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ABSTRACT

Objective: COVID-19 is a complex disease in which the interaction of the SARS-CoV-2 virus with 
target cells, activation of the immune system, and release of inflammatory cytokines are closely 
intertwined. Oxidative stress is associated with all of these events, which significantly contrib-
ute to the pathogenesis of COVID-19. This study aimed to analyze the relationship quantitatively 
between oxidative stress and the disease severity in hospitalized patients.
Methodology: Articles measuring pro-oxidant and antioxidant markers in patients with COVID-
19 were retrieved through the search engines ScienceDirect, PubMed, and Google Scholar. Two 
authors independently extracted data using the data extraction tool, and a third arbitrator was 
consulted if consensus was not reached. Data were subjected to meta-analysis using the “meta” 
package of R programming for forests and the trim and fill method under a random-effects model 
based on standardized mean differences (SMDs). We tested for heterogeneity in effect size using 
the I² statistic and Egger’s test to assess bias.
Results: Of the 3,103 articles screened, 17 met the inclusion criteria. When comparing control vs. 
mild cases, control versus severe cases, and mild versus severe cases, hydrogen peroxide (H₂O₂) 
levels were significantly increased [(SMD, 2.46; CI: –0.81 to 5.73; p = 0.05), (SMD, 3.22; CI: –0.70 to 
7.14; p = 0.05), and (SMD, 0.49; CI: –0.23 to 1.20; p < 0.05), respectively]. Similarly, total oxidative 
stress (TOS) levels were significantly increased when comparing control versus mild cases (SMD, 
4.01; CI: 0.85 to 7.18; p = 0.01), control versus severe cases (SMD, 6.51; CI: –0.59 to 13.62; p = 
0.07), and mild versus severe cases (SMD 3.07; CI: 01.21 to 7.36; p = 0.05). However, superoxide 
dismutase (SOD) levels were decreased when comparing control versus mild cases (SMD, –0.60; 
CI: –1.31 to 0.12; p = 0.05), control versus severe cases (SMD, –1.68; CI: –4.00 to 0.64; p = 0.05), 
and mild versus severe cases (SMD, –0.73; CI: –1.81 to 0.36; p = 0.06). Similarly, catalase and glu-
tathione levels were decreased when comparing control versus mild cases, control versus severe 
cases, and mild versus severe cases. Moreover, thiol levels were significantly decreased when 
comparing control versus mild cases (SMD, –1.72; CI: –2.91 to –0.53; p = 0.005), control versus 
severe cases (SMD, –2.83; CI: –3.97 to –1.69; p = 0.00), and mild versus severe cases (SMD, –1.19; 
CI: –1.83 to –0.54; p = 0.00).
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Conclusion: This meta–analysis revealed significantly higher levels of pro-oxidants (H₂O₂ and TOS) 
and lower levels of antioxidants (SOD, CAT, GSH, and thiols) in severe cases of COVID-19 compared 
to controls and mild cases, indicating that oxidative stress contributes to the severity of the dis-
ease. Assessing pro-oxidant and antioxidant stress markers may help assess disease severity for 
effective triage of COVID-19 patients. This information will be valuable for a broader discussion on 
the pathogenesis of COVID-19.

Introduction

Coronavirus disease 2019 (COVID-19), caused by the 
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), is the largest coronavirus pandemic in history [1]. 
As of June 26, 2025, the disease has been reported world-
wide with 778 million infections and more than 7.0 million 
deaths. The SARS-CoV-2 virus infects humans by binding to 
an angiotensin-converting enzyme 2 (ACE-2) on the muco-
sal surface of the respiratory tract [2]. The virus initially 
replicates in the respiratory system’s epithelial cells [3, 4]. 
The virus can also infect epithelial cells lining the diges-
tive, cardiovascular, and central nervous systems, as high 
expression of ACE-2 has been reported in these systems 
[4, 5].

Clinically, the disease is mainly characterized by mild, 
moderate, and severe conditions. While most patients with 
COVID-19 (approximately 80%) experience asymptomatic 
to mild symptoms such as cough, fever, and fatigue, 15%–
20% of patients develop moderate to severe symptoms 
of pneumonia, and 3%–5% of patients become severely 
ill with conditions such as acute respiratory distress syn-
drome, acute shock, and/or multiple organ failure [6, 7]. 
Pathologically, severe/critically ill COVID-19 is character-
ized by “cytokine storm or cytokine release syndrome,” a 
hyperinflammatory response associated with excessive 
secretion of pro-inflammatory cytokines and an overreac-
tion of the immune system [6, 8, 9]. Cytokine storm, a poor 
prognosis of the disease, is associated with the worst out-
comes and highest mortality rates in COVID-19 patients 
[10–12]. Epidemiological studies suggest that COVID-19 
severity correlates with underlying comorbidities, includ-
ing diabetes, hypertension, chronic respiratory and kidney 
diseases, cancer, obesity, cardiovascular disease, immu-
nosuppressive conditions, and aging [13]. Elevated levels 
of reactive oxygen species (ROS) have been observed in 
patients with underlying comorbidities [14]. Interestingly, 
elevated levels of ROS have also been linked to the patho-
physiology of COVID-19, including endothelial cell dys-
function, blood clotting, microvascular thrombosis, and 
platelet aggregation, which ultimately contribute to the 
severity and mortality of COVID-19 [12]. Therefore, oxi-
dative stress and associated inflammation are now recog-
nized as important contributors to COVID-19 pathogenesis 
and severity [15].

