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ABSTRACT 

Some fundamental properties of a chaotic three-dimensional non-linear system of the Lorenz 
type systems were studied. The invariance, dissipation, bifurcation and the strange attractors were 
investigated and analyzed one 1-scroll, two 2-scroll and two 4-scroll attractors by adding control 
parameters to this system. The relationship and connecting function for the 2-scroll attractor of this 
system were also explored.  
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INTRODUCTION 

It came as a big surprise to most scientists when Lorenz discovered chaos in a simple 
system of three-dimensional quadratic autonomous ordinary differential equations in 
1963. For nearly 50 years, many simple chaotic flows have been found and further 
studied within the framework of three-dimensional quadratic autonomous systems. These 
simple chaotic systems have stimulated a great deal of interest in the studies of chaotic 
dynamics from a unified point of view, as well as related chaos control and 
synchronization problems. 

Recently, chaos has been found to be very useful and has great potential in many 
technological disciplines such as in information and computer science, power systems  
protection, biomedical systems analysis, flow dynamics and liquid mixing, encryption 
and  communications, and so on (Lü et al. 2002). Therefore, academic research on 
chaotic dynamics has evolved from the traditional trend of analyzing and understanding 
chaos to the new direction of controlling and utilizing it (Ott et al. 1990). In a broader 
sense, chaos control can be divided into two categories: one is to suppress the chaotic 
dynamical behavior when it is harmful and the other is to create or enhance chaos when it 
is desirable - known as chaotification or anti-control of chaos (Lü et al. 2002). Very 
recently, there has been increasing interest in exploiting chaotic dynamics in engineering 
applications, where some attention has been focused on effectively creating chaos via 
simple physical systems such as electronic circuits (Wang and Chen 2000) and switching 
piecewise-linear controllers. 
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The authors studied three-dimensional quadratic autonomous chaotic system, which 
can display two 1-scroll or two complex 2-scroll chaotic attractors simultaneously. They 
also introduced a new chaotic system and investigated the dynamical behaviors of this 
chaotic system, by employing some tools used in Chen and Ueta (1999). Here in the 
compound  structure  of  chaotic  attractors  was analyzed for  the  two  2-scroll  attractors 
of  this  new system. 
 
GENERAL LORENZ SYSTEM FAMILY 

For three-dimensional autonomous systems (Čelikovskỳ and Chen 2002) introduced 
a classification in terms of 2112aa  where 12a  and 21a  are the corresponding entries of the 
linear part of the system described by the constant matrix 

 
33

 ijaA . 

Historically, the Lorenz system of equations is perhaps the first of the non-linear 
dynamical systems found to exhibit sensitive dependence on initial conditions and chaos.  
The Lorenz system is described by the following non-linear differential equations; 
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Typical parameters for a Lorenz system are 28,10  r  and .38b  According 
to the form of the generalized Lorenz system (Čelikovskỳ and Chen 2002), we have 
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The Lorenz system is described by 
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The Lorenz system satisfies ].02810[,02112 aa    

Chen constructed another chaotic system from an engineering feedback control 
approach (Lorenz 1963).  
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Chen’s system is of the following form: 

                    













bzxyz
xzryxry

xyx







)(
)(

                                                 (D) 

Typical parameters for the Chen system are ,28,35  r  and .3b  According to 
the generalized Lorenz system form, the Chen system is described by 
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The Chen system satisfies ].0)7(35[,02112  aa   

Lü and Chen (2002) found a critical new chaotic system, which is generated by the 
following three-dimensional autonomous system: 
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Typical parameters for the Lü system are ,20,36  r  and .3b  This system 
bridges the gap between the Lorenz and Chen systems.  

According to the form of generalized Lorenz system, the Lü system is described by 
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The Lü system satisfies ].0036[,02112  aa  

A NEW CHAOTIC SYSTEM AND ITS ANALYSES 

Consider the following simple three-dimensional quadratic autonomous system, 
which can display two chaotic attractors simultaneously: 
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where  ,  are real constants. This system is found to be chaotic in a wide 
parameter range and has many interesting complex dynamical behaviors.  
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According to the form (B), the Lorenz system (A) satisfies  

,02112 aa  

the Chen system (E) satisfies 

,02112 aa  

the Lü system (G) satisfies 

,02112 aa  

and the new system (1) also satisfies 

,02112 aa  

The system (1) has similar but different dynamical behaviors with the transition 

system.   By a suitable non-singular transform, it is assumed without loss of generality 
that   },,{

33
cbadiagaA ij 


. In this setting, Lü and Chen (2002) derived another 

classification condition in terms of cabcab   for the three-dimensional quadratic 

autonomous systems. Using this condition, the 4-scroll system satisfies  

,0 cabcab  

while system (1) here satisfies 

,0 cabcab  

Therefore, system (1) is a new and particular system that satisfies two different 
classification conditions as described above. Moreover, this system has many interesting 
complex dynamical behaviors, as will be seen below. 
 
