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ABSTRACT 

The role of Coriolis force and suspended particles in the fragmentation of matter in the central 
region of galaxy have been studied. A general dispersion relation is obtained with the help of 
linearized relevant magnetohydrodynamics (MHD) using normal mode analysis. It was found that 
an infinite homogenous viscous, permeability and suspended particles in the central region of 
galaxy with finite electrical resistivity and rotation is a stable system. The Coriolis force plays an 
important role in the central region of the galaxy. 
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INTRODUCTION 

There has been a rapidly growing interest in understanding various collective 
process in gaseous plasma, which are ubiquitous in space, including diffuse and dense 
interstellar media, circumstellar shell, ionosphere, nova ejecta, star envelops, dark 
interiors molecular clouds, the out flow of red giant star and accretion has been found 
both theoretically and experimentally that, suspended particles, thermal conductivity, 
permeability, rotation, magnetic field and Coriolis force modify the existing plasma wave 
spectra (Gekker 1982, Jain 1986, Nicholson 1983, Artsimovich 1978, Shohet 1971, 
Ferraro and Plumption 1966). The starting point for modern star cosmogony is that stars 
are formed and reach a state similar to that of the sun owing to the gravitational 
condensation of rarefied clouds of gas. In this direction the gravitational instability is one 
of the fundamental concepts of modern astrophysical plasma and it is connected with the 
fragmentation of interstellar matter in regard to star formation. James (1902) first 
discovered gravitation instability of infinite homogeneous gaseous plasma and suggested 
that an infinite homogeneous self-gravitating fluid is unstable for all wave number which 
is less than critical Jeans wave number. A detailed contribution of the self-gravitational 
instability with different assumptions on the magnetic field and rotation has been given 
by Chandrasekhar (1961). In this connection, many researchers have discussed the 
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gravitational instability of a homogenous plasma considering the effects of various 
parameters (Bhatia 1967, Chhajlani et al. 1978, Sanghvi and Chhajlani 1986, Chhajlani 
and Parihar 1993, Ali and Shukla 2006, Pensia et al. 2008, Herrneggers 1972, Pensia et 
al. 2009, Prajapati et al. 2010).  

Along with this, magnetic fields play important role in interstellar gas dynamics. In 
the interstellar medium (ISM), a large amount of energy is injected by the stars, which 
leads to the formation of shock waves, but when these shock waves weaken, they become 
large amplitude hydromagnetic Alfvén waves. It is an established fact that magnetic 
fields can provide pressure support and inhibit the contraction and fragmentation of 
interstellar clouds. The magnetic field interacts directly only with the ions, electrons and 
charged grains in the gas. Collisions of the ions with the predominantly neutral gas in the 
clouds are responsible for the indirect coupling of the magnetic field to the bulk of the 
gas. The degree to which the magnetic pressure is important depends upon the field 
strength and the fractional abundance (Langer 1978).  

The problem of fluid dynamics in presence of suspended particles considering the 
effect  of suspended particles on the onset of Bernard convection, gravitational and 
magneto gravitational instabilities of an infinite homogeneous medium has been  
interested by a group of authors lead by Sharma (Sharma 1975, Sharma and Sharma 
1979, Sharma 1982) and they conclude that Jean’s criterion is a sufficient condition for 
the instability of an infinite, homogeneous magnetized self-gravitational gas particle 
medium in the presence of suspended particles and the finite conductivity of the medium. 

In addition to this it is suggested that the Coriolis force, which usually plays no 
important role in physical phenomena on a laboratory scale, may often exert a dominating 
influence on phenomena in cosmic physics. This has been investigated by 
Chandrashekhar (1961) and on the basis of his study the effect of the Coriolis force on 
problem of thermal instability and on the stability of a viscous flow in the presence of a 
magnetic field have been established. Lehnert (1954, 1955) investigated the problem of 
magneto turbulence and pointed out that the force is important for a large range of wave 
numbers of disturbances in the interior of the sun. 

In the above studies, authors did not consider the effects of suspended particles an 
Coriolis force in the fragmentation of netter in the central region of galaxy. In the present 
problem the authors considered the suspended particles as have been taken by a group of 
authors lead by Sharma (Sharma 1975, Sharma and Sharma 1979, Sharma 1982) and the 
parameter of Coriolis force as have been taken by Lehnert (1954, 1955). Thus the aim of 
the present paper was to study the effects of suspended particles and Coriolis force in the 
fragmentation of galaxy where, the stability of self gravitating interstellar plasma gas 
cloud is of considerable astrophysical significance. 
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In the present problem the authors found different modes of propagation of waves 
through media. The first mode of propagation showed the combined effects of 
permeability and suspended particles which was able to predict the complete information 
about the magnetohydrodynamic waves under the action of Coriolis force and 
instabilities of the hydromagnetic fluid plasma considered. 

