBM method for third order critically damped nonlinear systems. Alam (2002) also 
investigated the solution of third order nonlinear systems when two of the eigenvalues are 
almost equal and the other is small. Haque et al. (2011) investigated the solution of fourth 
order critically damped oscillatory nonlinear systems when two of the eigenvalues are real 
and equal and the other two are complex conjugate. Akbar et al. (2007) extended the KBM 
method for solving fourth order more critically damped nonlinear systems. Recently, 
Rahman et al. (2009) developed a technique for solving of fourth order near critically 
damped nonlinear systems. For the relation 134 2  , the solution obtained in Rahman 
et al. (2009) broke-down. The aim of this article was to fill this gap, that is, the authors 
were interested to investigate the solution when the relation 134 2   exists among the 
eigenvalues 4321 ,,,  . The solutions obtained by this technique showed good 
coincidence with those obtained by numerical method. 
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MATERIALS AND METHOD 

Let us consider the fourth order weakly nonlinear ordinary differential equation in 
the following form 
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where   is a positive small parameter, 1c , 2c , 3c , 4c  are constants and )(xf  is the 
given nonlinear function. The constants are defined in terms of the eigenvalues ,i  

4,3,2,1i  of the unperturbed Eq. of Eq. (1) as  
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The Eq. (1) becomes linear when 0 , and suppose the eigenvalues 1  and 2  
are almost equal ( 21   ) and other two eigenvalues 3  and 4  are distinct. 
Therefore, the unperturbed solution is 
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where )4,3,2,1(0, iai  are arbitrary constants. 

When 0 , following Alam (2002) technique we choose the solution of Eq. (1) in 
the form  
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where )4,3,2,1( iai  satisfy the following first order differential equations: 

.4,3,2,1,),,,,()( 2
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dt
tdai   (4) 

Confining only to a first few terms n,,3,2,1   in the series expansions Eqs. (3) and 
(4), we calculate the functions 1u  and 4,3,2,1, iAi  such that 4,3,2,1),( itai  
appearing in Eqs. (3) and (4) satisfy the given differential Eq. (1) with an accuracy of 
order 1n . To determine the unknown functions 43211 ,,,, AAAAu , it is assumed (as 
customary in the KBM method) that the correction term 1u  does not contain secular-type 

term tiet  , which make them large. Differentiating Eq. (3) four times with respect to t, 
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substituting the derivatives 
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 and x  in the original Eq. (1), 

utilizing the relations presented in Eq. (4) and finally equating the coefficients of  , we 
obtain 
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It is assumed that the function )0(f  can be expanded in power series (Taylor’s 
series) in the form (Bogoliubov and Mitropolskii 1961 for details) 
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where n is the order of polynomial of the nonlinear function f . This assumption is 
certainly valid when f  is a polynomial function of x . Such polynomial functions cover 
some special and important systems in mechanics. Following Alam’s (2002), in this 
paper the authors assumed that 1u does not contain the terms 0F and 1F  of )0(f , since the 

system is considered to near critically damped. Substituting the value of )0(f  from Eq.  
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KBM (Krylov and Bogoliubov 1947, Bogoliubov and Mitropolskii 1961), Alam  
and Sattar (1996) and Alam (2002) have imposed the condition that 1u  does not contain 
the fundamental terms (the solution presented in Eq. (2) is called generating solution  
and its terms are called fundamental terms) of )0(f . The solution of Eq. (8) gives value  
of the unknown function .2A  If the nonlinear function f  and the eigenvalues 

4321 ,,,    of the corresponding linear equation of Eq. (1) are not specified then 
it is not easy to solve the Eq. (7) for the unknown functions 31, AA  and 4A . When these 
are specified, the values of 31, AA  and 4A  can be found subject to the condition that the 
coefficients in the solutions of 31, AA  and 4A  do not become large (Akbar et al. 2007, 
Alam and Sttar 1996, Alam 2002 for details), as if 31, AA  and 4A  do not contain terms 

involving tet  . In this article, we have imposed the conditions that the relation 

134 2   but 34 2   exists among the eigenvalues 431 ,,   (also 21    since the 
system is near critically damped). These relations are important, because under these 
relations the coefficients in the solutions of 31, AA  and 4A  do not become large. Under 
these imposed conditions, the authors obtained the values of 31, AA  and 4A  from Eq. (7). 
Substituting the values of 321 ,, AAA  and 4A  in the Eq. (4), the authors obtained the  
 

solutions of 
dt
dai  ( )4,3,2,1i , which are proportional to the small parameter  .  

So these are slowly varying functions of time t , that is, these are almost constants and by 
integrating the values of ia )4,3,2,1( i  are obtained. It is laborious work to solve the 
Eq. (9) for .1u  However, as 21    it takes the following simple form 
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Solving Eq. (10), we obtain the value of 1u . Finally, substituting the values of 

ia )4,3,2,1( i  and 1u  in the Eq. (3), we obtain the complete solution of Eq. (1). 
 
