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ABSTRACT

Objective: The goal of this study was to look at quinolone-resistant (QR) Escherichia coli (E. coli) 
from retail beef and poultry meat in Egypt by looking at the QR mechanisms in the resistant strains.
Materials and Methods: In total, 120 samples of raw poultry meat (n = 60) and beef meat 
(n = 60) were purchased from Mansoura retail stores between January and March 2021, and 
evaluated microbiologically for E. coli. Then, an antimicrobial sensitivity test was applied to all 
isolates. The prevalence of QR E. coli with concern for the QR determinants, including quinolone 
resistance-determining regions (QRDRs) mutations, the plasmid-mediated quinolone resistance 
gene (PMQR), and the efflux pump activity were determined.
Results: The total prevalence of E. coli was 34.2% (41/120). Noticeably, the prevalence of 
E. coli in poultry meat (40%, 24/60) was higher than that of beef (28%, 17/60). All strains were 
assessed for their antimicrobial susceptibility using the disc diffusion technique; the highest 
rate of resistance (100%) was displayed to clindamycin and cefuroxime, followed by ampicillin 
(97.6%), doxycycline (92.7%), amoxicillin-clavulanate (92.7%), nalidixic acid (NA) (80.5%), 
sulfamethoxazole/trimethoprim (70.7%), chloramphenicol (63.4%), gentamicin, and azithromycin 
(58.5% each). Multiple antimicrobial resistance (strains resistant to three or more antimicrobial 
classes) was displayed by 97.6% of E. coli isolates. Regarding QR, 37 isolates could resist at least 
one of the examined quinolones. Regarding PMQR genes, qnrS was determined in 70% (7/10) 
of QR E. coli, while qnrA, qnrB, and qnrD were not identified. While the mutations determined 
regions of QR in the resistant E. coli isolates, S83L was the most prevalent in gyrase subunit A 
either alone or combined with D87N and D87Y, and three isolates of QR E. coli isolates revealed a 
topoisomerase IV subunit mutation harboring S80I. 20% of the isolates displayed efflux activity, as 
NA showed a considerable difference between its zones of inhibition.
Conclusion: The high prevalence of antimicrobial-resistant E. coli, with concern for QR strains 
harboring different resistance mechanisms in poultry meat and beef, threatens the public’s health. 
Thus, standard manufacturing procedures and adequate hygiene conditions must be followed in 
all phases of meat preparation, production, and consumption, and public knowledge should be 
improved.
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Introduction

Antibiotics are routinely used in intensive farming systems, 
resulting in gene reservoirs for antimicrobial resistance 
that could transfer to other hosts or the environment. As a 
matter of truth, antibiotics are routinely used in an unsus-
tainable way as precautionary preventative procedures, for 
mass therapy without a precise diagnosis, or for infections 
that can be avoided [1]. Antimicrobial resistance develops in 

pathogenic and commensal microorganisms due to their use 
in food-producing animals [2]. Horizontal gene transfer can 
transfer resistance genes carried on mobile genetic materi-
als to the human flora during the human body’s transit or 
colonization [3,4]. As a result, the human flora, containing 
microorganisms that are possibly hazardous to humans, 
such as nosocomial pathogens, may become resistant [5]. 
Furthermore, given the tremendous selection pressure of 
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continual antimicrobial medication use, new [multidrug-re-
sistant (MDR)] variants may colonize animals. Prospective 
variants could be highly virulent and better suited to 
humans, creating a public health risk [6].

The gastrointestinal system, in particular, is a hotspot 
for horizontal gene transfer between species and within 
species. Escherichia coli and Enterococcus spp., for exam-
ple, are well-known inhabitants of the mammalian gastro-
intestinal tract and have been demonstrated to be effective 
suppliers and recipients of antibiotic resistance determi-
nants [7]. As a result, these resistance genes constitute an 
indirect threat.

Resistance determinants are usually present on porta-
ble genetic materials, as well as the high bacterial load in the 
intestine is advantageous for genetic translocation; hence, 
food is likely to have a role in commensal bacteria resis-
tance transmission. Transmission can happen through the 
exposure or ingestion of tainted foods, which can expose 
the public and food handlers. Furthermore, food handlers 
may act as reservoirs, resulting in widespread foodborne 
outbreaks. The extent to which individuals are subjected 
to foods infected with antimicrobial-resistant bacteria 
is determined by various factors that might increase or 
decrease the bacterial load, as well as hygiene precautions 
implemented during food processing, shipping, and prepa-
ration. Antimicrobial-resistant bacteria can be transmitted 
through surfaces, hands, equipment, and so on, from one 
food to another [8].

The fluoroquinolone antimicrobial agent class has 
gained widespread acceptability among patients in hos-
pitals and those residing in the community, and its use 
seems to be on the rise [9]. Because they directly block 
DNA synthesis, fluoroquinolones (and prior quinolones) 
are unique among antibacterial drugs in clinical usage. The 
medicine appears to inhibit DNA gyrase and topoisomer-
ase IV by binding with combinations containing DNA and 
one of the two specific enzymes. During the topoisomeri-
zation phase, fluoroquinolones appear to trap the enzyme 
on DNA, producing a physical barrier to replication fork 
[10], RNA polymerases in addition to helicase movement 
in the transcription process [11].

Resistance to quinolones is caused by three mech-
anisms: drug-targeting mutations, drug-accumulation 
mutations, and plasmids that shield cells from the toxic 
impacts of quinolones [12]. fluoroquinolones´ resistance 
in Gram-negative bacteria is linked to a decrease in porins 
and drug accumulation. However, measures of diffusion 
rates imply that porin reductions alone are not enough for 
resistance to show [13].

