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ABSTRACT 

The aim of the paper was to fabricate an alternative proof of a global existence theorem of 
certain type of Volterrea integral equation on the basis of the hypothesis. The new proof has been 
given by constructing suitable function space and using fixed point theorem. Relaxing some 
hypotheses in the same and using Bielecki’s notion of norm another global existence theorem has 
been proposed and proved.  
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INTRODUCTION 

Consider the Volterra integral equation of the second kind in nR               

 t dssxsgstktftx  
0 ))(,(),()()(                       (1) 

where the given function )(tf and the kernel ),( stk are assumed to be continuous on the 
interval  ,0 and the extended triangular region  ts0 , respectively. Moreover 
there exists 0M  such that  t tMdsstk 

0 0,),(  and ),( xtg  is continuous 
on   nR,0 , 0,),(),(  tyxLytgxtg  where 1ML  is bounded on  ,0 .Where 
. means supremum norm of vector and matrix. 

By employing the constructing uniformly convergent sequence of functions 
(successive approximation) as in Corduneanu (1969), it can be shown (1) possesses a 
unique global continuous solution )(tx of equation (1) on the interval  ,0 . On the other 
hand the present authors applied Banach contraction mapping principle to (1), by 
formulating suitable function space under the same set of hypotheses. The operator 

  t tdsssgstktftT  
0 0;))(,(),()()(  takes B into B, where B  is the space of all real 

valued continuous function on  ,0 . The operator T is not, in general, contracting unless 
the product 1ML . Hence to apply the contraction principle to T, it is necessary to 
restrict either the highest possible mass of the kernel or the Lipschitz’s constant in the 
second argument of ),( xtg . L  and M may be interpreted otherwise. In second case, if 
the authors relax the hypotheses 1ML  and define the norm of a function using Bielecki 
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Idea in (Miller 1973), we can show, at the influence of Miller (1973), that (1) has unique 
continuous solution on  ,0  (Strauss 1970). 

Global existence theorem (1): Corduneanu (1969) described a global existence theorem 
under the following hypotheses. The present authors proved the same using contraction 
mapping theorem instead constructing sequence of functions. 

Consider the Volterra integral equation  t dssxsgstktftx  
0 ))(,(),()()(  

Assume that (1) satisfies the following conditions:  

(i) )(tf is continuous and bounded on ),0[  . 

(j) ),( stk is continuous on  ts0 and there exists 0M such that  

 t tMdsstk 
0 0,),( . 

(k) ),( xtg is continuous on nR),0[ and 0,),(),(  tyxLytgxtg where 
1 ML or 1 LM 1 ML . 

(l) )0,(tg is bounded on ),0[  , i.e. ),0[;)0,( 2  tmtg  

then there exists a unique continuous bounded solution )(tx of (1) on ).,0[   

Proof: Let B be the Banach space of bounded continuous functions on ),0[  with 
supremum norm .  (Simmons 2004), for B , .)(

0
tSup

t



  

For each B , we define the mapping  T  by 

  t tdsssgstktftT  
0 0;))(,(),()()(  . 

Now, )(tT   t tdsssgstktf  
0 0;))(,(),()(  . 

Given,  1)( mtf  

)(tT   ttt dssgstkdssgstkdsssgstkm  
0 

 
0 

 
0 1 )0,(),()0,(),())(,(),(   

  tt dssgstkdssgssgstkm  
0 

 
0 1 )0,(),()0,())(,(),(   

But ),0[;)0,( 2  tmtg and 0)()0,())(,(  sLsgssg   

)(tT  tt dsstkmdssstkLm  
0 2

 
0 1 ),()(),(   

 tt dsstkmdsstkLm  
0 2

 
0 1 ),(),(  and  Mdsstkt 

0 ),(  

 MmLMm 21   

Again 0)()(  tThtT  as 0h  
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 )()( tThtT 

  ht t dsssgstkdsssgshtktfhtf  
0 

 
0 ))(,(),())(,(),()()(   

  



ht t

hts
dsstkdsshtkssgMaxhtftf  

0 
 
0 0

),(),())(,()()(   

   



ht
t

t

hts
dsshtkdsstkshtkssgMaxhtftf  

 
 
0 0

),()),(),(())(,()()(   

    



ht
t

t

hts
dsshtkdsstkshtkssgMaxhtftf  

 
 
0 0

),()),(),(())(,()()(   

)(tf and ),( stk are continuous on ),0[ t  

0 , as 0h . 

