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ABSTRACT

Objective: To sequence and characterize the mannose-binding lectin gene of three South African
chicken breeds, namely, Potchefstroom Koekoek (PK), Venda (VN), and Ovambo (OV), to ascertain
their genetic and immunologic diversity.

Materials and Methods: Total RNA was isolated from hepatic samples, quantified, and
reverse-transcribed to generate cDNA. The MBL gene was amplified by PCR, confirmed by gel
electrophoresis, purified, and sequenced using Sanger sequencing. Sequences were analyzed
with FinchTV and submitted to GenBank. Comparative sequences were retrieved from National
Centre for Biotechnology Information for multiple sequence alignment and phylogenetic analysis
using MEGA. ProtParam and ExPASy were used for physicochemical analysis. Secondary structures
were predicted using PDBsum, while tertiary structures were modeled with Swiss-Model, refined
by GalaxyWEB, and validated by ProSA. Functional domain analysis, binding site prediction, and
ligand interaction studies were also performed.
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Results: MBL sequences showed breed-specific differences in protein length, isoelectric points,
and thermostability. PK and VN MBLs had acidic p/ values (< 7), while OV displayed a higher, alka-
line pl. Conserved Glu—Pro—Asn (EPN) and Trp—Asn—Asp (WND) residues, linked by calcium ions,
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were identified for mannose-binding. Phylogenetic analysis revealed that PK breeds clustered
closely with the White Leghorn (95%), OV clustered nearby PK breeds and Leghorn (82%), while
VN clustered more closely with Indian Assel breeds (96%). Two conserved motifs (IPR033990 and
IPR001304) were detected. Secondary and tertiary structures revealed predominant random coils
in PK and OV, and more alpha-helices in VN. Binding site analysis identified key regions likely
involved in immune modulation.

Conclusion: This research reveals variation in MBL genes and their immune relevance in South
African chicken breeds, offering a basis for breeding strategies.

Introduction adaptability, resilience, and significance in smallholder
farming systems [2,3].

South African chicken breeds are known to have unique Despite their widespread usage, little or no molecular

characteristics such as resistance to disease and preserva-
tion of genetic resources traits suited to local conditions
[1]. Among these breeds, Potchefstroom Koekoek (PK),
Ovambo (0OV), and Venda (VN) are the most predominant
breeds used by poultry farmers in South Africa due to their

study has been done on their immunological traits, such
as the mannose-binding lectin (MBL) protein. Gaining
insights into the genetic variability, structural character-
istics, and functional properties of MBL in these breeds
is important for advancing both scientific knowledge and
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breeding strategies. Most especially given their exposure
to diverse pathogens under free-range and low-input pro-
duction systems [1,3]. Therefore, characterizing their MBL
gene could provide insights into the diversity and capacity
of South African chicken breeds’ innate immune system.

Generally, chickens are known to consist of animal
lectins [4,5]. These lectins contribute to antimicrobial
defense, cell communication, and pathogen recognition
[6,7]. Based on their carbohydrate recognition domains
(CRDs), animal lectins can be categorized into three dis-
tinct types. This includes p-type, I-type, and c-type [8].
The p-type is found mainly in tissues with a preference to
bind to the galactose or N-acetyl galactosamine region of
pathogens and is the main factor involved in cell adher-
ence, development, and immune defense [9]. The I-type
lectin (galectin) binds primarily to beta-galactoside sugars
such as lactose and N-acetyl lactosamine, with a major role
in cancer progression, tissue development, and wound
healing [9]. C-type lectins, mainly expressed in liver cells,
preferentially bind carbohydrates like fucose, mannose,
and N-acetylglucosamine. Mannose-binding lectin (MBL),
a soluble Ca?*-dependent member of this family, plays a
key role in pathogen recognition, immune regulation, and
clearance of apoptotic cells [10-12]. It specifically binds
terminal mannose and other carbohydrate-rich residues
and is found on the surface of pathogens like Gram-positive
and Gram-negative bacteria and, in some cases, parasites,
viruses, yeast, parasites, and mycobacteria [12,13]. Upon
binding to these sugar residues, MBL neutralizes patho-
gens by marking them for immune recognition and further
initiates the lectin pathway of the complement system
[10,14]. This process leads to opsonization and enhanced
phagocytosis, which ultimately results in the clearance of
the pathogens from the host cell [4,15]. Finally, MBL can
differentiate between self-cells, non-self-cells, and apop-
totic cells to ensure targeted immune responses without
harming host tissues [10,14,15].

