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ABSTRACT

Objectives: The primary objective of this study is to provide a comprehensive analysis of the dif-
ferences between conventional and brown midrib (BMR) sorghum in terms of biomass, nutrient 
quality, nutrient digestibility, and animal performance.
Materials and Methods: A comprehensive database was created by integrating 73 datasets from 
29 articles. The different studies were denoted as random effects, while the BMR sorghum variety 
was described as a fixed component. Afterward, these two aspects were calculated utilizing a 
linear mixed model.
Results: According to the findings of the present meta-analysis, conventional sorghum produces 
higher quantities of forage and grain biomass in comparison to BMR (p < 0.001). As expected, 
BMR sorghum has a lower content of neutral detergent fiber (NDF), acid detergent fiber, and lig-
nin compared to conventional sorghum (p < 0.001). The digestibility of BMR sorghum performed 
better than conventional sorghum (p < 0.001), especially for NDF digestibility (54.98% vs. 47.37%). 
BMR shows suitability as a fodder option for dairy cows due to its superior milk yield compared to 
conventional sorghum (15.04 vs. 14.06 kg/day; p < 0.01).
Conclusion: In conclusion, BMR sorghum produces higher biomass compared to conventional 
sorghum. Nevertheless, in terms of nutrient quality and digestibility, BMR sorghum is the most 
optimal choice. The results will significantly improve animal performance.
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Introduction

Sorghum may contribute to the mitigation of climate change 
and the adaptation to global warming due to various fac-
tors: 1) it shows drought resistance; 2) it captures carbon 
from the atmosphere using the C4 photosynthetic path-
way; and 3) it has relatively low requirements for water 
and fertilizer. Sorghum (Sorghum bicolor [L.] Moench), a 
type of C4 grass, exhibits robust growth during the summer 
months in temperate climates, but it maintains particular 
significance in tropical semiarid and arid areas across the 
world [1,2]. Sorghum is a worldwide important crop that is 
appropriate to many agricultural and environment-related 

conditions, especially in regions with low rainfall or lim-
ited availability of irrigation water [3]. Sorghum presents a 
favorable alternative with potentially lower adoption risks 
for farmers due to its currently well-established commer-
cial production and supply pathways [4]. Sorghum plants 
have been utilized as alternative fodder in an extensive for-
age program to optimize land utilization, mitigate drought 
and crop risks, and fulfill the total fodder requirements 
of the livestock herd [5]. Besides being applied for fresh 
feeding, sorghum plants are a beneficial, nutritious, and 
quick-growing fodder that may also be used for hay and 
silage [6]. According to the presented facts, sorghum crops 
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are currently and will continue to be an essential fodder 
component for ruminant livestock.

Sorghum is typically categorized into three groups 
based on the color of the midrib on its leaves: green midrib, 
white midrib, and brown midrib (BMR) [7,8]. The induc-
tion and description of BMR mutants in sorghum were 
started by Grover et al. [9]. The reason behind the change 
of BMR color from its normal green or white form remains 
unknown. However, this transformation could potentially 
be explained by the synthesis of hydroxy cinnamaldehyde 
into lignin polymers [10,11]. The BMR mutants, which have 
been obtained either spontaneously or through chemical 
mutagenesis, have significantly contributed to the identifi-
cation of a unique collection of genes whose products are 
essential for cell wall lignification [2,12]. The lignin con-
centration of the cell walls is decreased in Sorghum BMR 
mutants, which show yellow to brown midribs. Because 
they improve the foliage's digestibility for cattle, these 
improvements are valuable [1,13], as demonstrated both 
in sorghum and Sudan grass, as well as their hybrid variet-
ies [14]. BMR plants have attracted attention as potential 
feedstocks for biorefining processes because of their low-
ered lignin content, which enables easier breakdown and 
conversion [15].

Comparative investigations of phenotypic traits 
between BMR sorghum and the wild type have been fre-
quently reported [7,8,11,16–21]. However, to the best 
of our knowledge, there has never been a meta-analysis 
study comparing conventional sorghum with BMR sor-
ghum on the allocation of biomass production and nutri-
ents. To inform the public, we believe a quantitative review 
study is necessary to assess the advantages of BMR traits 
over other sorghum varieties. Recent studies [2,9,10] have 
primarily employed genetic approaches to elucidate the 
mechanisms controlling lignification in BMR cell walls. In 
contrast, our study utilizes a meta-analysis approach, syn-
thesizing data from previous research. Therefore, the main 
purpose of our study was to conduct a comprehensive 
investigation of the differences between conventional and 
BMR sorghum regarding biomass, nutrient quality, nutri-
ent digestibility, and animal performance.