When the body accumulates excess ROS and over-
whelms the antioxidant defenses of cells and the body’s 
ability to detoxify toxic effects, it induces oxidative stress 
[16–18]. The most damaging ROS to cells includes super-
oxide anion (O₂•−), hydroxyl anion (•OH), and hydrogen 
peroxide (H₂O₂), while intracellular antioxidants in the 
human body include superoxide dismutase (SOD), gluta-
thione (GSH), and catalase (CAT). SOD catalyzes the disso-
ciation of O₂•− to H₂O₂, which, in turn, is decomposed to 
H₂O and O₂•− by CAT [19]. Moreover, H₂O₂ is converted to 
H₂O by glutathione peroxidase (GPx), which is recharged 
by glutathione reductase (GSR), which is itself reactivated 
by glutathione (GSH) [20, 21]. Optimal levels of GSH are 
essential for the activity of the GPx and GSR systems, where 
GSH serves to restore each enzyme to its active state [22], 
thereby maintaining pro-oxidant and antioxidant homeo-
stasis in the body. Furthermore, thiols play an important 
role in cellular antioxidant defense and redox signaling 
[23, 24].

Our recent meta-analysis on a potent antioxidant sup-
plement, N-acetylcysteine (NAC), showed improved clinical 
outcomes of COVID-19, specifically, increased oxygen satu-
ration, significant reductions in inflammatory marker lev-
els, and reduced mortality [25]. Several narrative reviews 
have reported a strong link between COVID-19 pathogen-
esis and oxidative stress [14, 26, 27]. Furthermore, several 
observational and cohort studies have reported significant 
changes in ROS and antioxidant levels in severe COVID-19 
patients [28–33]. However, there are no studies that quan-
titatively analyze the relationship between oxidative stress 
and the severity of COVID-19. Therefore, we conducted a 
meta-analysis of pro-oxidant and antioxidant markers in 
hospitalized COVID-19 patients and healthy individuals.

Materials and Methods

Ethical approval

Meta-analysis was exempt from ethical approval because 
we collected or synthesized data from previously pub-
lished research articles in which the corresponding 
authors noted ethical approval.
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Search strategy

We identified studies that published data on pro-oxidant and 
antioxidant markers in confirmed COVID-19 patients. We 
used the PRISMA guidelines to search electronic databases 
(S1; PRISMA checklist). We retrieved studies from PubMed, 
Google Scholar, and ScienceDirect. The search included 
medical subject headings (MeSHs) terms, keywords, combi-
nations, and snowball searches to retrieve relevant papers. 
We used search terms independently and/or together using 
various Boolean operators such as “OR” or “AND.” The key-
words and phrases were “COVID-19”, “SARS-CoV-2”, “novel 
Coronavirus”, “oxidative stress”, “redox imbalance”, “anti-
oxidants”, and “enzymatic antioxidants”. Using those key-
words, the following search map was applied: (blood OR 
complications OR diagnosis OR immunology OR mortality 
OR pathology OR physiopathology) AND COVID-19 [MeSH 
Terms] AND (adverse effects OR genetics OR immunology) 
AND oxidative stress [MeSH Terms] AND (adverse effects 
OR metabolism OR pharmacology OR therapeutic use) 
AND antioxidants [MeSH Terms] on the PubMed database 
(S2). Thus, the PubMed search combines #1 AND #2 AND 
#3. Full-length articles published in English on confirmed 
COVID-19 patients aged 19 to 80+ years. Four research-
ers independently assessed the search results. The articles 
searched were published from January 2020 to April 2025.

Study selection/eligibility criteria

Retrieved studies were exported to EndNote version 21 
to remove duplicate studies. We screened the selected 
studies using their titles and abstracts before retrieving 
the full-text articles. We followed pre-specified inclu-
sion and exclusion criteria to screen the full-text articles. 
Discrepancies were considered for the final selection of 
studies for inclusion in this study.