Bodi et al. [16] reported that MBL exists as a trimeric
structure, having a molecular weight of approximately 96
kilodaltons, composed of three identical 32 kilo Dalton
subunits. Each subunit contains a collagen-like domain,
an N-terminal nitrogen-rich cross-linking segment, and a
C-terminal CRD [9,10,15]. These domains assemble into
a classical triple-helical structure [10]. In chickens, MBL
is capable of forming multiple oligomeric states, rang-
ing from dimers to hexamers [15,17], with the homotri-
mer identified as the fundamental building block [18].
The trimer consists of three identical polypeptide chains,
forming a collagen-like triple helix with globular lectin
domains at the C-terminal end [19]. By binding a cal-
cium ion, each lectin domain can specifically interact with
sugars like N-acetyl-D-glucosamine, mannose, N-acetyl-
mannosamine, fucose, and glucose [20].
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Each chicken MBL (cMBL) subunit is organized into
several structural regions: a collagen-like region, a neck
domain, a CRD, and a linker region [9,10,21]. The colla-
gen-like region, characterized by Gly-XY repeats, is critical
for trimer assembly and interaction with MBL-associated
serine proteases to induce complement pathway activa-
tion [20,22,23]. Connecting the collagen-like domain and
the CRD, the neck region contributes to the stability of
the trimer [10,15], while the CRD contains a conserved
carbohydrate-binding site for sugar recognition [24].
Oligomerization of MBL increases the number of CRDs,
enhancing multivalent ligand binding [25]. Also, most MBL
variants possess a linker region between the neck and CRD,
providing flexibility for optimal carbohydrate binding [26].

Chicken MBL contains an EPN (Glu-Pro-Asn) motif in its
CRD, enabling binding to D-mannose, L-fucose, and GIcNAc
[12,27]. Ligand-binding motifs are highly diverse across
species; for example, saltwater clam (Glycymeris yessoen-
sis) lectins exhibit motifs such as Glu-Pro-Asp (EPD), GIn-
Pro-Gly (QPG), GIn-Pro-Ser (QPS), Tyr-Pro-Gly (YPG),
and Tyr -Pro -Thr (YPT) [28]. MBL also interacts with other
immune molecules like dendritic cells, pentraxins, and the
serum amyloid p component, reinforcing its role in bridg-
ing innate and adaptive immunity [29,30].

Therefore, this study aimed to sequence and char-
acterize the MBL gene in selected South African indige-
nous chicken breeds using gene sequencing and in silico
approaches. Through computational analyses, the study
explored the physicochemical properties, subcellular local-
ization, functional domains, evolutionary relationships,
secondary and tertiary protein structures, and potential
ligand-binding sites of the cMBL protein. The objective was
to gain insights into the immunological diversity of MBL
and its role in breed-specific indigenous South African
chicken breeds. By promoting sustainable approaches to
poultry farming and reducing antibiotic dependence, these
findings not only enhance poultry health and productiv-
ity but also contribute to achieving the UN Sustainable
Development Goals of zero hunger and good health and
well-being.

Materials and Methods
Ethical approval

The study was approved by the Animal Research Ethics
Committee of the Faculty of Science, Tshwane University of
Technology (AREC2021/10/002; date: October 18, 2021),
and conducted in accordance with ARRIVE guidelines and
local animal welfare regulations.
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Animal tissue and total RNA extraction

Liver samples from three South African chicken breeds
were collected and stored at -80°C in liquid nitrogen. Total
RNA was extracted, quantified, and quality-checked before
synthesizing cDNA using a first-strand synthesis kit. gPCR
was conducted using two primer sets targeting fragments
of 544 bp (5’-GAT AAG CCG GAA AAC CCT GAA-3’ / 5’-GTT
ACA ACA ATT CCA CGT TCT CCT-3") [31] and 835 bp (5-
GGT AAA GGT GCT GAT CTG TGG-3’ / 5’-TGA GAG AAG AAA
GTT GGA TTT-3’) [32].