The second mode of propagation represents the combined effect of viscosity, 
electrical resistivity, suspended particles and Coriolis force on the self gravitational 
instability of a homogeneous plasma which will help to understand the fragmentation of 
matter. 

In order to check the stability of system the authors used the Routh-Hurwitz criteria 
(Chhajlani and Parihar 1993, Pensia et al. 2008, Vyas and Chhajlani 1988). According to 
which the coefficients of the equation are all positive, satisfy the necessary condition of 
stability. For the sufficient condition the Routh-Hurwitz coefficients must be positive for 
any equation as 

 a0xn + a1xn-1 + a2xn-2 + a3xn-3+ ...... + an = 0. 

The Routh-Hurwitz coefficients are defined as  
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During discussion the authors checked that various equations (which represent 
different mode of propagation) whether satisfy the Routh-Hurwitz criterion or not. It was 
found that stability of system was valid under Jeans criterion.  
 
AN ESTIMATE OF THE CORIOLIS FORCE 

In the theory of turbulence as mentioned above, (Lehnert 1954, Lehnert 1955) the 
relative importance of the action on turbulent intensity by an angular velocity ‘’ and an 
external magnetic fluid, ‘B’ is given by the ratio  

c = 
()2/2

KB ,   (1) 

where  is the absolute permeability,  is the density of the medium, and  K is the wave 
number, which is supposed to be parallel with B


. It is early seen from dimensional 

consideration that c denotes the ratio between the Coriolis force ef


, and the 
electromagnetic force mf


. 

''2 


uuf cce .   (2)                                          
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the primed variables in equations (2) and (3) are dimensional and Bc, cU


, Lc= 2/Kc  and 

ci


 =  Lc/Tc = cU


= c ,Lc  are the characteristic values of the actual configuration and the 
state of motion. In equations (2) and (3) u,  and h are characteristic values of velocity, 
angular velocity and perturbed value of magnetic field and u’, ’ and h’ are their 
dimensionless values. Authors obtained 

m

e

f
f




= c
2G.        (4)                                                                 

where G is a function of the dimensionless variables only. The Coriolis force is 
introduced due to the velocity of particles of gas and suspended with respect to rotating 
frame of reference. 

 
MATHEMATICAL MODEL 

Authors consider an infinite homogeneous self-gravitating gas particle medium in 
the presence of a uniform magnetic field H


 (0, 0, H), which is rotating with uniform 

angular velocity , where, r is the radius vector from the origin on the axis of rotation 
and P is the pressure. Let ,,vu 

and N be the gas velocity, the particle velocity, the 
density of the gas and the number density of particles. If assumed uniform particle size, 
spherical shape and small relative velocities between the two phases, then the net effect 
of particle on the gas is equivalent to an extra body force term per unit volume KsN 
( vu 

 ) and is added to the momentum transfer equation for gas, where the constant Ks is 
given by Stokes drag formula Ks = 6vrp, rp is the particle radius and  is the kinetic 
viscosity of clean gas. Self gravitational attraction is added with kinetic viscosity term in 
equation of motion for gas. The induced magnetic field is denoted by h. 

In writing the equation of motion for particle equation (9) [detail of it is given in 
appendix A] as taken by Vyas and Chhajlani (1988), the buoyancy force is neglected as 
its stabilizing effect for the case of two-free boundaries is extremely small. Interparticles 
reactions are also ignored by assuming the distance between particles to be two large 
compared with their diameters. The stability of system is investigated by writing the 
solution to the full equations as initial state plus a perturbation. The initial state of the 
system is taken to be a quiescent layer with a uniform particle distribution. The equations 
thus obtained are linearized by neglecting the product of perturbed quantities. 

Thus, the linearized perturbation equations with suspended particles governing the 
motion of hydromagnetic infinite electrically conducting in compressible fluid plasma 
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rotating with a uniform angular velocity are given, as have been taken by Lehnert 
(Lehnert 1954, Lehnert 1955) for Coriolis force and for suspended particles have been by 
a group of authors lead by Sharma (Sharma 1975, Sharma and Sharma 1979, Sharma 
1982). In this paper the authors investigated the combined influence of Coriolis force and 
suspended particles on the fragmentation of matter in the interstitial plasma. 