Therefore, T   is bounded and continuous. Hence, .: BBT   

For   and B  

 )()( tTtT   
t t dsssgstkdsssgstk 
0 

 
0 ))(,(),())(,(),(   

 )()( tTtT   t dsssgssgstk 
0 ))(,())(,(),(   

 )()( tTtT   t dsssstkL  
0 )()(),(   

  TT  t dsstkL  
0 ),(  

  TT  ML  But 1ML  

BBT : is a contraction mapping. By Banach contraction mapping theorem T  has 
unique fixed point in B. Therefore (1) has a global continuous bounded solution under 
considered settings. 

Global existence theorem (2):Here, relaxing the hypothesis (k) in the previous 
theorem and defining the norm of the function using Bielecki ideas in Sherwood et al. 
(1964], the authors have established the following global existence theorem: 

Consider the Volterra integral equation  t dssxsgstktftx  
0 ))(,(),()()(  

Assume that (1) satisfies the following conditions  

(i) )(tf is continuous and bounded on ),0[  . 

(j) ),( stk is continuous on  ts0 and there exists 0M such that  

 t tMdsstk 
0 0,),( . 
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(k) ),( xtg is continuous on nR),0[ and 0,),(),(  tyxLytgxtg . 

(l) )0,(tg is bounded on ),0[   

then there exists a unique continuous bounded solution )(tx of (1) on ),0[  . 

Proof: Let B  be the Banach space of the bounded continuous function ),0[  with 
the norm . , where for  B , 0,)(

0
 


 t

t
etSup  for each  B (Corduneanu 

1973).  

We define the mapping  T:  by 

0;))(,(),()()(  
0  tdsssgstktftT t   

0;))(,(),()()(  
0  tdsssgstktftT t   

         0;)0,(),()0,())(,(),()(  
0 

 
0   tdssgstkdssgssgstktf tt   

 0;)0,(),(0)(),()()(  
0 

 
0   tdssgstkdssstkLtftT tt   

0;)0,(),(
)(

),()()(  
0 

 
0  tdssgstkdse

e
s

stkLtftT tt s
s





  

0;)0,(),(),()()(  
0 

 
0  tdssgstkdsstkeLtftT ttt  

0;)0,(),(),()()(  
0 

 
0   tdssgstkedsstkLetfetT ttttt    

Taking supremum on both sides for  t0  

MmLMmT 21   , where 1)( mtf  and 2)0,( mtg   

Therefore )(tT  is bounded on  t0 and 

 )()( tThtT        

   tht dsssgstkdsssgshtktfhtf  
0 

 
0 ))(,(),())(,(),()()(   

 )()( tThtT             

    ht
t

t dsssgshtkdsssgstkshtktfhtf  
 

 
0 ))(,(),())(,(),(),()()(   

But, .0};0,))(,({ 33  mtsmssgMax   

       .0};,))(,({ 44  mhtstmssgMax   
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.0};,),({ 55  mhtstmshtkMax  

0)()(  tfhtf as 0h and 

0),(),(  stkshtk as 0h  therefore 

       hmmtThtT 54)()(    

hmmtThtTe t
54)()(     

0)()(   tThtTe t  as 0h .  

Therefore T  is continuous and  BT   which implies  BBT :  

For any  B,  

 )()( tTtT  dsssstkL t
  

0 )()(),(    

 )()( tTtT  dsessestkL t ss
  

0 )()(),(                     

 )()( tTtT  dseLM t s  
0 

  

 )()( tTtT  )1(
1

 teLM 


  

 )()( tTtT  teLM 




1
        

  TT



1

LM  

Here, we choose  large enough so that   LMLM 1 . Therefore, for 
LM , 

 BBT : is a contraction mapping. By Banach contraction mapping theorem T  
has unique fixed point in B . Therefore (1) has a global continuous bounded solution 
under considered settings. 
 
CONCLUSION 

If  is taken zero both the function spaces in the theorems (1) and (2) becomes 
identical and second theorem is no longer valid without the hypothesis (k) and 1LM as 
in the first theorem. 
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