Materials and Methods

Ethical approval

Ethical clearance was not required for the present 
meta-analysis study.

Search for keywords

The literature search was conducted using Harzing's 
Publish or Perish 8th version (Windows GUI Edition). The 
keywords employed were sorghum, brown midrib, and 

forage. A total of 208 publications were published between 
2010 and 2024, collected from PubMed®, Scopus®, and 
Google Scholar®. The selected literature exclusively con-
sisted of scientific articles/journals.

Criteria for selection

The article selection approach adhered to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [22]. The criteria for selection were 
as follows: (1) The article has been published in a scientific 
paper. (2) The article was an investigation based on experi-
mental work. (3) The study includes a comparison between 
BMR and conventional sorghum. (4) The subjects of this 
study were sorghum, sudangrass, and sorghum x sudan-
grass. (5) Manuscripts that contain details on harvest age 
are preferred. Figure 1 displays a graphic illustrating the 
process of literature selection. Following a comprehensive 
examination of the entire article, a total of 29 publications, 
which included 73 experiments, were included in the data-
base and are listed in Table 1.

Included data

Specific information on the type of sorghum, the stage/day 
of harvesting, the season, and the soil type can be found 
in Table 1. These details will be further elaborated exten-
sively in the results and discussion section. The parameters 
compiled include biomass, nutrient quality, digestibility, 
and performance in animals. Biomass parameters were 
forage biomass, grain biomass, and plant height. Moisture, 
crude protein, neutral detergent fiber, acid detergent fiber, 
lignin, and total digestible nutrient value were the nutrient 
quality parameters. The digestibilities assessed were dry 
matter digestibility, organic matter digestibility, neutral 
detergent fiber digestibility, and in vitro true digestibility 
(IVTD). Average daily gain (ADG), dry matter intake, and 
milk yield were the animal performance parameters.

Modeling and statistical analysis

A linear mixed-model methodology was applied for per-
forming statistical meta-analysis on the datasets, which 
had compatible measurement units [23,24]. The various 
studies were categorized as random effects, whereas the 
BMR sorghum variety was classified as a fixed component. 
The statistical analyses were performed using R soft-
ware version 4.1.2 developed by the R Core Team (http://
www.r-project.org/index.html) [25], and the lme4 library 
version1.1–35.3 (https://cran.r-project.org/web/pack-
ages/lme4/index.html). An evaluation and statistical test 
were performed on the model. The significance of the 
results was assessed through a one-way analysis of vari-
ance. A p-value qualifies as significant if it is less than 0.05 
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(p < 0.05), and it tends to be significant if it ranges between 
0.05 and 0.1.

Results

The characteristics of the data utilized in meta-analysis 
studies

Table 1 presents the characteristics of research integrated 
into the meta-analysis study. This research has summa-
rized a total of 29 studies. Together with sorghum, we per-
formed a comparative analysis of BMR and non-BMR types 
in sudangrass [26] and sorghum x sudangrass [7,21,27–
29]. The cultivars mentioned in the research differ based 
on the specific local varieties and mutant variants origi-
nating from the country in question. The majority of stud-
ies did not provide a detailed report on the type of BMR. 
However, bmr2, bmr3, bmr6, and bmr12 types have been 
reported by several compiled studies [16,30–32].

The phrase "conventional sorghum" is initially used to 
refer to non-BMR sorghum. Therefore, the classification of 
"conventional" sorghum includes many types, such as grain 
sorghum, forage sorghum, sweet sorghum, and staygreen 

sorghum. The reported stages of harvest also vary, partic-
ularly including flowering, soft dough, milk dough, hard 
dough, mid dough, joint, head, and grain maturity. Due to 
the various sources of the summarized study, there is also 
a variation in the reported soil types. Primarily consist-
ing of latosol, vertisol, sand, silt loam, black soil, and clay. 
Sorghum plants are adaptable to various soil structures, 
altitudes, and climates [33]. This statement is further sup-
ported by the variations in growing seasons reported in 
this meta-analysis (drought, spring, summer, rain, and dry 
winter).