The magnetohydrodynamic equations of an incompressible fluid with infinite 
electrical conductivity are as (Lehnert 1954, Lehnert 1955)   

'
',

t
huECurljh
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

 (5) 
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. (6) 

Magnetic flux conservation equation 

h


. =0.  (7) 

Mass conservation equations 
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  (8) 

The momentum transfer equation for fluid including extra body force term per unit 
volume )( uvK s


 , where the constant Ks is given by Stoke’s drag formula Ks = 6vrp. 
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where mN is the mass of the particle per unit volume. 

Equation of motion        
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The collision between suspended particles and fluid is given as 

uv
t









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
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where 
sK

m  (Appendix A) 

The continuity equation for fluid is as: 

0.  u


. (12) 



6 PENSIA  et al. 

MHD-field equation: An elimination of j


 and E


is analogous to the deduction by 
Lehnert (1954), is given as 
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where c is the centrifugal potential and 0 is the static value of . 
 
DISPERSION RELATION 

Let us consider plane waves propagated in the Z-direction, so that all perturbed 
quantities vary as 

exp {i(kz + t)}  exp{ik(z + ct)} (16) 

where k is wave number,  is the growth rate of the perturbation and c = ω / k is 
velocity of propagation.  

From equations (7) and (12)  

uz

y  = 
hz

y  = 0 (17) 

which shows that the waves are transverse because the gradient of velocity and 
magnetic field in z-direction is zero thus  

u = (ux, uy, 0) and h = (hx, hy, 0). (18) 

Then equation (13) becomes 

(i + k2)hx = ikHzux.              (19) 

(i + k2)hx = ikHzuv.   (20) 

hz = uz = 0.   (21) 

Equation (14) becomes as 

        (i + 1)(i + v)ux = 
i
  (i + 1)KHzhx + (i + 1)2zuy + 

KsN
  iux (22) 
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        (i + 1)(i + v)uy = 
i
  (i + 1)KHzhy + (i + 1)2zux + 

KsN
  iut (23) 

and 

2(yux – xuy)(i + 1) – (i + 1) – 

z  – 

1
2 

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



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 2222

yxyx uuhh  = 0 (24) 

Equations (19) - (24) can be written  

[X] [Y] = 0,      

where [X] is the fifth order square matrix and [Y] is a single column matrix whose 
elements are hx, hy, ux, uy, and . For a nontrivial solution of the equation (25) the 
determinant of the matrix [X] should vanish, leading to the general dispersion relation. 

( + 1)M1{M2(+1) – 
KsN
  }{M1M3( + 1) – 

KsN
  – (+1) VA

2K2}+[2mv
2 + 

2m
2v + 8m2 + 2k2VA

2 {m+}] + 42m
2 + m

2v
2 + k2VA

2mv + VA
2k4 = 0 (26) 

where 2
1

)/(  zA HV   is Alfvén velocity in direction of K. 

i = , m = k2,  =  (k2 + 
1
k2

 ), M1 = ( + m), M2 = ( + v), (27) 

The dispersion relation (26) shows the combined influence of suspended particle 
viscosity, permeability, electrical conductivity, rotation and magnetic field on the 
magnetohydrodynamic waves under the action of Coriolis force. It is found that in this 
dispersion relation the terms due to the permeability and suspended particles have entered 
through the factor ( + 1) and KsN/. If the effect of suspended particles is ignored, 
then eq. (26) reduces to Lehnert (1955). Thus with this corrections we find that the 
dispersion relation (26) is modified due to the combined effects of permeability and 
suspended particles. This dispersion relation will be able to predict the complete 
information about the magnetohydrodynamic waves under the action of Coriolis force 
and instabilities of the hydromagnetic fluid plasma considered. The above dispersion 
relation is very lengthy and study the effects of each parameter we now reduces the 
dispersion relation using normal mode analysis and we also discuss the stability of the 
system using Routh-Hurwittz criterion. 
 
DISCUSSION OF DISPERSION RELATION 

The dispersion relation (26) have two independent factors, each represents the mode 
of propagation incorporating different parameters. The first factor of dispersion relation 
(26) equating to zero, then  

  + 
1
 = 0 .  (28) 
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Equation (28) represents stable mode due to suspended particles and it is clear that 
suspended particles of fluid oppose the fragmentation of matter in the central region of 
galaxy. 

The second factor of the dispersion relation (26) equating to zero,  

 06 + 15 + 24 + 33 + 42 + 5 + 6 = 0. (29) 

where   0 = 1 

2 = 
2R2

 . 

2 = 
2R2

  + 
2R2

1

2  – 4z
2. 