PCR amplification and sequencing

The MBL gene was sequenced following PCR amplification,
product purification, Sanger sequencing, and sequence
analysis. Genomic DNA was extracted and amplified using
NEB OneTaq 2X Master Mix with Standard Buffer (New
England Biolabs, M0482S). Each 20 pl PCR reaction con-
tained 10 pl of Master Mix, 1 pl of genomic DNA (20 pg/ul),
1 ul each of forward and reverse primers (10 uM), and 7
ul of nuclease-free water (E476). Thermal cycling included
an initial denaturation at 94°C for 5 min, 35 cycles of 94°C
for 30 sec, 50°C for 30 sec, 68°C for 60 sec, and a final
extension at 68°C for 10 min, followed by storage at 4°C
until further use.

Gel electrophoresis and visualization of PCR products

PCR product integrity and size were evaluated on a 1%
agarose gel stained with EZ-Vision® Bluelight DNA Dye and
visualized using a gel documentation system to confirm
successful amplification.

PCR product purification using the ExoSAP method

PCR products were purified enzymatically using the
ExoSAP method. For each reaction, 10 pl of amplified DNA
was combined with 2.5 ul of an ExoSAP mixture contain-
ing Exonuclease 1 (20 U/ul; NEB M0293L) and Shrimp
Alkaline Phosphatase (1 U/ul; NEB M0371). The mixture
was incubated at 37°C for 15 min to remove residual prim-
ers and dephosphorylate unused nucleotides, followed by
enzyme inactivation at 80°C for 15 min.

Sanger sequencing reaction and post-sequencing cleanup

Purified PCR fragments were sequenced using the
BrilliantDye™ Terminator Cycle Sequencing Kit v3.1
(Nimagen, BRD3-100/1000) following the manufacturer’s
protocol. Sequencing products were then cleaned using
the ZR-96 DNA Sequencing Clean-up Kit (Zymo Research,
D4053) to eliminate unincorporated dye terminators and
salts.
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Capillary electrophoresis and sequence data analysis

Sequencing analysis was performed on an Applied
Biosystems ABI 3500XL Genetic Analyzer equipped with
a 50 cm capillary array and POP-7 polymer. The resulting
chromatograms were visualized and interpreted using
FinchTV, a freely available software designed for high-qual-
ity electropherogram viewing. To support comparative
analysis, the corresponding coding sequences of the MBL
gene were retrieved from other chicken MBL sequences
available in the National Centre for Biotechnology
Information (NCBI) Protein Database (https://www.ncbi.
nlm.nih.gov/protein) [33]. The derived sequence data
from this study have been submitted to GenBank and are
available with the following accession numbers: PP782170
(PK), PP782171 (OV), and PP782172 (VN).

Sequence analysis

The Expasy server (https://web.expasy.org/translate) [34]
was used to convert the nucleotide sequences to amino
acid sequences (proteins), and the longest open reading
frame (ORF), which is highlighted in red, was selected
for this study. This ORF with the highest red is known to
contain the full protein-coding sequence, with the longest
length and position, making it suitable for further protein
analysis [34].

Prediction of amino acid sequences and functional
characterization

Amino acid sequences were inferred from nucleotide
sequences using the ExPASy Translate tool. The resulting
protein sequences were analyzed with ExPASy Protein
tools to determine their properties, including consensus
motifs for chicken MBL. Functional domains were mapped,
and the protein’s ontology and classification were pre-
dicted using the InterPro server, which catalogs homol-
ogous protein domain families (https://www.ebi.ac.uk/
interpro/) [35,36].