The data distribution from this meta-analysis study is 
presented in Table 2. The mean forage and grain biomass 
were 15.40 and 7.74 Mg/ha dry matter (in DM), respec-
tively. The reported plant height varies between 73 and 
311 cm. The crude protein, NDF, ADF, and lignin content 
of sorghum varies significantly due to differences in har-
vesting ages. The TDN content of sorghum forage varies 
between 44.30% and 61.00%. The digestibility of DM, 
OM, and NDF showed varying ranges of 39.95%–61.29%, 
35.18%–62.00%, and 44.30%–61.00%, respectively, due to 
variations in nutritional content. There is a lack of studies 

Figure 1. The procedure of selecting and examining articles follows the PRISMA guideline.



http://bdvets.org/javar/	 � 160Widodo et al. / J. Adv. Vet. Anim. Res., 12(1): 157–168, March 2025

Table 1.  Summary of research integrated in meta-analysis. 

Study no. Reference
Sorghum/ 
sudangrass

Cultivar name
Harvesting stage/
day

Soil type Season

1 Erbretta et al. [38] Sorghum No information No information No information No information

2 Wahyono et al. [11] Sorghum BMR (GH2.3); C (Super-1) Hard dough latosol Drought

3 Pupo et al. [21] Sorghum; Sorghum 
x Sudangrass

No information Soft dough Arredondo-
Gainesville (sand 
and loamy sand)

Spring; summer

4 Ferreira et al. [20] Sorghum BMR (ADV F7232); C (AF 
8301)

Milk-soft dough Hayter and silt loam No information

5 Suhartanto et al. [56] Sorghum BMR (no information); C 
(Super-2)

No information No information No information

6 Sriagtula et al. [19] Sorghum BMR (Patir 3.7); C (Patir 
3.1)

Flowering, soft 
dough, hard dough

No information Rain

7 He et al. [67] Sorghum BMR (Big Kahuna, Big 
Dragon, Prolific Graze-
BMR, Late Graze); C 
(Jackpot 2180, Monster, 
Jackpot 1180, Jackpot 
4180, Jackpot 1230, 
Jackpot 3180, Superdry, )

Hard dough Black soil Drought

8 Dey et al. [58] Sorghum BMR (SPV-2018, SPV-
2017); C (SSG-59-3, 
CSV-32F)

No information No information No information

9 Harmon et al. [29] Sorghum x 
Sudangrass

BMR (Honey Graze); C 
(Sugargrazer)

No information No information Spring

10 Ordoñes et al. [42] Sorghum BMR (SM350); C (DK67) Milk-dough crumbly sand, sandy 
clay loam and sandy 
loam

Rain

11 Wahyono et al. [50] Sorghum BMR (G5); C (Numbu) Flowering, soft 
dough, hard dough

Latosol Drought 

12 Ferreira et al. [55] Sorghum x 
Sudangrass

BMR (BR007 x Tx2784bmr, 
Tx635 x Tx2785bmr); C 
(BRS 801, Tx636 x Tx2785)

51 day No information Dry winter

13 McCuistion et al. [28] Sorghum, Sorghum 
x Sudangrass

BMR (Later Grazer BMR, 
Pacesetter BMR); C (Later 
Grazer, Pacesetter)

Mid dough Clareville clay loam Drought

14 Vinutha et al. [68] Sorghum BMR (N610); C (CO 30, 
COS 28)

80 and 160 day Medium-fertility 
vertisol

Rain

15 Scully et al. [30] Sorghum BMR (bmr6-23); C 
(BTx623)

139 day mix (peat, moss, 
vermiculite, perlite, 
sand)

No information

16 Sriagtula et al. [41] Sorghum BMR (Patir 3.7); C (Patir 
3.1)

Flowering, soft 
dough, hard dough

No information Rain

17 Telleng et al. [69] Sorghum BMR (Patir 3.7); C (CTY) Flowering No information Rain

18 Yerka et al. [59] Sorghum BMR (bmr-12); C (A 
Wheatland × R Tx430)

60 day Sharpsburg silty clay 
loam soil

Rain

19 Puteri et al. [18] Sorghum BMR (Patir 3.7); C (Samurai 
1)

Flowering, soft 
dough, hard dough

No information No information

20 Li et al. [7] Sorghum, Sorghum 
x Sudangrass

No information Joint, head, 
flowering, milk 
stage, dough stage

Silty loam No information

21 Li et al. [32] Sorghum BMR (bmr-12); C (N-12) 86 day Silty loam Drought

(Continued)
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that show differences in animal performance between 
BMR and non-BMR treatment. However, it is capable of 
presenting the ADG, DMI, and milk production variables.