DYNAMICAL BEHAVIORS OF THE SYSTEM  

The new system (1) shares various properties with some known three-dimensional 
quadratic   autonomous systems, such as the Lorenz system. These are described in the 
following: 

Symmetry and invariance: First, note that the system is invariance under the 
transforms ),,,(),,(),,,(),,( zyxzyxzyxzyx   and ),,(),,( zyxzyx  . That 
is, system (1) is symmetrical about the three coordinate axes ,,, zyx  respectively.  

Dissipation and existence of attractor: The rate of the volume contraction for the 
system (1) is given by the Lie derivative 
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 It follows that the volume of a bounded region of this system will decrease with 
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a

e 
 22 

, when ,0   and so the set toward which all trajectories tend has zero 

volume. Thus the system is clearly dissipative. This is the well-known necessary 

condition for the asymptotic motion to settle on to an attractor. 

Equilibria and Bifurcations: To find the equilibria of the system (1), let us consider 
.0 zyx   

If 0  then system (1) has five equilibria:  

  







































 ,,,,,,0,0,0 321 SSS















































 ,,,,, 54 SS  

If 0 , then system (1) has a unique equilibrium  .0,0,01 S  Pitchfork 
bifurcation of  the  null  solution  at 0  (or 0 ) can be observed, if   (or  ) is 
fixed but   (or  ) is varied. 

Moreover, any two nonzero equilibria are symmetric about one of the axes 
,,, zyx that is, 

(i)  2S  and 43 , SS  and 5S  are symmetric with respect to the x-axis. 

(ii)  2S  and 4S , 3S  and 5S  are symmetric with respect to the y-axis. 

(iii)  2S  and 5S , 3S  and 4S  are symmetric with respect to the z-axis. 

Linearizing the system (1) at 1S , we have three eigenvalues: 

,),/( 21   and .3    
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Again, linearizing the system at 5432 ,,, SSSS yields the following same characteristic 
equation: 
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Investigation for Hopf bifurcation: Since the characteristic equation for equilibrium 
 0,0,01 S  has three eigenvalues: ,),/( 21   and  3 , which are not 

purely imaginary, so there is no Hopf bifurcation at 1S . 

For equilibria 5432 ,,, SSSS , we have the same characteristic equation (2), so only the 
equilibrium 2S  is discussed. If Hopf bifurcation appears at equilibrium 2S , then it may 
assume that two zeros are wi  for some real w , and the sum of the three zeros of 
the cubic polynomial f is 
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This contradicts with the condition .0  Therefore, there is no Hopf bifurcation 
at .2S  Similarly, this is true for each 543 ,, SSS . So it can be said that Hopf bifurcation 
does not appear at any equilibrium )5,,2,1( iSi  of the system (1). 

Comment:  

1. It is quite a strange phenomenon to have no Hopf bifurcation in a three-
dimensional quadratic autonomous chaotic system. All known three-
dimensional quadratic autonomous chaotic systems have Hopf bifurcations at 
some of their equilibria, such as in the Lorenz system, Chen system, transition 
system, unified chaotic system. 

2. Since the coefficient of  in (2) is zero, equation (2) does not have two 
conjugate imaginary roots for any parameters  , . However, the coefficient of 
  in the characteristic equation is non-zero for most known three-dimensional 
quadratic autonomous chaotic systems such as those just mentioned.  

 
DYNAMICAL STRUCTURE OF THE NEW CHAOTIC SYSTEM 

When 4,10   , this system can display two complex 2-scroll chaotic 
attractors, as shown in Fig. 1. According to their geometric locations, these two 
coexisting attractors are called upper and lower attractor here for convenience. Various 
projections of these attractors are shown in Fig. 2. 
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                       (a)                                                                      (b) 

Fig. 1. Two coexisting 2-scroll chaotic attractors. 
(a) upper attractor, (b) lower attractor. ).4,10(     

 
                                        (a)                                                                                         (b) 

 
                                          (c)                                                                                        (d) 

Fig. 2. Various projections of the upper and lower attractor. 
(a) yx  (upper-attractor), (b) yx  (lower-attractor), (c) zx  , (d) zy  . 
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Compound structure of the upper and lower attractor: In order to investigate the 
compound structures of the upper and the lower-attractor, a constant control term is 
added to the first equation of the system (1) 
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Assume that 4,10   . When 9u , we obtain the right-attractors of the 
original upper and lower attractor, and their projections on the zx  plane are shown in 
Fig. 3(a), (b); while when 9u , one has their mirror images, i.e. the two left attractors 
and their projections on the zx  plane, as shown in Fig. 3(c), (d). 
 