Multiple sequence alignment and phylogenetic analysis

For evolutionary analysis, seven Gallus gallus chicken man-
nose-binding lectins cMBL with one MBL from a plantas an
outgroup wereretrieved from the NCBIwithaccession num-
bers AF231714.1, KF469209.1, KU378610.1, KU378616.1,
KF469210.1, KF469208.1, JF717877.1, and KC329532.1
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins),
with three generated protein sequences from this study,
PP782170 (PK), PP782171 (OV) and PP782172 (VN),
making a total of ten [10] cMBL. Phylogenetic trees were
produced in MEGA software 11.0.21 using the maximum
likelihood test with a bootstrap test of 1,000 replicates
[37].
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Physicochemical property analysis

The ProtParam tool (http://web.expasy.org/protparam/
[34]) was used to determine physicochemical characteris-
tics of MBL from South African chicken breeds, including
molecular weight (MW), aliphatic index (AI), grand aver-
age of hydropathy (GRAVY), isoelectric point (pI), and con-
served signal peptide sites (SPCS).

Subcellular location and solubility prediction

The probable subcellular localization of the protein was
assessed using CELLO (http://cello.life.nctu.edu.tw/[38]).
Protein solubility and hydrophobic regions were evaluated
with SOSUI (http://harrier.nagahama-i-bio.ac.jp/sosui/
[39]), where hydrophobic segments were annotated as
potential transmembrane regions. Signal peptide cleavage
sites were predicted using the TOPCONS server (http://
topcons.cbr.su.se/pred [40]).

Predictions and validations of the secondary and tertiary
structures of proteins

To gain insights into protein function, the secondary struc-
tures were predicted using the PDBsum database (https://
www.ebi.ac.uk/thornton-srv/databases/pdbsum/)
[41], while tertiary structures were modeled using the
SwissModel tool for homology study (https://swissmodel.
expasy.org/) [42]. These models were further refined
with the GalaxyWEB refiner tool [43], which uses ab initio
methods to refine loop and terminal regions. The predicted
structures were validated with PDBsum, which identified
the amino acid sequences involved in forming secondary
structures, such as a-helices, 3-sheets, coils, and loops.
This provides insights into both structural and functional
aspects of MBL. Lastly, ProSA (Protein Structure Analysis)
was used to predict potential errors in the 3D models pro-
vided in PDB format [43,44].

Prediction of binding sites

The Galaxysite tool [45] was employed to predict possible
ligand-binding sites within the protein’s tertiary struc-
ture. This tool does not only predict the most likely bind-
ing pockets but also suggests potential ligand molecules
that may interact with these sites. These predicted ligand

interactions provide valuable insights for future therapeu-
tic research and functional characterization of the AMBL
studies.

Results

Primary structure and subcellular location of selected South
African chicken breeds

Table 1 shows the MW, which was 27, 27 and 33 kDa, and
the SPCS were 29-30, 28-29 and 29-30 for the PK, VN and
OV breeds. The number of amino acids was 251, 254 and
313 and the aliphatic index observed was 77.73, 79.49 and
79.74 for the PK, VN and OV breeds. The instability index
observed were 30.88, 29.57 and 24.18 and the GRAVY of
the protein sequences predicted were -0.520, -0.468
and -0.415 for PK, VN and OV breeds. This study further
observed that both the PK and VN breeds are located in
the periplasmic subcellular with an isoelectric pI of 5.85. In
contrast, the OV breed is located in the cytoplasmic inner
membrane, with a pI of 8.90.

Multiple sequence alignment of cMBL of selected South
African chicken breeds

Figure 1 shows the multiple sequence alignment of the
MBL gene. The contoured area shows the site of the sig-
nal peptide. All the chicken breeds sampled in this study
have gaps at the 10th, 165th to 168th, and 274th positions.
Also, PK, VN, and OV have 6, 3, and 3 insertions in all 317
protein sequences with respect to other chicken breeds.
This shows that these three breeds are closely related to
each other. In the three breeds studied, the MBL protein
sequences were highly conserved.