BMR vs. conventional sorghum: Biomass comparison

Forage and grain biomass in conventional sorghum was 
higher than in BMR sorghum (Table 3; p < 0.001). There was 
approximately a 14.33% decrease in the forage biomass of 
BMR. The average value of forage biomass obtained in DM 
yield was 13.47 BMR versus 15.40 Mg/ha (conventional). 
Related to biomass value, conventional sorghum also had 
a higher plant height than BMR (224.83 vs. 197.11 cm; p < 
0.05). The high amount of forage and grain biomass in con-
ventional sorghum can be attributed to the wide range of 
cultivars present, which include varieties of sorghum spe-
cifically developed for grain, fodder, and silage production.

BMR vs. conventional sorghum: nutrient comparison

The nutritional composition of plants utilized for animal 
fodder plays an essential role in influencing the growth, 
reproduction, and production of cattle [34]. Table 3 pres-
ents a comparison of the nutritional composition of BMR 
and conventional sorghum forages. The moisture content 
of BMR sorghum forages tends to be higher compared to 
that of conventional cultivars (76.25% vs. 75.61% DM; p 
= 0.099). The protein content of BMR sorghum was sig-
nificantly greater than conventional cultivars (p < 0.005). 
Based on the original claim of the BMR type, it has been 

demonstrated that the fiber content (NDF, ADF, and lignin) 
of BMR forage is significantly lower than conventional sor-
ghum (p < 0.001). The TDN estimate for forage sorghum 
was greater than non-BMR, resulting in a value of 56.63% 
compared to 54.29% (p < 0.001).

BMR vs. conventional sorghum: digestibility and animal 
performance comparison

The digestibility of BMR sorghum forage is superior to that 
of conventional sorghum across all parameters (p < 0.05; 
Table 3). In addition to in vivo digestibility data, the IVTD 
parameters also indicate that BMR sorghum forage is more 
easily digested than conventional sorghum (p < 0.001). 
Regarding animal performance, despite the small sample 
size (n < 10), there is evidence indicating that the BMR 
sorghum leads to a better milk yield compared to conven-
tional sorghum (p < 0.01; n = 5). Ruminants that receive 
BMR sorghum also tend to improve weight gain (p = 0.071).

Biomass, nutrient quality, and nutrient digestibility of 
BMR and conventional sorghum: effects of harvesting stage

Additionally, we want to present information on the 
impact of harvest age on biomass output, nutritional qual-
ity, and digestibility for sorghum forages (both BMR and 
conventional). These results will be shown in Table 4, along 
with the meta-data results. We compare the following three 
physiological phases of harvest: flowering, soft dough, 
and grain maturity. The following three harvest phases 
are dominant in the 29 articles that have been collected 

Study no. Reference
Sorghum/ 
sudangrass

Cultivar name
Harvesting stage/
day

Soil type Season

22 De Aguilar et al. [48] Sorghum BMR 
(CMSXS156AxTX2784bmr, 
CMSXS156AxTX2785bmr, 
BR001AXTX2784bmr); 
C (CMSXS156AxTX2784, 
CMSXS156AxTX2785, 
BR001AxTX2784)

97 day Dystrophic Red 
typical cerrado 
phase

Dry winter

23 Astigarraga et al. [27] Sorghum x 
Sudangrass

BMR (Candy Graze); C 
(Supergauchazo)

No information No information Spring

24 Portillo et al. [70] Sorghum BMR (CI0947bmr); C 
(Sureno)

Grain maturity No information Summer

25 Bean et al. [17] Sorghum No information Soft dough Pullman silty clay 
loam

Rain

26 Beck et al. [26] Sudangrass BMR (Hayking); C (Piper) Hard dough Una silty clay loam Rain

27 Rao et al. [31] Sorghum BMR (IS 21887, IS21889, 
IS21549); C (RSSV 9, ICSV 
93046, IS11861)

Flowering No information Rain

28 Marsalis et al. [34] Sorghum BMR (Dairy Master BMR); 
C (FS-5)

Soft dough Olton clay loam Rain

29 Vietor et al. [16] Sorghum BMR (09248bmr); C (DK52) After dough Miller Clay (fine, 
mixed, thermic 
vertic haplustolls)

No information

C=Conventional.
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for discussion. Regarding grain biomass and plant height, 
harvest phases did not differ significantly. The soft dough 
phase showed the greatest forage biomass, averaging 
17.08 Mg/ha (in DM yield). The flowering phase produces 
the lowest quantity of forage (9.46 Mg/ha). The crude pro-
tein content exhibited a decreasing pattern as the matu-
rity phase increased (p < 0.001). The harvest phase of soft 
dough generated the lowest percentage of fiber fractions 
(NDF and ADF) (p < 0.001). Furthermore, compared to the 
other two harvest phases, the soft dough phase tends to 
have the lowest amount of lignin (p = 0.076). Notably, there 
were no significant differences observed in the digestibil-
ity and TDN values.