 
                      (a)                                                                        (b) 

 

 
                      (c)                                                                            (d) 

Fig. 3. The right- and left forming attractors and their projections, for the upper-attractor 
and lower-attractor. (a and b) 9u ; (c and d) 9u . 
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Connecting the upper and lower attractor: As mentioned, system (1) has five 
equilibria: 54321 ,,,, SSSSS  in which 32 , SS  are above the plane 0z  while 54 ,SS  are 
below this plane. Furthermore, there is a close correlation between the 
equilibria 321 ,, SSS  and the upper attractor. Also, there is a close correlation between the 
equilibria 541 ,, SSS  and the lower attractor. 

 
                      (a)                                                                      (b) 

 
                       (c)                                                                      (d) 

Fig. 4. Phase portraits of system (3). (a) 50u , (b) 19u , (c) 7.14u and (d) 7u . 

Specially, the upper and lower attractor are symmetric. It is therefore interesting to 
ask if there is a simple controller that can connect the upper and lower attractor. This 
section gives a positive answer to this question. In fact, a constant controller works well 
and can connect the upper and lower attractor to form a 4-scroll chaotic attractor from a 
2-scroll chaotic attractor. 

In order to connect the upper and lower attractor, a simple constant controller  is 
added to the second equation of the system (1), giving 
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Let 4,10   . When 5v , system (4) displays a 4-scroll chaotic attractor, as 
shown in Fig. 5. 

 
 

                      (a)                                                                          (b) 

 
                           (c)                                                                      (d) 

Fig. 5. The 4-scroll chaotic attractor of system (4) and its projections on various 
planes. (a) 3D phase portrait, (b) yx  plane projection, (c) zx  plane 
projection and (d) zy   plane projection. .)5,4,10(  v  

Controlling in between the upper and lower attractor: As is known now, system (1) 
can display two 2-scroll chaotic upper and lower attractors. It is, therefore interesting to 
know the relationship between the upper and lower attractor, and if the two 2-scroll 
chaotic attractors can be confined to either one of them via a simple constant control.  
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To do so, a constant controller m is added to the third equation of the system (1), so 
as to obtain 
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                                                           (5) 

When 1,4,10  m , system (5) displays a 2-scroll chaotic attractor – 
upper-attractor – as shown in Fig. 6(a); when 1m , the system shows another 2-scroll 
chaotic attractor – lower-attractor – as displayed in Fig. 6(b). Therefore, the original 
upper-attractor and lower attractor of the system (1) are confined to only one, either the 
upper or the lower attractor, via a simple constant control. 

 
                       (a)                                                                    (b) 

Fig. 6.  The 2-scroll chaotic attractors of system (5). (a) ,1m  (b) )4,10(.1  m . 

In fact, system (5) establishes a kind of connection between the upper and the lower 
attractor. When the controller m is large, e.g. 1m , system (5) only displays the upper-
attractor; when the controller m  is small, e.g. 1m , the system only shows the lower-
attractor; when 0m , the system displays both. 

 

                      (a)                                                                     (b) 

Fig. 7.  Phase portraits of system (5). (a) ,15m  (b) ).4,10(.4.6m   
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Comment: 

(1)   When m  is large enough, e.g. 2.12m , the trajectories of system (5) 
converge to a point, as shown in Fig. 7(a); (ii) when m  decreases  gradually, 
there  appear  period-doubling  bifurcations,  as displayed  in Fig. 7(b);  (iii)  
when m  is relatively  small,  the  upper and  lower attractors are confined to a 
chaotic attractor, as shown in Fig. 6 and (iv) when m  is small enough, system 
(5) also has two 2-scroll attractors. 

(2)   For 2.12m , the trajectories of system (5) converge to a point above the plane 
0z , while when 2.12m , to a point below the plane 0z . Similarly, for 

4.601.0  m , system (5) is confined to an upper attractor, while when 
01.04.6  m , system (5) is confined to a lower attractor. 

 
CONCLUSION  

This article presented a new chaotic system of three-dimensional quadratic 
autonomous equations, which has generated two 2-scroll chaotic attractors 
simultaneously with five equilibriums. Dynamical behaviors of this new chaotic system, 
including some basic dynamical properties, invariance, dissipation, bifurcations, 
compound structures of the new attractors and their connections have been investigated 
both theoretically and numerically. 
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