Prediction of the functional domain of the South African
cMBL

Two functional domains were identified using the InterPro
server (https://www.ebi.ac.uk/interpro/), IPR033990
and IPR001304, in the amino acid sequence of the chicken
MBL (Fig. 2). The two functional domains, IPR033990 (col-
lectin domain), also called c-type lectin domain (CTLD),
and the second, IPR001304 (c-type lectin domain),
were observed in all the chicken breeds sampled. The

Table 1. Analysis of the primary structure and physicochemical properties of MBL from South African chicken breeds using the ProtParam

server.
Chicken Breeds SPCS No aa MW GRAVY Instability Index Aliphatic -Index
PK 29-30 251 27092.81 5.85 -0.520 30.88 77.73
VN 28-29 254 27362.16 5.85 -0.468 29.57 79.49
oV 29-30 313 33572.29 8.90 -0.415 24.18 79.74

SPCS: Signal Peptide-Conserved Sites, No. aa: Number of amino acids, GRAVY: Grand Average of Hydropathicity: p/: Isoelectric point. MW: Molecular weight.
PK=Potchefstroom Koekoek breed, VN= Venda breed, and OV=0Ovambo breeds. Chromosome number: 6
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Figure 1. Alignment of mannose-binding lectin protein sequences from chicken breeds. Sequences were aligned using MEGA 11 by

Clustal W; Residues that are identical or share similar properties are

representative domains are collagen and C-LECT-2 and the
domain observed in this study is c-type lectin-like.

Phylogenetic analysis of the MBL protein sequence of South
African chicken breeds

To investigate the relationships and variation among cMBL
genes, a phylogenetic tree was generated using MEGA 11.
The maximum likelihood method was applied to infer evo-
lutionary relationships. The computed data indicated that
there are nine different clusters, including the outgroup.
South African breeds PK and Ovambo clustered closely
with European lines (White Leghorn and White Cornish
White Leghorn Crossbred). This suggested shared genetic
ancestry despite geographic separation. The Indian breeds
Assel and White Leghorn layer formed a distinct regional
cluster, suggesting localized evolutionary lines. The VN
breed from South Africa occupied a separate cluster, high-
lighting significant divergence from other African and
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highlighted using consistent color.

European breeds. This may reflect unique selection pres-
sures or genetic isolation. The plant species Withania
somnifera MBL was included as a reference for rooting the
phylogenetic tree.

Predictions and validations of the secondary and tertiary
structures of proteins

The PROCHECK tool in PDBsum was used to evaluate the
predicted tertiary structures of MBL proteins from three
chicken breeds (Table 2, Fig. 1). The PK breed cMBL con-
tains 15.5% [-strands, 27.9% a-helices, and 56.6% other
structural elements. The OV breed has a similar compo-
sition with 15.4% (-strands, 28.3% a-helices, and 56.3%
remaining components. The VN breed differs slightly, com-
prising 17.6% B-strands, 20.8% o-helices, a short helix of
1.3%, and 60.4% other elements.

Based on the amino acid sequence of the protein,
PROCHECK predicts its secondary structure and compares
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Figure 2. Prediction of the functional domain of South African chicken mannose-binding lectin observed by the InterPro server.

Table 2. Prediction of secondary structure and possible
compositions of the three indigenous chicken breeds from South
Africa.

Breeds Strand Alpha helix Others Total residues
PK 39 (15.5%) 70 (27.9%) 142 (56.6%) 251
ov 39 (15.4%) 72 (28.3%) 143 (56.3%) 254
0 0,
VN 55(17.6%) 65 (20.8%) L0 wﬂ':lﬁ'( )+ 1.3% 331

PK: Potchefstroom Koekoek; OV: Ovambo; VN: Venda.

it with the secondary structure shown in the crystallo-
graphic data. The secondary structure elements that are
projected to occur are often beta strands, loops, and alpha
helices. The procheck result shows the overall quality of
the protein structure (Fig. 4).