EXAMPLE 

For an example of the above method, we consider the following fourth order 
nonlinear differential equation, 
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Solving Eq. (14), we obtain 
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 Substituting the value of 2A  from Eq. (16) into Eq. (13). In order to separate the Eq. 
(13) for determining the unknown functions 1A , 3A  and 4A , we use the conditions as 
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discussed in the method (see also Akbar et al. 2007 and Alam 2002). It is to note that our 
solution approaches toward critically damped solution (see Alam 2002) if 21  . 
However, Eq. (13) has not an exact solution unless 21  . Now we consider 

134 2  but 34 2 . Under these imposed conditions and by equating like terms 
on both sides of the Eq. (13), we obtain 
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The particular solutions of Eqs. (18)- (20) yield respectively 

,)2(2
426

)2(2
425

)(
4324

)(
4323

)2(2
322

)2(2
3211

4214214321

4321321321

ttt

ttt

teaaiteaaiteaaai

teaaaiteaaiteaaiA







 (21) 

,

)()(
)(

4
2
36

23
35

)(2
31423

)(2
312213

43

33231

t

ttt

eaaM

eaMeaaMaMeaaMaMA







 (22) 

and 

,)(

)()()(
44342

324131

23
410

)(2
439

)(2
41827

)(
431625

)(2
41423

)(
4312214

ttt

ttt

eaSeaaSeaaSaS

eaaaSaSeaaSaSeaaaSaSA







 (23) 



APPROXIMATE SOLUTION OF FOURTH ORDER 193 

where 

 

 
 

,
2
3),3)((

,3),32)((
2
1,

2
3

,)42()3)((,3

,)22()32)((
2
1

,
2
3),2)(2(

,
2
3,)2()2)(2(

,
)2(

1
)(

1
2
1

)2)((2

,
)2)((2

,
)(

1
)(

1
)(

1
))()((

,
))()((

,
)2(

1
)(

1
2
1

)2)((2

,
)2)((2

),42(

),22(
2
1

),2(

84324237

643232254

4321443141332

4241323143
2
44313121

44232313

232134313111

341414341414

3
6

341414

3
5

434131434131

2
4

434131

2
3

431313431313

1
2

431313

1
1

43214233

4241323143
2
4222

3213211


















































































sns

snss

nss

ns

mnm

mnm

ri

ri

ri

ri

ri

ri

nr

nr

nr































 

,
))()((

,
))()((

,
)2)(2(2

,
)2)(2(2

,
))()((

,
))()((

,
)2)(2(2

3,
)3)(3)(3(

1

,
)2)(2(2

,
)2)(2(2

,
)2)(2(2

,
)2)(2(2

43214342

6
6

43214342

5
5

4314214

4
4

4314214

3
3

43214341

2
2

43214341

1
1

4324313
6

433231
5

4321323

4
4

4321323

3
3

4312313

2
2

4312313

1
1

















































sSsS

sSsS

sSsS

MM

mMmM

mMmM

 



194 ALOM AND UDDIN 

.
)3)(3)(3(

1,
)2)(2(2

3

,
)2)(2(2

,
)2)(2(2

434241
10

4324314
9

4324214

8
8

4324214

7
7

















SS

sSsS
(24) 

Here 1u  is a correction term and has also very small contribution in the solution. 
However it is laborious work to solve the Eq. (9) for 1u . So we neglect the calculation of 

1u . Putting the values of ,1A ,2A 3A  and 4A  from Eqs. (21), (16), (22), (23) into Eq. (4) 
and integrating, we obtain 
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Therefore, we obtain the first approximate solution of the Eq. (11) is given by 
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where 4321 ,,, aaaa  are given by the Eq. (25).  
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RESULTS AND DISCUSSION 

To test the accuracy of the approximate analytical solutions obtained by the 
presented technique have been compared to the numerical solutions. Firstly, ),( tx is 
calculated by the Eq. (26) by using the imposed conditions 21  , 134 2  but 

34 2  in which 4321 ,,, aaaa  are calculated by the Eq. (25). Moreover, if we replace 
)(xf  by )(xf  with 1 , then the analytical approximate solutions will also be 

conversed to the corresponding numerical solutions. The corresponding numerical 
solutions of Eq. (11) are computed by fourth order Runge-Kutta method. The analytical 
approximate solutions and numerical solutions are plotted in Fig.1 and Fig. 2 for different 
initial conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. First approximate solution of Eq. (11) is denoted by   (dashed lines) by the 
presented method with the initial conditions 6.0,6.0,6.0,6.0 0,40,30,20,1  aaaa  
or ]88353.3)0(,33514.3)0(,61561.2)0(,08000.1)0([  xxxx   when ,7.01   

,95.02  1.0,35.1,18.1 43   and 3xf  . Corresponding numerical solu-
tion is denoted by - (solid line). 
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Fig. 2. First approximate solution of Eq. (11) is denoted by   (dashed lines) by the 

presented method with the initial conditions 5.0,0.1,5.0,0.1 0,40,30,20,1  aaaa  or 
]07011.3)0(,13488.3)0(,88042.2)0(,05000.2)0([  xxxx   when ,8.0,25.0 21   

1.0,43.1,2.1 43   and 3xf  . Corresponding numerical solution is denoted by - 
(solid line). 

 
CONCLUSION 

The KBM method has been extended for solving the fourth order near critically 
damped nonlinear systems under some special conditions with small nonlinearities, when 
the four eigenvalues of the corresponding linear equation are real and negative numbers. 
It is also noted that the analytical approximate solutions will be conversed to the 
corresponding numerical solutions obtained by the fourth order Rangue-Kutta method 
whether the small parameter is positive or negative. From the Figs 1 - 2, it is noticed that 
the solutions obtained by the presented method show good agreement with those obtained 
by the numerical method.  
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