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ABSTRACT 

A class of surfaces with constant vanishing curvature is studied in this paper. The importance 
of this study lies in the fact that some of the special structures of this class of surfaces have been 
completely established. 
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INTRODUCTION 

Since study of surfaces is an important part of differential geometry it has been 
extensively studied from various perspectives. Authors (Kreyszig 1991, Lopez 2001, 
Pressley 2001) studied a number of classes of surfaces. In some particular situations, a very 
few of these surfaces are of constant curvature K (K being greater than zero, equal to zero 
and less than zero). For examples, the simply connected surfaces of constant curvature 0, 
+1 and –1 are the Euclidean plane, the unit sphere in E3, and the hyperbolic plane, 
respectively. In the case when K = 0 on a surface, then the surface belongs to a particular 
class and it is called the surface with vanishing curvature or, zero curvature. If the 
curvature K = 0 everywhere on a surface, then it called locally flat surface also. Also, the 
point P  S where K > 0, K < 0 and K = 0 are characterized by the elliptic point, the 
hyperbolic point and the parabolic point respectively. Particularly, Castro and Montealegre 
(2004) and Hossain (2010) studied on some nature of surfaces with specific constant 
curvature, whereas Kenmotsu (1983) dealt with the study of minimal surfaces of constant 
curvature in relatively high dimensional space. This paper deals with the study of surfaces 
of exactly zero curvature only. For convenience, some terminologies and notions of Castro 
and Montealegre (2004) and Kreyszig (1991) have been used frequently here.  
 
NECESSARY PRELIMINARIES  

Let S be an embedded surface and let every )3,2,1( ixi  be the Cartesian co-

ordinates of any Sp . Then there are parameterizations 2,1;)(  uxx , having 
11 uu  , .2 constu   and ,.1 constu   22 uu   as associated families of paths called the 
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parametric net of the parameterization. Note that over the whole of S, g defines a 
differentiable tensor field with components Eg 11 , Fgg  2112 , Gg 22 . This g is 
called the 1st fundamental tensor or metric tensor where E, F, G are the 1st fundamental 
coefficients. Now for )(, STwv p  if we set ),,(),( wvNwv  , there corresponds an 
anti-symmetric tensor with components given by ),,(),(  xxNxx  ; N  

being the unit normal to S. Since x are tangents to S, we can take 
2
1

21

)(det

)(

g

xx
N


 , where 

2
122212)(detdet ggggg   . Thus 02211  , 2

1

2112 )][det(g . Define a 

natural mapping 2: SS  , 2S being the unit 2-sphere, by sending the point Sp  to 

the point with radius vector )( pN of 2S . Then   is called the Gauss map or the 

spherical image of S, and the linear map )()(: STSTl ppp  is known as the 

Weingarten transformation. Since )(STN p , there are some coefficients 
b  such that 



  xbN  which are known as the Weingarten formulas. It is true that the Weingarten 

transformation is self-adjoint. Thus if we define wlvwvlwvb ),( , there corresponds 
a symmetric bilinear map  )()(: STSTb pp R, hence a symmetric two-times covariant 
tensor at Sp  with components given by 

  xNxNxNxxlxxbb ),( . 

If p varies on S, b defines a tensor field which will be referred to as the 2nd fundamental 
tensor or form of S. It can be shown that NbMbbLb  22211211 ,, , where L, M, N 
are the 2nd fundamental coefficients. If v  is an eigenvector of the Weingarten 
transformation l  i.e., some scalar k  exists such that vkvl )( , then the corresponding 
eigenvalues k  of l  are called the principal curvature. Due to the above definitions, one 
can easily derive the following equation involving the principal curvature k :  

0)(det   gkb  yielding 0
22222121

12121111 




gkbgkb

gkbgkb
 which is of the second 

degree in k. If 21 , kk  are the two values of k, then (i) 21 kkH   is called the mean 
curvature of S at Sp , and (ii) 21 kkK   is called the total curvature or Gaussian 

curvature of S at .Sp  In this situation, one must have 02  KkHk , 

)(ltacebgH  
 , and )(det

)(det
)(det

l
g
b

K 


 . These are the very important 

invariants of a surface. Sometimes, K is constant throughout the surface then the surface 
is known as that with constant curvature.  

A surface generated by one-parameter family of straight lines is called a ruled 
surface. If ),(y    being a parameter, is a curve that intersects the generators of the ruled 
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surface, and if )(v defines the direction of the generator through )(y , the equation of 

the generator will be of the form )()(  vyx , where ,  are two independent 
parameters. Therefore, one can think that a ruled surface S has a regular parameterization 
of the form  )()()( 121  uvuuyx . 

Theorem 2.1: The curvature of a surface depends only on the first fundamental form 
of the surface. 

A point  p on a regular surface  S  is said to be planar point if the Gaussian curvature 
0)( pK and )( ps  (where s is the shape operator), or equivalently, both of the principal 

curvatures k and 2k are 0. 

Proposition 2.2: If an open connected subset U of a surface S consists of planar 
points only, then U belongs to a plane. 
 
SRUCTURES OF THE CONSIDERED CLASS OF SURFACES 

It is more difficult to establish the global structure of the class of surfaces under 
investigation. If the surface is required to be complete, one can show that it must be either 
a plane or a cylinder. Some of the required structures have made locally also. The 
geometric structures of the surfaces with curvature zero have determined through the last 
paragraph of these section.    

Theorem 3.1: Let S be a surface of curvature zero with no planar points. Then S 
must be a ruled surface whose tangent plane is constant along every generator. 