The stereochemical quality of the predicted MBL pro-
tein structures was assessed using Ramachandran plot
analysis, which showed that 92.6%, 93.7%, and 95.3% of
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residues fell within the most favored regions for the PK, OV,
and VN breeds, respectively. Additionally, ProSA, a web-
based tool for detecting errors in protein 3D structures,
was employed. The proteins yielded z-scores of -5.91,
-6.36, and -6.16, indicating high-quality models (Fig. 5).
The high proportion of residues in favored regions con-
firms strong agreement between predicted and observed
secondary structures, and the z-scores indicate the models

are reliable and acceptable [46].
Prediction of binding sites

The galaxy site prediction tool revealed possible binding
sites and potential interacting ligands (Table 3). Figures 6,
7, and 8 show the possible noncovalent interactions (such
as hydrogen bonds, salt bridges, and hydrophobic bonds)
for the predicted ligands of the MBL proteins.
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Discussion

The isoelectric pI of a protein reflects the pH at which it
carries no net electrical charge [47]. In this study, the MBL
protein of the OV breed had an alkaline pI (8.90), while the
PK and VN breeds had acidic pI (5.85). This variation indi-
cates differences in their net charge under physiological
conditions [48]. These differences suggest that the OV MBL
may be less mature or structurally distinct compared to
the PKand VN MBL. Also, OV and pl are negatively charged
in acidic environments and positively charged in alkaline
environments, while PK and VN are positively charged in
acidic environments and negatively charged in alkaline

http://bdvets.org/javar/

environments [49]. Previous study has reported that most
premature proteins tend toward alkalinity, whereas mature
proteins generally exhibit more acidic p/ distributions
[50]. This could be attributed to post-translational modifi-
cations or differences in amino acid composition [51]. The
relatively higher pI of the OV MBL protein indicates a lower
proportion of acidic residues (aspartic acid and glutamic
acid) or a higher content of basic residues (lysine and argi-
nine) [52]. In contrast, the lower pI values in PK and VN
suggest these proteins are more negatively charged [48].
These physicochemical differences may influence how the
MBL proteins interact with pathogens, ligands, or immune
components across the chicken breeds.
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A significant correlation has been observed between
a protein’s isoelectric point (pI) and its subcellular local-
ization [50]. The acidic pI values of PK and VN MBLs align
with their predicted localization in inner membrane com-
partments [53]. This environment typically favors hydro-
philic and acidic proteins, which support solubility and
interactions with other biomolecules [54]. On the other
hand, the alkaline pI of the OV MBL protein suggests
greater hydrophobicity, which potentially facilitates stron-
ger interactions with membrane lipids [55] and enhances
signaling stability and structural anchoring [53,56]. These
variations are likely driven by breed-specific evolutionary
changes, such as amino acid substitutions, insertions, or
deletions within the MBL gene [33].

Table 3. Binding sites and potential ligands of the MBL protein
predicted by the Galaxy tool for the three chicken breeds.

Ligand Name Binding sites

Alpha-D-glucopyranose 187Q 215K 218E 222H 225E 236N 237D
(GLC) 238L

2-acetamido-2-deoxy-beta-  187Q 215K 218E 220N 222H 225E 236N
D-galactopyranose (NGA) 238L

alpha-L-fucopyranose (FUC)  218E 222H 225E 236N 237D 238L

The MW of the cMBL protein observed in the present
study for the PK, VN, and OV were 27, 27 and 33.5 kDa,
respectively. These values are close to the range of the the-
oretical MW, which ranges from 25 to 27 kDa for processed
MBL using native mass spectrometry [57]. Also, OV MW is
very close to the MW of 32 kDa reported by Ulrich-Lynge
et al. [12]. The study of Zhang et al. [57] also reported that
the molecular weight of Ross Broiler chicken breeds was
26 kDa. The differences observed in South African chicken
breeds may suggest breed-specific modifications. In other
species, the molecular weights of human MBL, pumpkin
[Cucurbita pepo MBL and wild garlic (Allium ursinum)]
MBL were 31 kDa, 22.6 kDa, and 14.83 kDa, respectively
[33,58,59]. Variations in the MW of the MBL protein in this
study could be attributed to species specificity and glyco-
sylation [54]. Nevertheless, differencesin the MW of MBL in
comparison to other chicken breeds sampled could reflect
the underlying genetic diversity that influences immune
system functionality and overall health [4,16]. Also, this
variation could be a result of a single-nucleotide polymor-
phism, which affects the protein’s structure and function
[60,61]. In detail, variations in the promoter region and
exon 1 of the MBL gene cause differences in MBL oligomer-
ization, which subsequently impact the molecular weight
of the protein. It is important to know that the higher the
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Figure 6. Three-dimensional structure of MBL protein predicted by Swiss Model. The interaction within the binding site with Alpha-D-
glucopyranose (GLC) is predicted by the galaxy prediction tool (A). The ligand interaction plots (B). The interaction chains predicted by the