Discussion

The key attributes of sorghum BMR have been described 
in the studies conducted by Scully et al. [30] and Rao et 
al. [31]. Mutations in the bmr6 allele result in a 15%–50% 
reduction in cinnamyl alcohol dehydrogenase (CAD) activ-
ity compared to normal, leading to a reduction in lignin 
levels. The bmr12 allele decreases the abilities of the lig-
nin biosynthesis enzyme caffeic acid O-methyltransferase 
(COMT), which breaks down lignin H and G. The genetic 
changes in BMR sorghum are believed to directly impact 

the amount of forage and grain biomass. The decrease in 
crop yield is believed to be associated with the properties 
of BMR in plants [35,36]. However, additional molecular 
investigations are required to investigate these phenom-
ena. Joy et al. [37] demonstrated a positive correlation 
between stover yield and the lignin content in various sor-
ghum varieties. This finding presents evidence that BMR 
sorghum produces biomass at lower levels than conven-
tional sorghum. The physiological reasoning behind this 
phenomenon is that sorghum straw's total biomass will 
decrease as the lignin content in the stem decreases. This 
is because the level of lignin was positively correlated with 
stem (structural) biomass density, specifically in internode 
parenchyma [38]. The genetic changes in BMR sorghum 
are expected to enhance the plant's ability to be converted 
into ethanol but will considerably decrease its biomass 
yield [10]. Da Silva et al. [12] showed that a 12% decrease 
in mean biomass yield was observed for BMR lines in com-
parison to the isogenic lines. Bean et al. [17] also reported 
that when comparing the biomass production of the forage 
sorghum (FS) and forage sorghum-BMR (FS-BMR) classes 
over multiple years, it was shown that BMR cultivars exhib-
ited a 12.5% reduction compared to non-BMR cultivars.

According to a study summarized by Beck et al. [26], 
hybrid BMR sorghum showed a reduction of 12%–15% 

Table 2.  Distribution of data in meta-analysis study.

No Variable Unit n Mean SD Upper Lower

Biomass

  Forage DM Mg/ha 42 15.40 7.19 32.40 3.01

  Grain DM Mg/ha 10 4.74 2.58 7.57 0.52

  Plant height cm 17 224.83 54.01 311.00 73.00

Nutrient quality

  Moisture % 24 75.61 10.35 88.56 43.18

  Crude protein % DM 58 8.41 2.99 16.45 3.16

  Neutral detergent Fiber % DM 53 59.39 8.19 82.50 43.90

  Acid detergent fiber % DM 45 36.47 6.20 58.60 24.70

  Lignin % DM 36 5.33 1.65 9.65 2.90

  Total digestible nutrient % DM 16 54.29 4.86 61.00 44.30

Digestibility

  Dry matter % 12 53.48 7.11 61.29 39.95

  Organic matter % 10 50.13 8.43 62.00 35.18

  Neutral detergent fiber % 20 47.37 9.01 65.10 23.60

IVTD % 10 54.76 20.63 78.40 18.89

Animal performance

  Average daily dain kg/day 3 0.72 0.23 0.86 0.45

  Dry matter intake kg/day 6 17.86 10.28 24.50 1.68

  Milk yield kg/day 5 14.06 2.99 19.10 11.64

DM = dry matter, IVTD = in vitro dry matter digestibility.
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in DM yield as compared to non-BMR sorghum. The BMR 
mutation consistently reduced the amount of biomass 
allocated to the stems of photoperiod sensitivity sorghum. 
Additionally, the introduction of these characteristics sig-
nificantly reduced the panicles-to-shoot ratio of photope-
riod-insensitive sorghum [39]. In this meta-analysis, it was 
found that BMR sorghum has a decreased biomass yield 
compared to conventional sorghum. However, the total bio-
mass remains higher than that of maize and millet, regard-
less of using the same maintenance strategy [40].