Inclusion criteria 

Articles were included in this meta-analysis if they met the 
following criteria: (1) studies that evaluated pro-oxidant 
and antioxidant markers in patients with COVID-19; (2) 
data on oxidant and antioxidant parameters in mild, severe, 
dead/surviving COVID-19 patients; (3) randomized control 
trials, cross-sectional, observational, case-control, prospec-
tive, and cohort studies measuring pro-oxidant and antioxi-
dant markers in serum, plasma, or other tissues of patients 
with COVID-19; (4) the disease (COVID-19) was diagnosed 
according to the standard protocol recommended by the 
World Health Organization, where multiple tests were per-
formed on the same sample, including PCR, antigen rapid 
diagnostic methods, biochemical tests, radiological, clinical 
history, and signs and symptoms; (5) human subjects; (6) 
English language; and (7) studies that provide case num-
bers, means, and standard errors/deviations.

Exclusion criteria

Articles were excluded from this meta-analysis if they met 
the following criteria: (1) conference summaries, corre-
spondence, editorials, meta-analysis, and review papers; 
(2) animal studies; (3) dual publications (if the same data 
were used in multiple publications, the article that pro-
vided the strongest evidence was considered for this anal-
ysis); (4) non-English articles; and (5) insufficient data.

Quality assessment

The quality of the studies was assessed based on the 
Newcastle–Ottawa Scale (NOS) [34]. A total NOS score ≥ 7 
indicates a good quality of the included studies. The NOS 
score is presented in Table 1.

Participant

Participants were divided into three groups: control, mild, 
and severe COVID-19. COVID-19 was diagnosed by mul-
tiple methods on the same sample, including PCR, rapid 
tests, biochemical, clinical, and radiological/CT scan 
parameters. The “control” group consisted of healthy par-
ticipants. The “mild” group included confirmed COVID-19 
cases with cough, fever, and fatigue, but no typical pneu-
monia changes on CT scan/radiology. The “severe” group 
included confirmed COVID-19 cases with severe pneumo-
nia, organ failure, and respiratory distress.

Meta-analysis

We developed a data extraction tool in an Excel sheet, and the 
following data from eligible studies were extracted: author, 
study location, sample size, number of mild and severe 
patients, pro-oxidant and antioxidant markers, study type, 
and publication NOS score. This study used oxidant mark-
ers, including H₂O₂, O₂•−, and TOS, and antioxidant mark-
ers, including SOD, CAT, GSH, NO, and thiols. Two authors 
(Shah Alam and Hasan) independently extracted data using 
the data extraction tool, and a third arbitrated if consensus 
was not met. Data were subjected to meta-analysis using the 
“meta” package in R for forest plots under a random-effects 
model based on standardized mean difference (SMD), and 
adjusted SMDs from the trim and fill approach were also 
used to predict COVID-19 severity from control to mild, con-
trol to severe, and mild to severe [35]. However, adjusted 
SMD could be computed for more than two studies [36, 
37]. The I² statistic was used to calculate the heterogeneity 
between the studies, and a p-value of less than 0.05 indi-
cated significant study heterogeneity. If the value of I² is less 
than 25%, there is no study heterogeneity; if the value of I² 
is between 50% and 74%, there is moderate heterogeneity; 
and if the value of I² is 75% or more, there is high heteroge-
neity. Egger’s test was used to assess study bias.
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Results

Search results and characteristics of included studies

In the literature review, 3,103 articles were initially 
retrieved from electronic databases: PubMed (n = 35), 
Google Scholar (n = 979), and ScienceDirect (n = 2,089). 
Duplicate articles (n = 1,257) were excluded. The remain-
ing 1,846 articles were title and abstract reviewed, and 
1,733 were excluded. Furthermore, out of the remaining 
113 articles, a full-text review was performed; 76 review 
articles and 20 articles with incomplete or inconsistent 
information were excluded (Fig. 1). Finally, 17 articles 
met the inclusion criteria for this meta-analysis [28–32, 

38–48]. The detailed features of the included studies, such 
as study location, design, size, pro-oxidant and antioxidant 
markers, and NOS score, are shown in Table 1.