Protein Interaction Ligand Profile tool (C).
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Figure 7. Three-dimensional structure of MBL protein predicted by Swiss Model. The interaction within the binding site with 2-acetamido-
2-deoxy-beta-D-galactopyranose (NGA) is predicted by the galaxy prediction tool (A). The ligand interaction plots (B). The interaction chains

predicted by the Protein Interaction Ligand Profile tool (C).

molecular weight, the greater the degree of polymerization
[61]. This will, in turn, influence the functional capacity of
MBL in pathogen recognition and complement system acti-
vation [62].

The phylogenetic analysis of the MBL gene in South
African chicken breeds depicts some level of variation
of the MBL gene. The PK and Ovambo breeds show close
genetic affinity with White Leghorn and White Cornish
crossbreds (European lines). This clustering could reflect
historical gene flow or a similar MBL gene introduced
during breeding programs [37]. Such genetic conserva-
tion suggests that these South African indigenous breeds
could possess immune characteristics related to the com-
mercial chicken breeds. In contrast, the VN breed exhib-
its clear genetic separation from PK and OV, clustering
instead with Indian native breeds (Assel). This divergence
may reflect unique local adaptations, limited introgression
from commercial breeds, and the preservation of ancestral
genetic signatures [63]. Also, adaptation to similar envi-
ronmental situations and the influence of uncontrolled
mating systems in indigenous chicken populations may
have influenced the cMBL gene variation observed in VN
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[30]. Consequently, each protein could have evolved due to
differences in breed response to diseases, thus leading to
antigenic variation [64]. These findings align with broader
studies of South African indigenous chickens, which report
moderate to high genetic differentiation among local lines
and emphasize the presence of multiple maternal lineages,
including those tracing back to the Indian subcontinent
[65]. This study suggests that OV and VN breeds are genet-
ically distant from each other, explaining the diversity
within South Africa’s chicken genetic resources.

The functional domain called collectin domain
IPR033990 (CTLD) was found at positions 141-251, 142-
253, and 201-313 in the MBL protein sequence of PK, VN
and OV chicken breeds. Similar collectins are mostly found
in human collectin, lung surfactant protein, liver collectin,
and MBL [59]. They can bind carbohydrates on the surface
of the pathogen, necrotic or apoptotic cells, and allergens
[10,59]. Also, they mediate activities such as phagocytosis
[61], identifying the high-rich mannose region and trigger-
ing the killing of cells [59].

The functional domain IPR001304 (c-type lectin) was
found in the regions 133-250, 132-253 and 191-312 in
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Figure 8. Three-dimensional structure of MBL protein predicted by Swiss Model. The interaction within the binding site with alpha-L-
fucopyranose (FUC) is predicted by the galaxy prediction tool (A). The ligand interaction plots (B). The interaction chains predicted by the

Protein Interaction Ligand Profile tool (C).

the cMBL protein sequence of the PK, OV and VN chicken
breeds, respectively. The c-type lectin is first characterized
in some animal lectins, known to be a Ca?*-dependent rec-
ognition domain, also known as the CTLD, consisting of
about 110-130 residues. It consists of four perfectly con-
served cysteines and two disulfide bonds. Both domains
have two representative domains, namely collagen and
C-LECT-2. The conserved regions in several animal lectins
mostly consist of a Ca®*-dependent carbohydrate recog-
nition domain that is shared by several distinct protein
families [6,8,10]. The two functional domains are later
divided into subdomains. The collectin domain has both
c-lect and collectin-like, while the c-type has lectin 2, lec-
tin ¢, and c-lect 2. The homologous family is the CTDL fold
[PR016187 and the lectin-like c-type [IPR016186. The MBL
is among the few c-type lectin families that have the c-type
lectin domain and the conserved domain of Ca?*, which
binds to the sugar or mannose region [25].