3 = 
2R4

  + 
R2

2
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z
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8z
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2R2R4

2
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  ( 
R2

  K2VA
2) + ( 

4z
2
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where 1 = (m + v)           R1 = (1 + r1 – 
KsN
  )        R2 = (r1 + mv – 

mKsN
  } 

R3 = (K2VA
2 + R2)     R4 = (K2VA

2 + mv)         R5 = (1 + m) 

This dispersion relation (29) shows the combined influence of viscosity, electrical 
resistivity, suspended particles and Coriolis force on the self-gravitational instability of a 
homogeneous plasma in the central region of galaxy. This dispersion relation will be able 
to predict the complete information about the fragmentation of matter (Fluid plasmas) 
considered.  

In order to discuss the dynamical stability of the system represented by (29), authors 
applied the Routh-Hurwitz criterion [as introduction and taken by Vyas and Chhajlani 
(1988)]. According to this criterion, the necessary condition that all the coefficients of the 
polynomial equation (29) should be positive. In order to satisfy the sufficient condition, 
authors calculate the minors of the Hurwitz-Matrix formed by these coefficients, which 
are 
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 >> 1 then some ’s are negative which means that the matter is dominated by 
fragmentation or the stabilizing and if  << 1 then all the ’s are positive, which means 
that the system tends towards stability. 

 Now the stability of the medium corresponding to infinite conductivity ( = 0) 
plasma is analysed. For this case equation (23) takes a form with all coefficients positive 
which is a necessary condition for the stability of the system. To obtain the sufficient 
condition, the principal minors of the Hurwitz-matrix must be positive and get 
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2

2
13

2

2

2

2
1

2

22

2

3
12

222
1 1622

















































 zvvAA RRRVKRRVKR

 









































 31

22222
1

2
1 84

1
RRVKVKRR zAA . 

3
222

24 )(2



 AVK . 

,1 3
1 












MKR v           vR 2           ),( 22

3 vAVKR        22
4 AVKR  .    
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For non-rotating and infinitely conducting media, the ’s are given as  


 2

1
2R . 

























22

2

2
1

2

2
12

2
32

2
223 AVKRRRRR

. 
















































 2

223
12

222
1

2

22
31

223
1

2
31

3
2222 AAAA VKRRVKRVKRRVKRRR         





















 vv RR 3

2

2

2

2
1 . 

3
222

24 )(2



 AVK . 

So, it is seen that all the ’s are positive. It means that non-rotating and infinitely 
conducting media are stable. In the absence of suspended particles the dispersion relation 
(26) can be reduced as earlier obtained by Lehnert (Lehnert 1954, Lehnert 1955) and 
given as  

[( + m) ( + v) + K2VAZ
2]2 = – 42( + m)2 (30) 

VAZ = VAcos,   z = cos. (31) 

The solution of the dispersion relation (30) can be written as  

±  = KVAZ [± 1 + i(2 + 3) ± {1 + [2 ± i(3 – 2)]2}1/2], (32) 

where      1 = 
AZ
KVAZ

 ;       2 = 
v

2VAZ
 ;   3 = 

m
2VAZ

 ; 

It is noted that the right hand side of equation (32) is related with four different types 
of waves whereas the left hand side is related with two possible wave fronts which is 
propagating in the opposite direction. For small values of 1, 2 and 3 it is  






 cos

3

2
1 


 z  (33) 

From equation (33) it is clear that the Coriolis force is more dominated for a wave 
with a period, 2 as compared to the period of revolution, 3 of the medium. 

 
CONCLUSION 

In this paper, authors investigated the problem of fragmentation of matter in the 
central region of galaxy in the presence of suspended particles under the effect of Coriolis 
force. The general dispersion relation is obtained, which is modified due to the presence 
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of these parameters. The general dispersion relation is reduced in the different cases of 
interest. It was found that the presence of suspended particles modifies the fundamental 
criterion of fragmentation of matter and it is stable damped mode. The stability of the 
system is discussed by Routh-Hurwitz criterion. Authors found that all the coefficients of 
minors of the Hurwitz matrix may be positive or negative depends upon the value of  
and if  >> 1 then all the coefficient of Hurwitz matrix is negative which means that the 
matter is dominated by fragmentation then stability and if  << 1 the system tends to 
towards stability.  

It is also found that resistivity of the medium has destabilizing influence on the 
system where viscosity has a stabilizing influence on the system. In the absence of 
suspended particles with some assumptions such as viscosity, resistivity and rotational 
parameters are small, then the Coriolis force is more dominated for a wave with the 
period as compared to the period of revolutions of the system. 

  
Appendix A 

The equation (9) represents the momentum transfer of gaseous particles under the 
influence of stokes drag effect. 