Meta-analysis results of pro-oxidant markers

Compared to controls versus mild cases, controls versus 
severe cases, and mild versus severe cases, H₂O₂ levels 
were found to be significantly higher [(SMD = 2.46; CI: 
–0.81 to 5.73; p = 0.05, I² = 97%), (SMD = 3.22; CI: –0.70 to 
7.14; p = 0.05, I² = 98%), and (SMD = 0.49; CI: –0.23 to 1.20; 
p = 0.05, I² = 82%), respectively] (Fig. 2A–C). Similarly, 
TOS levels were found to be significantly higher when com-
pared to controls versus mild cases (SMD = 4.01; CI: 0.85 

Figure 1.  The PRISMA flow chart describes the number of articles identified, screened, and included for eligibility in this study (Adapted from 
[49]).
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to 7.18; p = 0.013, I² = 97%), controls versus severe cases 
(SMD = 6.51; CI: –0.59 to 13.62; p = 0.07, I² = 98%), and 
mild versus severe cases (SMD 3.07; CI: 01.21 to 7.36; p = 
0.05, I² = I2 = 97%) (Fig. 2D–F). The adjusted SMDs from 
the trim and fill method also showed significant changes 
in H₂O₂ and TOS between control and mild, control and 
severe, and mild and severe patients (Table 2).

Meta-analysis results of antioxidant markers

When we compared control vs mild cases, control vs severe 
cases, and mild vs severe cases, the levels of SOD were 
found to be significantly lower [(SMD, –0.60; CI: –1.31 to 
0.12; p = 0.05), (SMD, –1.68; CI: –4.00 to 0.64; p = 0.05), 
and (SMD, –0.73; CI: –1.81 to 0.36; p = 0.06), respectively]. 
(Fig. 3A–C). Similarly, CAT levels were found to decrease 
when comparing control versus mild cases (SMD, 1.75; 
CI: –1.80 to 5.31; p = 0.334), control versus severe cases 
(SMD, 2.42; CI: –0.36 to 5.19; p = 0.057), and mild versus 
severe cases (SMD, –0.23; CI: –0.55 to 0.10; p = 0.056) (Fig. 
3D–F). GSH levels were found to decrease when comparing 
control versus mild cases (SMD, –2.05; CI: –5.42 to 1.32; p 
= 0.234), control versus severe cases (SMD, –3.57; CI: –9.87 
to 2.73; p = 0.267), and mild versus severe cases (SMD, 
–1.03; CI: –2.51 to 0.44; p = 0.170) (Fig. 3G–I). Moreover, 

thiol levels were significantly decreased when comparing 
control versus mild cases (SMD, –1.72; CI: –2.91 to –0.53; p 
= 0.005), control versus severe cases (SMD, –2.83; CI: –3.97 
to –1.69; p = 0.001), and mild versus severe cases (SMD, 
–1.19; CI: –1.83 to –0.54; p = 0.001) (Fig. 4D–F). In addi-
tion, nitric oxide (NO) levels were significantly decreased 
when comparing control versus mild cases (SMD, 0.08; CI: 
–0.17 to 0.33; p = 0.546), control versus severe cases (SMD, 
–0.45; CI: –0.96 to 0.05; p = 0.058), and mild versus severe 
cases (SMD, –0.50; CI: –1.04 to 0.04; p = 0.057) (Fig. 4A–C). 
Similarly, the adjusted SMD from the trim and fill method 
also showed significant changes in thiol and NO between 
control and mild, control and severe, and mild and severe 
patients (Table 2).

Publication bias

We assessed the publication bias of the literature using 
Egger’s test for all studies included in each index (Table 
2). Funnel plots are a widely used technique for detecting 
publication bias. However, this requires at least 10 studies 
[51]. To achieve the same objective, we used Egger’s test 
and obtained p-values greater than 0.05 (Table 2). If the 
p-value is less than 0.05, publication bias is indicated [51]. 

Table 1.  Summary information of the included studies.

Sl 
No.

Reference Study location
Sample size (n) Pro-oxidant/

antioxidant markers
Study design

NOS 
score Control Mild Severe

1 Mehri et al. [30] Hamadan (Iran) 24 14 10 H2O2, CAT, TOS Case-control 8

2 Montiel et al. [31] Brussels (Belgium) 15 30 30 NO Observational 7

3 Badawy et al. [29] Egypt 11 16 23 H2O2 Observational 8

4 Yaghoubi et al. [32] Mashhad (Iran) 60 60 60 SOD, NO, CAT Cross-sectional 
comparative 

7

5 Žarković et al. [38] Zagreb (Croatia) 34 66 22 SOD Case–control 7

6 Cekerevac et al. [28] Kragujevac (Serbia) 35 48 33 H2O2, SOD, NO Observational and cross-
sectional

8

7 Al-Kuraishy et al. [40] Baghdad (Iraq) – 39 41 TOS Single-center cohort 8

8 Çakırca et al. [41] Sanliurfa (Turkey) – 46 40 TOS, TT Prospective, single-center 7