Although decreased levels of lignin have been linked to 
lower yields, genetic predisposition, and environmental 
conditions may significantly influence actual yield [17]. 
The low forage biomass in BMR sorghum is hypothesized 
to be linked to the plant's natural self-defense mechanism. 
The low lignin content in BMR sorghum can affect plant 
stability when there is a high quantity of forage and grain 
yield. Lignin is crucial for providing structural stability at 
the organ level, as significant reductions in lignin content 
led to plants being unable to maintain a standing position 
[41]. Based on our investigation of multiple studies, most 
of them indicate that BMR-type sorghum generally has a 
lower biomass production compared to conventional sor-
ghum [11,17,18,26,27,34,42,43]. The present meta-anal-
ysis's findings can be applied as evidence that the forage 

biomass factor must be considered for attention while 
developing BMR characteristics. In many scenarios, lignin 
can be lowered without affecting yield or fitness. Various 
variables and genetic background play a crucial role [44]. 
Consistent with studies on the application of sorghum for 
energy, the sorghum hybrids' high yield, in combination 
with their improved chemical characteristics, will be bene-
ficial in determining which components are most suitable 
for the development of next-generation biofuels [45].

It is necessary to determine the moisture content of 
sorghum forage due to its frequent application as a silage 
material. Several variables, especially the type of forage, 
temperatures, and moisture levels, influence the success-
ful fermentation of silage [46]. According to Bean et al. 
[17], for optimal silage quality, the moisture content of 
the total plant should range between 65% and 70% at the 
time of harvest. The average moisture content for BMR and 
non-BMR sorghum forages in our compilation study was 
76.25% and 75.61%, respectively. Applying wilting treat-
ment [47] is necessary to enhance the forage quality of 
BMR and conventional sorghum when used as silage mate-
rial. In addition to planting season and sorghum variety, 
the harvesting stage [48] and plant density [42] have a sig-
nificant impact on the moisture content of sorghum forage.

Table 3.  Meta-analysis results for biomass, nutrient quality, nutrient digestibility, and animal performance (BMR vs. conventional sorghum).

No Variable Unit n BMR Conventional p-value

Biomass

  Forage DM Mg/ha 42 13.47 15.40 0.001

  Grain DM Mg/ha 10 2.59 4.74 0.001

  Plant height cm 17 197.11 224.83 0.024

Nutrient quality

  Moisture % 24 76.25 75.61 0.099

  Crude protein % DM 58 8.91 8.43 0.029

  Neutral detergent fiber % DM 53 57.50 59.45 0.001

  Acid detergent fiber % DM 45 33.67 36.51 0.001

  Lignin % DM 36 3.77 5.36 0.001

  Total digestible nutrient % DM 16 56.63 54.29 0.001

Digestibility

  Dry matter % 12 63.29 53.48 0.002

  Organic matter % 10 56.21 50.13 0.031

  Neutral detergent fiber % 20 54.98 47.37 0.001

  IVTD % 10 63.14 54.76 0.001

Animal performance

  Average daily gain kg/day 3 0.84 0.72 0.071

  Dry matter intake kg/day 6 17.53 17.86 0.399

  Milk yield kg/day 5 15.05 14.06 0.004

DM = dry matter, IVTD = in vitro dry matter digestibility.
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The lower crude protein value of conventional sorghum 
forage in comparison to the BMR type could be attributed 
to its greater biomass value. According to Billman et 
al. [49], the quality of forage with high biomass will be 
reduced since it has a relatively low crude protein content. 
However, Bleier et al. [13] found it challenging to identify 
consistent effects of cultivars on protein levels, unlike most 
variables associated with growth. This limitation could be 
attributed to the fact that mutations in the BMR type were 
exclusively examined at specific lignin concentrations. The 
changes in specific nutritional levels, such as protein, might 
be attributed to the indirect impact of a relative decrease 
in lignin concentration. Nevertheless, further investigation 
is required. Reducing lignin levels in the BMR type affects 
the availability of energy from carbohydrates in sorghum 
plants [50]. There is a positive correlation between crude 
protein content and the energy content of forages [6]. 
However, the protein content in forage is highly influenced 
by land management practices [45]. Feeding diets with 
higher levels of starch may enhance the utilization of pro-
tein from the BMR sorghum [5].