The CRD observed in the present study shows that the
cMBL protein contains all the sequence characteristics of
C-type lectin with great homology with other cMBL from
a previous study [58]. The four cysteines (Cys) that main-
tain the distinctive double-loop structure are the two most
significant structural components of C-type lectins [19,66].
The c-type lectins consist of two structural elements. The
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first is the four cysteines with the aim of stabilizing the
double-loop nature (Cys170-Cys184, Cys193-Cys213)
and the 161-EPN-163, 171-WND-181 motifs essential for
ligand binding under the supervision of a calcium ion pres-
ent in the binding pocket region of MBL, which is import-
ant for the specificity of MBL [67]. This finding aligns with
several studies [5,27] regarding the cysteine region pres-
ent in cMBL under the influence of Ca?*-dependent bind-
ing affinity.

In this study, the protein secondary structure was cat-
egorized into four types: a-helix, extended strand, 3-turn,
and random coil. For the PK breed, a-helices were the most
prevalent, followed by random coils, extended strands, and
B-turns. In contrast, for the OV and VN breeds, random
coils were dominant, with a-helices, extended strands, and
B-turns occurring in decreasing order.

The impact of the electrostatic bulkiness of the R group
could result in coil formation [67]. Jimenez et al. [33]
observed similar phases in a study on MBL structure in
Allium species.

Understanding protein function requires accurate pre-
diction of both secondary and tertiary structures, which is
essential for identifying functional sites and protein-ligand
interactions. In this study, homology modeling was used
due to its effectiveness in predicting three-dimensional
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protein structures from available templates [68]. Model
quality was assessed using the z-score, which reflects the
overall structural reliability and conformational energy.
All three cMBL protein models exhibited negative z-scores,
with their positions in the blue region of the plot, indi-
cating high-quality structural models [69]. Regarding the
protein model, the structural component of a protein is
directly related to its function and the internal underlying
force, depending on its interaction with other molecules
[70]. Identifying binding sites on proteins is essential in
understanding their function, interactions, and potential
roles in various biological processes [71]. Glycosidic bond-
ing is of two types: [1] the N-linkage, which occurs when
the asparagine side chain attaches nitrogen atoms to the
sugar surface, and [2] the O-linkage, which occurs when
the serine side chain attaches oxygen atoms to the sugar
surface. The MBL region proposed that Asn236, Leu225,
Glu218, GIn187, and Asp237, with the ligand name Glc, are
the major residues involved in the binding of the mannose
region. The major proteins that occupy the glycosylation
region that are involved in binding are the Glutamic acid
Glu187, Asp237, and GIn187. Also, there is a projection
that Glu218, Asp236, GIn187, His222, Lys215, and Leu236,
with the ligand name Nga, are the residues observed to
be involved in the binding of the mannose region to the
MBL region and occupy the glycosylation region except
for Leu236. Lastly, in the MBL region, Asp237, Asn236,
Glu225, and His222 with ligand name Fucl were the
main residues involved in carbohydrate binding and are
the proteins found in the glycosylation region, except for
His222. The Asn and Asp have been reported to be import-
ant residual proteins for carbohydrate recognition [62].
Therefore, three ligand names were predicted as the site
where mannose binds to lectin (glycosylation) in this
study. These ligand areas were also observed in a previous
study [27,28].

Conclusion

This study successfully combined gene sequencing and in
silico characterization to investigate the MBL gene in three
indigenous South African chicken breeds. Using compu-
tational tools. The physicochemical properties, functional
domains, subcellular localization, secondary and tertiary
structures, and evolutionary relationships of the cMBL
protein were analyzed. The results revealed breed-specific
structural features and conserved functional motifs, reveal-
ing the immunological significance of MBL in these local
breeds. Understanding the genetic and structural diversity
of MBL contributes valuable insights into breed-specific
traits with implications for improving poultry health and
productivity. Furthermore, this study supports sustainable
livestock development goals by highlighting the potential
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of indigenous breeds in enhancing disease resilience with-
out over-reliance on antibiotics. To understand the inter-
action between the protein and sugar region (mannose),
protein modeling will be recommended for future study to
elucidate the immunomodulatory roles of MBL across dif-
ferent chicken populations.
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