9 Kalem et al. [42] Turkey (Ankara) 70 117 27 TT Prospective cohort 8

10 van Eijk et al. [44] Groningen (Netherland) 30 29 29 TT Prospective cohort 7

11 Erel et al. [23] Turkey (Ankara) 70 90 82 TT Case-control 8

12 Karkhenei et al. [50] Iran 18 35 19 TOS, GSH Case-control 8

13 Gadotti et al. [33] Brazil – 44 33 H2O2 Prospective cohort 8

14 Aykac et al. [45] Turkey 34 16 18 TOS, TT Prospective cohort 8

15 Coronel et al. [46] Brazil 20 – 15 CAT Observational 7

16 Neves et al. [47] Brazil – 95 20 GSH Prospective cohort 8

17 Mete et al. [48] Turkey 43 – 43 TT Observational 8

Total 464 745 545

CAT, Catalase; GSH, glutathione; H2O2, Hydrogen peroxide; NO, nitric oxide; SOD, superoxide dismutase; TOS, total oxidative stress; TT, total thiols;.
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Figure 2.  Forest plot of the pro–oxidant markers between 
COVID-19 (mild or severe) and healthy individuals. (A) H₂O₂ 
(control vs. mild), (B) H₂O₂ (control vs. severe), (C) H₂O₂ (mild vs. 
severe), (D) TOS (control vs. mild), (E) TOS (control vs. severe), 
and (F) TOS (mild vs. severe).

Figure 3.  Forest plot of the antioxidant markers between 
diseased and control/healthy individuals. (A) SOD (control vs. 
mild), (B) SOD (control vs. severe), (C) SOD (mild vs. severe), (D) 
CAT (control vs. mild), (E) CAT (control vs. severe), (F) CAT (mild 
vs. severe), and (G) GSH (mild vs. severe).
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Thus, these results indicate that our publications were 
unbiased.

Sensitivity analysis

Significant heterogeneity was detected across all compar-
isons (Figs. 2–4). Sensitivity analysis showed that exclud-
ing any specific studies for H₂O₂, TOS, SOD, CAT, GSH, 
thiols, and NO within the control to mild cases, control to 
severe cases, and mild to severe cases did not affect our 
results. Sensitivity analysis showed that excluding any 
specific studies for H₂O₂, TOS, SOD, CAT, GSH, thiols, and 
NO between the control-to-mild, the control-to-severe, 
and the mild-to-severe did not affect our results (data not 
shown), suggesting that it is better to keep this result in 
the meta-analysis. Thus, our sensitivity analysis indicates 
that most of our results are reliable.

Discussions

This meta-analysis explored the connection between oxida-
tive stress and the severity of COVID-19. First, we examined 

pro-oxidant markers, H₂O₂, and TOS, and found they were 
significantly elevated in both mild and severe patients 
compared to healthy individuals. Next, we assessed lev-
els of intracellular antioxidant markers, SOD and CAT, and 
observed that they were significantly reduced in mild and 
severe cases relative to healthy controls. Finally, we mea-
sured thiol and its derivative, GSH levels, along with NO, 
and found notable decreases in mild and severe COVID-19 
patients compared to controls. These findings align with 
a hospital cohort study that reported pro-oxidant and 
antioxidant gene polymorphisms are linked to COVID-19 
severity [52].

Accumulating evidence indicates that the pathophys-
iological underpinnings of COVID-19 severity are asso-
ciated with oxidative stress [14]. On the other hand, NAC 
and vitamin C, antioxidant therapies, have shown positive 
outcomes for variant-independent SARS-CoV-2 infection 
[25, 53]. Although meta-analysis on pro-oxidant and anti-
oxidant markers in monitoring COVID-19 severity has not 
yet been conducted, the current study, which includes 
17 papers with 1,754 participants, found that oxidative 

Table 2.  Summary information on the pro-oxidant and antioxidant markers results from the forest plots and the trim and fill method.

Markers
Comparison 

between

Studies Egger’s test (p =) SMD 95% CI p-value (SMD)
Unbiased results according to the trim 