The present findings of a meta-analysis confirm that the 
BMR cultivars of sorghum have a lower lignin content com-
pared to conventional sorghum. In addition, BMR sorghum 
has been found to have low levels of NDF and ADF, which 
are fiber fractions commonly linked to lignin. In general, 
reducing the amount of lignin decreased the levels of ADF 
and NDF while simultaneously improving digestibility [8]. 
Various previous studies have elucidated the mechanism 
of how the sorghum BMR gene promotes lignin reduction. 
The bmr2 gene is responsible for encoding methylenetet-
rahydrofolate reductase, whereas the bmr4 and bmr19 
genes encode folylpolyglutamate synthase. Both enzymes 
play a role in catalyzing processes involved in the synthesis 
of S-adenosyl methionine [2,10,32]. The mutations in bmr6 

result in a lack of CAD activity, whereas the mutations in 
bmr12 result in a drop of COMT activity [15,51]. The bmr-
18 genotype carries a non-functional allele, bmr18, which 
is characterized by the presence of a termination codon in 
the first exon of the COMT gene due to a G to A replacement 
[52]. The bmr30 mutant carries a change in a phenylpro-
panoid biosynthetic gene, which plays a crucial role in the 
interaction between flavonoids and monolignols. Both fla-
vonoids and monolignols are essential for the biosynthesis 
of lignin in plants [2].

Our findings additionally confirm the correlation 
between reduced yields of biomass in the BMR type and 
reduced amounts of fiber (NDF and ADF) and lignin. The 
fresh biomass yield and the sorghum's fiber content (hemi-
cellulose, cellulose, and NDF) have been found to have neg-
ative correlations, indicating that the characteristics may 
be related [44]. Significant associations were observed 
between biomass yield attributes and lignin content. 
Therefore, choosing a higher biomass production would 
increase  plant lignin content, consequently reducing 
digestibility [35]. Reducing the amount of lignin increases 
the availability of structural carbohydrates, such as cellu-
lose and hemicellulose, to enzymatic hydrolysis, a process 
that converts them into sugars that can be fermented [53]. 
Mutations in the BMR gene have been observed to enhance 
the efficiency of converting biomass by optimizing the 
amount of soluble carbohydrates in plant material [38]. 
The findings of this study further confirm the statement 
made by Yang et al. [4], who showed that BMR sorghum 
varieties had lesser lignin content, making them beneficial 
for animal forage markets despite their generally lower 
yields.

The differences in mean nutritional contents between 
BMR and conventional sorghum significantly affect  the 
estimation of TDN value. It is possible to precisely estimate 

Table 4   Meta-analysis results for biomass, nutrient quality, and nutrient digestibility: effects of harvesting stage.

No Variable Unit Flowering Soft dough Grain maturity p-value

Biomass

  Forage DM Mg/ha 9.46 17.08 12.43 0.004

  Grain DM Mg/ha 0.38 4.16 5.11 0.420

  Plant height cm 198.62 216.15 233.50 0.403

Nutrient quality

  Crude protein % DM 9.26 7.7 5.5 0.001

  Neutral detergent fiber % DM 62.99 51.66 57.5 0.001

  Acid detergent fiber % DM 40.04 29.24 33.5 0.001

  Lignin % DM 5.22 4.56 7 0.076

  Total digestible nutrient % DM 46.08 55.57 57.5 0.304

Digestibility

  Dry matter % 62.94 56.88 60.5 0.912
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the TDN content of forage using nutrient composition data 
[54]. Our compiled investigations demonstrate variations 
in calculations, with the majority of them depending on 
NDF and CP as the fundamental factors for the calcula-
tions. The greater TDN value in BMR-type sorghum is influ-
enced by the lowered NDF level [21,26,55] and increased 
crude protein content [18,19,56]. The TDN concentration 
is positively correlated with higher nutrient content, par-
ticularly crude protein, and negatively correlated with the 
fiber components, specifically ADF, NDF, and lignin [19].

The superior digestibility of sorghum forage BMR, 
as measured by its dry matter, organic matter, and NDF 
content, is consistent with its high TDN value and low 
fiber components (NDF, ADF, and lignin). The BMR trait 
enhances bioenergy production by raising both the con-
centration of soluble sugars in the stem and its digestibility 
[38]. Low levels of fiber fraction will increase energy con-
version from feed, thereby increasing dry matter, organic 
matter, and NDF digestibility [50]. Enhanced digestibility 
of the NDF component has a beneficial impact on energy 
availability and digestive function, possibly leading to 
increased dry matter intake [17]. Low lignin content may 
enhance the digestibility of cell walls, thereby increasing 
cattle's energy intake [8]. On the contrary, a high quan-
tity of lignin in the cell wall is unfavorable since it inhib-
its microbial digestion in the rumen, resulting in reduced 
digestibility of forage cell walls [39].