  )().( uvuvu
Ks
m

t
u

Ks
m 







  (A) 

Let  =  
m
Ks , and  0]).[(  uu 

 then equation (A) becomes 

 )( uv
t
u 










 . (B) 

vu
t
u 










 . (C) 

vu
t










 



 1 . (D) 

 
REFRENCES 
 

Ali, S. and P. K. Shukla. 2006. Jeans instability in a plasma with positive–negative charged and 
neutral dust components. Phys. Scr. 73: 359. 

 

Artsimovich, L. A. 1978. A Physicist’s ABC on Plasma. Mir Publication, Moscow. 
 

Bhatia, P. K. 1967. Gravitational Instability of a Rotating Anisotropic Plasma. Physics. of Fluids. 
10: 1652-1653.  

 

Chandrashekhar, S. 1961. Hydrodynamics and Hydromagnetic Stability. Clarendon Press, Oxford. 
 

Chhajlani, R. K., P. Vashistha, and S. C. Bhand. 1978. Effect of Conductivity on Magneto-
Gravitational Instability and Suspended Particles. Z. Naturforsch 339:1469. 

 



12 PENSIA  et al. 

Chhajlani, R.K. and A.K.  Parihar. 1993. Stability of Self-Gravitating Magnetized Hall Plasma with 
Electrical and Thermal Conductivity through Porous Medium. Contrib. Plasma Phy. 33(3): 
227-234. 

 

Ferraro, V. C. A. and C. Plumption. 1966. An introduction to Magneto Fluid Mechanics. Oxford 
University Press. 

 

Gekker I. R. 1982. Interaction of Strong Electromagnetic Field with Plasmas. Clarendon Press, 
Oxford.  

 

Herrengger, F. J. 1972. Effects of Collisions and Gyroviscosity on Gravitational Instability in a 
two-Component Plasma. J. Plasma Physics 8:393-400.  

 

Jain, H. C. 1986. Plasma--The Forth State of Matter. Sterling Pub. (Pri) Ltd., New Delhi. 
 

Jeans, J. H. 1902. The Stability of Spherical Nebula. Phil. Trans. Ray. Soc. London 199:1-53.  
 

Langer, W. D. 1978. The stability of interstellar clouds containing magnetic fields. Astrophysical 
Space Journal. 225:95-106. 

 

Lehnert, B. 1954. Magnetohydrodynamic Waves under the Action of the Coriolis Force. Astrophys. 
J. 119: 647-654.   

 

Lehnert, B. 1955. Magnetohydrodynamic Waves under the Action of the Coriolis Force II. 
Astrophys. J. 121:481. 

 

Nicholson, D.R. 1983. Introduction to Plasma Theory. John Wiley and Sons, New York. 
 

Pensia, R. K. and V. Ghorela and R.K. Chhajlani. 2008. Thermal Instability of a Self Gravitating, 
Rotating Gaseous Plasma with Generalized Ohm's Law. Ultra Scientist 20(3):541-544. 

 

Pensia, R. K. and V.  Ghorela and R.K. Chhajlani. 2009. Magneto thermal instability of Self- 
gravitational viscous Hall plasma in the presence of suspended particle. Acta Ciencia Indica 
35(2): 141-148. 

 

Prajapati, R. P., R. K. Pensia, S. Kaothar and R. K.Chhajlani.2010.Self-Gravitational Instability of 
Rotating Viscous Hall Plasma With Arbitrary Radiative Heat-Loss Functions and Electron 
Inertia. Astrophys. Space Sci. 327:139-154.  

 

Sanghavi, R.K. and R.K. Chhajlani. 1986. Magneto-gravitational instability of a rotating and 
finitely-conducting fluid. Astrophys. Space Sci. 126:143-153. 

 

Sharma, K.C. 1982. Gravitational Instability of Hall Plasma in the Presence of Suspended Particles. 
Astrophys. Space Sci.85:263. 

 

Sharma, R.C. 1975. Suspended Particles and the Gravitational Instability. Zeit Apple. Math. Mech. 
55: 615-616. 

 

Sharma, R.C. and K.C. Sharma. 1979. Suspended Particles and the Gravitational Instability of a 
Rotating Plasma. Astrophys. Space Sci.71:325. 

 

Shohet, J. L. 1982. The Plasma State. Academic Press, New York. 
 

Vyas, M. K. and Chhajlani R. K. 1988. Gravitational instability of a thermal-conducting plasma 
flowinf through a porous medium in the presence of suspended particles. Astrophys. Space 
Sci. 149: 323-342. 

 
 

(Received revised manuscript on 12 September, 2011) 