and fill method

SMD 95% CI p = 

H2O2

Control vs. mild 3 0.087 2.46 –0.81 to 5.73 0.054 –0.17 –4.00 to 3.65 0.052

Control vs. severe 3 0.036 3.22 –0.70 to 7.14 0.051 –0.39 –5.34 to 4.55 0.058

Mild vs. severe 4 0.131 0.49 –0.23 to 1.20 0.058 0.06 –0.66 to 0.80 0.065

TOS

Control vs. mild 3 0.119 4.01 0.85 to 7.18 0.013 0.89 –3.26 to 5.05 0.057

Control vs. severe 3 0.012 6.51 –0.59 to 13.62 0.072 0.44 –8.14 to 9.02 0.059

Mild vs. severe 5 0.232 3.07 –1.21 to 7.36 0.0.05 3.07 –1.21 to 7.36 0.051

SOD

Control vs. mild 2 –0.60 –1.31 to 0.12 0.051

Control vs. severe 2 –1.68 –4.00 to 0.64 0.051

Mild vs. severe 3 0.559 –0.73 –1.81 to 0.36 0.061 –0.72 –1.81 to 0.36 0.071

CAT

Control vs. mild 2 1.75 –1.80 to 5.31 0.334

Control vs. severe 3 0.025 2.42 –0.36 to 5.19 0.057 –0.22 –3.79 to 3.35 0.052

Mild vs. severe 2 –0.23 –0.55 to 0.10 0.056

GSH

Control vs. mild 2 –2.05 –5.42 to 1.32 0.234

Control vs. severe 2 –3.57 –9.87 to 2.73 0.267

Mild vs. severe 4 0.012 –1.03 –2.51 to 0.44 0.170 –1.03 –2.51 to 0.44 0.170

NO

Control vs. mild 3 0.996 0.08 –0.17 to 0.33 0.546 0.07 –0.17 to 0.33 0.546

Control vs. severe 3 0.245 –0.45 –0.96 to 0.05 0.056 –0.02 –0.63 to 0.59 0.040

Mild vs. severe 3 0.356 –0.50 –1.04 to 0.04 0.057 –0.01 –0.68 to 0.65 0.062

Thiol

Control vs. mild 4 0.631 –1.72 –2.91 to –0.53 0.005 –1.72 –2.91 to –0.53 0.005

Control vs. severe 4 0.466 –2.83 –3.97 to –1.69 0.0001 –2.82 –3.97 to –1.69 0.0001

Mild vs. severe 5 0.214 –1.19 –1.83 to –0.54 0.0001 –1.18 –1.83 to –0.54 0.0001

CAT, Catalase; H2O2, Hydrogen peroxide; GSH, glutathione; NO, nitric oxide; SOD, superoxide dismutase; TOS, total oxidative stress; TT, total thiols. Forest plots 
and the trim and fill method under a random–effects model based on the standardized mean difference (SMD). Egger’s test was used to assess study bias.
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stress is associated with COVID-19 severity. Several clini-
cal cohort studies have found similar findings. For exam-
ple, a clinical cohort study in Serbia found that O₂•− and 
•OH levels were significantly higher in severe COVID-19 
patients compared to mild to moderate patients [28]. In 
another study, more than 80% of severe COVID-19 patients 
had a neutrophil-lymphocyte ratio (NLR) value greater 
than 5, and more than 80% of non-severe patients had a 
value less than 5 [54]. Indeed, high levels of NLR increased 
free radical production, leading to a redox imbalance that 
drives the pathophysiology of COVID-19 severity [12, 15]. 
Furthermore, neutrophil-associated pro-oxidant mark-
ers, such as H₂O₂ and O₂•−, were twice as high in survivor 
COVID-19 patients and three times higher in non-survivor 
patients than in controls [29]. Similarly, significantly higher 
TOS levels were observed in ICU patients than in non-ICU 
patients [41]. An observational study of 152 individuals in 
a Mexican hospital showed that COVID-19 patients (n = 76) 
had higher levels of malondialdehyde (MDA), a potent oxi-
dative stress marker, and lower total antioxidant capacity 
(TAC) levels compared to healthy controls (n = 76) [55]. 
These suggest that increased production of pro-oxidants 
significantly contributes to COVID-19 pathogenesis.

The current study also examined the levels of antioxi-
dant markers like SOD and CAT and found them to be sig-
nificantly decreased in severe COVID-19 patients. These 
findings are consistent with several clinical cohort studies. 
With one, excessive pro-oxidant production and dysfunc-
tion of the antioxidant system were associated with the 
severity of COVID-19 [30]. Another study conducted in an 
Iranian hospital showed that TAC, SOD, CAT, and NO lev-
els were significantly reduced in severe COVID-19 patients 
(n = 120) compared to healthy individuals (n = 60) [32]. 
Similarly, serum levels of SOD and CAT were found to be 
significantly lower in non-survivors compared to COVID-
19 survivors [47]. In addition, immunohistochemical anal-
ysis of lung autopsy results showed that SOD levels were 
decreased in both pneumocytes and alveolar macrophages 
of individuals who died of COVID-19 compared to healthy 
individuals [56]. Furthermore, a case-control study con-
ducted at Persian Gulf Shahid Hospital, Bushehr University 
of Medical Sciences, Iran, from May 2021 to September 
2021 showed that SOD and NO levels were significantly 
decreased and MDA levels were increased in severe 
patients (n = 300) compared to the mild (n = 300) and 
normal groups (n = 150) [57]. A recent study has shown 
high levels of oxidative damage in severe and critically ill 
COVID-19 patients, indicating a hallmark of the severity of 
COVID-19 patients [58].