Proof: Consider a surface S with constant curvature zero and no planar points. 
Suppose that Sp is not a planar point. Since 0)()()( 21  pkpkpK , we must have, 
for example, 0,0 21  kk . Then p is not umbilical, and there is a parameterization 

),( 21 uux  at p so that the curvesu 1  are the 1st lines of curvatures and the curvesu 2  
are the 2nd lines of curvatures i.e., the parameterization ),( 21 uux has the lines of 
curvature as its parametric net.  Moreover, it may be assumed that 01 k  along the lines 

.1 constu  and that 2u  is the arc length along 01 u . If this is not so from the beginning, 
we replace the parameters by 11 uv  , 22

1

22
2 )],0([ duugv  . Now using the Weingarten 

transformation, we obtain 121 xkN  , 02 N  and since 012 g and 012 b , so 
0. 21 xx , 0. 21 xN . Since 0. 2 xN and 02 N ,  we have by a differentiation 
0. 22 xN . Again, differentiating 0. 21 xN  with respect to 2u  and using 

02122  NN  and 121 xkN   ( 02 k ), we get 0. 221 xx . 

Now 221212
12

2 .2.2/)( xxxxux  . Hence 0/)( 12
2  ux , and 2

2x does not 
depend 1u . Since 2u  is the arc length on 01 u  we have 1),0( 22

2 ux  and, therefore 
1),( 212

2 uux . By a differentiation, this yields 0. 222 xx . Finally, the three 
relations 0. 22 xN , 0. 221 xx , 0. 222 xx imply that 022 x  which shows that the 
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parameterization is same as that of the form ruled surface. This ends the proof of the fact 
that the surface considered is a ruled surface. 

Since, here the generators are .,1 constu   and 02 N , it follows that N  is constant 
along the generator so that the tangent is constant also. Hence, proof of the theorem is 
complete. 

It can be shown by making a suitable example that the statement of the theorem do 
not hold if S has planar points. 

Sometimes ruled surfaces termed developable surfaces. It is generated by just a 
single parameter family of planes. Thus there is two important points: (i) tangent plane to 
a developable surface contains only one parameter, and (ii) if the ruled surface is 
developable, the tangent planes at all points of any generator must be same. 

Theorem 3.2:  A surface S has curvature zero if and only if it is developable. 

Proof: For particular developable surfaces like cylinder and cone, it is clear that 
curvature is zero, and if these be excluded, the equation of developable surface can be 
written tsxX  )( , from which is possible to show that 0. 12  XNM , 

022  XN  so that curvature 02

2






FEG
MLNK . Here E, G, G, L, M, N are the 

fundamental coefficients. Hence the theorem is true.  

Theorem 3.3: If tangent plane of a ruled surface S is fixed along the generatos, then 
0K  on S. 

Proof: The hypothesis of the fixed tangent plane yields 02 N , and by the 
Weingarten transformation, one has 22 xlN  . Hence 2x is a principal vector with the 
corresponding principal curvature 01 k . Since 21kkK  , we get .0K  

Theorem 3.4: If a part S of a surface is of curvature zero, then S is isometric with a 
plane. 

Proof: Let two surfaces S  and S  with same constant curvature K  be mapped 
isometrically so that Sp  and sp  correspond the same point. Then 

)()()( 222212  dufduds , where f is some function of 1u , 2u , and also 
ffK /11 . If 0K , it can be shown that 1f  so that (*) can be written as 

22212 )()( dududs  which is the metric of the plane. Hence S is isometric with a plane. 

The complete geometric structure of the surface of curvature zero can be obtained 
due to the discussion of the following paragraph. 

Let p be any point of the surface S  which is of curvature zero. The first case that if 
p is a planar point. In this situation if a whole nbd. of p consists of planar points, then 
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this nbd. belongs to a plane (by proposition 2.2). (1)Thus p belongs to an open nbd. of S 
that lies in a plane.  

If p has no such nbd., p is the limit of a sequence of nonplanar points, since every 
nbd. of p has nonplanar points, (2)then certainly p belongs to an open nbd. of S that lies in 
a plane or, in a cylinder or, in a cone. 

Now let p be a nonplanar point. Then by theorem 3.3 we have, for example, 
0,0 21  kk ,  which allows us to use a parameterization (*) in section 2 at p whose 

parametric lines are the lines of curvature, and such that 1,1 2'2  yv  ( 1u is the arc 
length on 02 u ). This implies that 12b  vanishes and that v  and 'y  are 
orthogonal )0( 11 g . It follows that vyv  ''  whence, by a scalar multiplication 
with v , we deduce that  = 0. That is, '., ''' vyyv  . Now, if 0 on an open 
nbd. of p, we have ,constv   and (3)this nbd. belongs to a cylinder which is by definition 
a ruled surface with parallel generators.  

If 0)(  p  and every nbd of p has points with a nonvanishing  , p is the limit of a 
sequence of points with nonvanishing   and we shall again have case (2). 

Furthermore, assume that 0)(  p , then this holds on a whole nbd. of p, and let us 
look for a curve that is tangent to the straight lines containing the generators of S. Such a 
curve must have an equation of the form )()()( 111 uvuuyz   with the tangent 
vector ''' vvy   . This is collinear to v  if and only if   , where   is given as 
above. Then if the point z  with    is a fixed point i.e., 0' z  on a whole nbd. of p. 
(4)Then this nbd. belongs to a cone, and if 0)(' pz  , then clearly (5)the nbd. of p lies on a 
surface generated by the tangents of some space curve.  
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