BMR characteristics modify lignin metabolism in plants, 
resulting in decreased lignin levels. This can enhance the 
digestion of fiber and increase animal performance when 
compared to conventional cultivars [13,17,27]. Dey et al. 
[57] also reported that the organic matter digestibility 
and metabolizable energy values for BMR sorghum were 
significantly greater (p < 0.001) compared to both conven-
tional and sweet sorghum stovers. Regarding the in vitro 
assay, the IVTD showed a strong negative correlation (r 
≤ −0.72) with ADF, NDF, and lignin, with little differences 
observed among the three [17]. Wahyono et al. [11] showed 
that there were weak negative correlations between IVTD 
and the NDF and ADF content, with R² values of −0.201 
and −0.202, respectively. Low lignin properties in the BMR 
type increase the probability of hemicellulose breakdown, 
hence accelerating the fermentation process and leading 
to higher in vitro digestibility [58].

Animal performance, as measured by daily gain and 
milk yield, has a positive association with the digestibil-
ity and high nutrient value of BMR sorghum (Table 3). The 
BMR gene and variations in the nutritional value of forage 
linked to digestibility may be the cause of the ADG trends 
[29]. However, it is important to note that the dry matter 
intake compared to conventional sorghum remains identi-
cal. These findings demonstrate that BMR sorghum has a 
greater energy conversion rate for its nutrients compared 

to conventional sorghum. The financial benefits and animal 
performance of livestock-fed BMR sorghum were greater 
than those of wild-type sorghum [59]. The increased NDF 
digestibility in the BMR forage sorghums may result in 
greater milk output compared to conventional sorghum 
[60]. A higher carbohydrate concentration in the diet 
increases the energy density of BMR forage sorghum, 
which is correlated with increased milk production [21]. 
According to previous meta-analyses [61,62], BMR sor-
ghum is commonly used as a silage material and is nutri-
tionally balanced with corn silage for improving dairy cow 
milk production. Forage sorghum genotypes with BMR 
have higher fiber digestibility and may produce milk yields 
comparable to corn silage [5].

According to our meta-analysis, the best period to col-
lect sorghum forage is at the soft dough stage. This ensures 
that the lignin content is minimal and the biomass is suffi-
ciently high. This is appropriate regardless of the sorghum 
type, whether it is BMR or non-BMR. Puteri et al. [18] also 
reported that BMR and conventional types of sorghum 
produce high biomass at the harvest age of 95 days after 
sowing (DAS), or the soft dough phase. In the grain matu-
rity phase, many leaves may experience senescence, which 
will reduce biomass production. Our findings are in line 
with the findings of Suradiradja et al. [63], who employed 
a Decision Tree Algorithm. Previous research has deter-
mined that the optimal age for harvesting sorghum is 
approximately 84 DAS when the plant achieves a height of 
a minimum of 138.5 cm.

Lyons et al. [64] also reported that harvesting before 
the soft dough stage leads to higher NDF digestibility, ADF, 
and CP contents, while reducing non-fiber carbohydrate, 
starch, and DM concentrations. In our findings, CP content 
decreases as the generative phase increases. During the 
panicle emergence stage to the physiologic maturity stage, 
crude protein concentration continuously decreases [65]. 
This result follows the findings of Wahyono et al. [50], who 
reported that there is an inhibition mechanism in protein 
synthesis when entering the mature period. The low fiber 
fraction content in the soft dough phase will naturally 
increase the easily digestible energy content. The sorghum 
crops produced the highest mean juice ethanol yield at the 
soft dough stage, which was followed by the hard dough 
stage with a slight difference [66].

Despite our efforts to provide a comprehensive analy-
sis, we recognize some limitations in our study. Our litera-
ture search was limited to PubMed®, Scopus®, and Google 
Scholar®, excluding Web of Science® due to access restric-
tions. Additionally, the sample size for animal performance 
parameters (average daily gain, dry matter intake, and 
milk yield) was small due to the limited number of sources. 
Finally, our discussion on the effects of the harvesting 
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stage is restricted to the flowering, soft dough, and grain 
maturity phases.

Conclusion

The present meta-analysis study indicated that conven-
tional sorghum has higher amounts of forage and grain 
yield, although it contains inferior nutrient content and 
digestibility in comparison to BMR sorghum. According 
to the findings, BMR reveals lower fiber and lignin levels 
compared to conventional sorghum. The high digestibility 
of DM and fiber is affected by the above facts. Further inves-
tigation is required to fully understand the impact of BMR 
sorghum-based feed on daily weight gain and milk produc-
tion, considering the current number of studies is limited. 
More research needs to be done to find ways to increase 
biomass and grain yield while keeping the fiber content, 
which is a big benefit of BMR sorghum forage crops.
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