GSH is another potent antioxidant that reduces viral 
load and infectivity, inhibits oxidative stress, pro-inflam-
matory cytokine release, and thrombosis production, 
and potentially enhances immune function. Conversely, 

Figure 4.  Forest plot of the antioxidant markers between COVID–19 
and healthy individuals. (A) NO (control vs. mild), (B) NO (control 
vs. severe), (C) NO (mild vs. severe), (D) thiol (control vs. mild), (E) 
thiol (control vs. severe), and (F) thiol (mild vs. severe).
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reduced levels of GSH are a potential factor in suscepti-
bility to SARS-CoV-2 infection [59]. In this meta-analysis, 
thiols and GSH levels were significantly reduced in severe 
COVID-19 patients compared to healthy individuals, and 
significant reductions were also found in mild and severe 
COVID-19 patients. This finding is supported by a clin-
ical cohort study in which severe COVID-19 patients had 
severe GSH deficiency, increased oxidative stress, and 
higher oxidative damage compared to controls [43]. In 
another hospital-based observational study, 587 subjects 
(517 patients/70 healthy) showed that a graded decrease 
in thiol levels was closely associated with the progression 
of severe COVID-19 [23]. Furthermore, GSH and thiol levels 
were significantly reduced in 78 hospitalized patients with 
COVID-19 compared to healthy controls [50]. Similarly, a 
study of 115 patients at a public hospital in Brazil found 
that a decrease in serum GSH levels below 327.2 μmol/ml 
was associated with a significant risk of death in COVID-
19 patients [47]. Conversely, our previous meta-analysis 
found that NAC supplementation improved clinical out-
comes in COVID-19 patients [25]. Indeed, NAC, the precur-
sor of GSH, acts as a potent antioxidant by scavenging ROS 
by interacting with a free thiol [60]. GSH participates in 
electron-donating redox reactions that detoxify ROS [61].

A clinical trial of vitamin C showed potential benefits in 
improving oxygenation in critically ill COVID-19 patients 
[62]. Furthermore, vitamin C has been shown to increase 
the production of interferons, which enhances antiviral 
responses [63]. Moreover, vitamin C has been shown to 
reduce inflammation, even cytokine storms, by inhibiting 
the nuclear factor kappa B pathway [64]. Thus, vitamin 
C reduces oxidative stress, thereby improving endothe-
lial cell integrity and wound healing, a potentially benefi-
cial strategy for preventing early and severe SARS-CoV-2 
infection.

This meta-analysis revealed a noteworthy finding that 
oxidative stress is associated with the severity of COVID-
19. Although clinical data on the molecular mechanisms 
underlying increased ROS production during SARS-CoV-2 
infection are limited, we will describe several general 
pathways of ROS accumulation that may contribute signifi-
cantly to the severity and high mortality of COVID-19 (Fig. 
5). First, the generation of free radicals and oxidative stress 
in COVID-19 patients are related to ACE–2. Physiologically, 
ACE–2 converts angiotensin (Ang) II to Ang 1–7 [65]. In 
fact, Ang II is a potent stimulator of nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase that pro-
motes O₂•− and H₂O₂ production; conversely, Ang 1–7 
inhibits O₂•− and H₂O₂ production, thereby maintaining 
oxidant-antioxidant homeostasis in the body [66]. During 
SARS-CoV-2 infection, the availability of “free” ACE–2 
is reduced due to virus binding and/or entry into cells, 
leading to increased Ang II and decreased Ang 1–7 levels, 

which stimulate NADPH oxidase activity and increase ROS 
production [67–69]. Second, SARS-CoV-2 infection directly 
increases ROS production by increasing NLRs. Higher NLR 
was found in non-survivor patients than in mild/survivors 
[70, 71]. In fact, in COVID-19 infection, neutrophils and 
macrophages cause excessive ROS production (respiratory 
burst) while destroying pathogens (phagocytic compo-
nents) via NADPH oxidase [70–74]. Third, decreased GSH 
levels in hospitalized COVID-19 patients are associated 
with increased oxidative stress [50]. In contrast, optimal 
levels of GSH are crucial for the functioning of the innate 
immune system and the reduction of oxidative stress [22]. 
Fourth, mitochondrial dysfunction leads to an increase 
in ROS production. COVID-19 has been shown to disrupt 
mitochondria by producing toxic gases, such as hydrogen 
sulfide [75]. Furthermore, H₂O₂ activates pro-inflamma-
tory cytokines in macrophages, neutrophils, and endothe-
lial cells, generating more O₂•− and H₂O₂ through NADPH 
oxidase [73, 75].

Figure 5.  Potential mechanisms of oxidative stress and COVID–
19 severity caused by SARS-CoV-2. SARS-CoV-2 blocks ACE–2 
from converting Ang II to Ang 1–7, promoting ROS generation. 
Moreover, SARS-CoV-2 infection directly increases the production 
of ROS by increasing the NLR via activation of the NADPH 
oxidase pathway. The oxidative stress causes endothelial cell 
dysfunction that activates the blood coagulation cascade, leading 
to thrombosis associated with disease severity.
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Although COVID-19 is generally considered a respira-
tory disease, blood vessels are the primary target when 
developing into severe disease [14, 76]. The pathophysio-
logical feature of COVID-19, oxidative stress, affects blood 
vessels by altering immune cell function and hyperinflam-
matory response [77]. This results in endothelial cell dys-
function that activates the blood clotting cascade, which 
subsequently causes vascular thrombosis [14]. The throm-
bus can break up into small emboli and then flow into 
small blood vessels, where they can become trapped and 
cause ischemia and tissue necrosis (Fig. 5).

The highest rates of severe COVID-19 illness and mor-
tality are found in patients who are typically over 60 years 
of age and have underlying comorbidities such as hyper-
tension, diabetes, cancer, obesity, and immunosuppressive 
conditions [13, 14]. Although clinical data on the antioxi-
dant system in elderly and comorbid patients during SARS-
CoV-2 infection are limited, the increased basal levels of 
pro-oxidants and decreased levels of antioxidants in meta-
bolic diseases with aging have led to the idea that oxidative 
stress may contribute significantly to COVID-19 severity 
and higher mortality [12, 15, 73]. For example, decreased 
levels of SOD have been observed in the lungs of elderly 
patients with COVID-19 and have been suggested to con-
tribute to increased disease severity [78]. Lower GSH lev-
els have been observed in older individuals and COVID-19 
patients with comorbidities associated with severe illness 
and death [59]. In a cross-sectional comparative study, 
endogenous (SOD, CAT, and GPx) and exogenous antioxi-
dants (vitamins A, C, and E, and Se, Zn, Mg, and Cu) were 
significantly reduced in patients infected with SARS-CoV-2 
compared with healthy individuals [79]. Increased levels 
of NADPH oxidase-induced oxidative stress were observed 
in patients with underlying comorbidities, suggesting that 
oxidative stress plays an important role in the progres-
sion of COVID-19 severity and mortality, especially in the 
elderly and those with comorbidities.

To the best of our knowledge, this is the first meta-anal-
ysis on the association of oxidative stress with the severity 
of COVID-19. Strengths of this study include comprehensive 
systematic search strategies, data abstraction, and a pre-
defined protocol for a comprehensive quality assessment 
of primary research. We used internationally recognized 
critical appraisal tools to assess the quality of individual 
studies. Of course, this study also has some limitations. 
First, although we systematically searched the literature 
to identify eligible studies, some studies might have been 
missed. Despite the extensive search strategy, the data-
bases we searched did not index non-English language 
studies. Second, this meta-analysis included 17 articles 
involving 1,754 participants (464 controls/745 mild/545 
severe COVID-19), which is a small number to predict the 
relationship of oxidative stress with COVID-19 severity. 

Third, this meta-analysis contains a mixture of case-con-
trol, observational, prospective, and cohort studies and 
may have some concerns about the risk of heterogeneity. 
Fourth, because the number of studies in each group was 
less than 10, we could not conduct a funnel-plot analysis 
to determine study bias; therefore, NOS and Egger’s tests 
were conducted. Egger’s test p > 0.05 for all considered 
groups, indicating unbiased despite a high percentage of 
heterogeneity. Finally, some studies did not distinguish the 
comorbidities in the elevation of these markers; therefore, 
it is difficult to conclude whether the severity of COVID-
19 is due to oxidative stress. Despite some limitations, 
our study provides an important foundation for a broader 
understanding of COVID-19 severity and oxidative stress.

Conclusion

Our synthesized results revealed significantly higher levels 
of pro-oxidants (H₂O₂ and TOS) and lower levels of antiox-
idants (SOD, CAT, GSH, thiols, and NO) in severe cases of 
COVID-19 compared to controls and mild cases. This infor-
mation will be valuable for a broader discussion on the 
pathogenesis of COVID-19. Since the number of included 
studies was small, large-scale clinical studies are needed to 
explore the role of oxidative stress in severe COVID-19. A 
better understanding and regular monitoring of oxidative 
stress may pave the way for future efforts to reduce COVID-
19-induced complications and severity.
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