Bacteria, which resist different antimicrobials and pass 
naturally from vertebrates into people, also can pose human 
illness and are a direct threat to human health. In Egypt, 
there is limited information on quinolone-resistant (QR) E. 

coli recovered from various food samples. Because of their 
dissemination as opportunistic pathogens, the constant 
rise in the presence rate of QR E. coli isolates is especially 
concerning and demonstrates the importance of expanding 
our research of their origins, reservoirs, and transmission 
routes. Thus, this study aimed to investigate the prevalence 
of QR E. coli in retail beef and poultry meat in retail stores 
located in Mansoura, Egypt. Moreover, for determination of 
QR determinants in the resistant E. coli isolates. 

Materials and Methods

Samples collection 

In total, 120 samples of meat consisting of retail poultry 
meat (n = 60) and fresh raw beef (n = 60) were collected 
from retail stores located in Mansoura, Egypt between 
February and April 2021. These samples were gathered 
and labeled in tightly closed plastic bags and transferred 
in an ice box under aseptic conditions to the Bacteriology, 
Mycology, and Immunology Department Laboratory, 
Faculty of Veterinary Medicine at Mansoura University, 
Mansoura to further bacteriological investigations.

Isolation and identification

About 25 gm of every sample were suspended in 225 ml of 
Tryptone Soya Broth (TSB; Oxoid, UK) and incubated for 
18–24 h at 37°C. A loopful from each pre-enriched broth 
was streaked on Eosin methylene blue (EMB) medium 
(Oxoid) and then incubated for 24 h at 37°C. Presumed 
colonies (green with metallic shin) were picked up and 
purified on Tryptone Soya Agar (TSA; Oxoid, UK) and bio-
chemically characterized according to MacWilliams [14]. 
Subsequently, retrieved E. coli isolates were confirmed by 
PCR targeting 16S rRNA. 

Molecular identification of E. coli isolates 

Genomic DNA was extracted following Ramadan et al. [15]. 
In brief, three to five E. coli colonies were inoculated into 
TSB and then incubated for 18 h at 37°C. One milliliter of 
that overnight bacterial culture was separated using cen-
trifugation for 2 min at 10,000×g. The sediment was cleared 
with DNA/RNA-free water, homogenized, and then boiled 
for 15 min at 95°C. The supernatants from boiled lysates 
were employed as DNA templates. The recovered DNA tem-
plates were adjusted to a concentration of 100 ng/l using 
a Nanodrop (Nanodrop 1000, Thermo Scientific, UK). PCR 
directed at the region of 16S ribosomal RNA was done to 
confirm E. coli, and a uniplex PCR assay was conducted 
using the following primer: F: GACCTCGGTTTAGTTCACAGA 
and R: CACACGCTGACGCTGACCA using the cyclic condi-
tion illustrated in Table 1 as described previously by the 
referred author [16].
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Antimicrobial susceptibility test

To determine antibiotic resistance phenotypic profiles, 
the Clinical and Laboratory Standards Institute’s (CLSI) 
instructions for the diffusion technique were followed 
[17]. Antimicrobial susceptibility tests were conducted 
using such antimicrobial discs (Bioanalyze/Turkey): 
amoxicillin-clavulanate (AMC, 30 µg), cefuroxime (CXM; 
30 µg), ampicillin (AM; 10 µg), chloramphenicol (C; 30 µg), 
gentamicin (CN; 10 µg), doxycycline (DO; 30 µg), clinda-
mycin (DA; 2 µg), azithromycin (AZM; 15 µg), sulfame-
thoxazole/trimethoprim (SXT; 25 µg), nalidixic acid (NA; 
30 µg), norfloxacin (NOR; 10 µg), ciprofloxacin (CIP; 5 µg), 
and levofloxacin (LEV; 5 µg). Escherichia coli ATCC 25922 
was used in the study as a quality assurance. MDR E. coli 
isolates exhibit resistance to over three distinct antibiotic 
classes [18]. In addition, the MAR index was calculated 
using the approach given by Osundiya et  al. [19], which 
involves the  antibiotics number that  an  isolate  showed 
resistance (a) divided by the total antibiotics number uti-
lized in this research (b). The following is the calculation 
formula: MAR index = a/b.

Detection for the determining regions of the QR

QR was assessed through DNA gyrase subunit A (gyrA) as 
well as topoisomerase IV subunit C (parC) mutation anal-
ysis of the quinolones’ resistance determining regions 
(QRDR). The gyrA and parC genes in the areas that deter-
mine QR were amplified using PCR. For the gyrA gene, the 
forward primer’s sequence: 5¢-TAC ACC GGT CAA CAT TGA 
GG-3¢ and the reverse primer: 5¢-TTA ATG ATT GCC GCC 
GTC GG-3¢ were used. The amplification was performed in a 
96-well Applied Biosystem, 2720 thermal cycler as follows: 

(i) a first denaturation phase lasting 4 min at 94°C, then 30 
cycles of denaturation lasting 1 min at 92°C, annealing of 1 
min at 64°C, and extension for 2 min at 74°C; then finally, 
(ii) a last extension process lasting 10 min at 74°C [20]. For 
parC, a PCR protocol for amplification of parC following 
Weigel et al. [21] was conducted using the following prim-
ers pair [22]: 5¢-AAA CCT GTT CAG CGC CGC ATT-3¢ and 5¢- 
GTG GTG CCG TTA AGC AAA-3¢ with an initial denaturation 
of 94°C lasting for 4 min, then 30 cycles of, denaturation 
lasting 1 min, annealing lasting 30 sec at 55°C, extension 
lasting 45 sec at 72°C, and lastly a final cycle running 10 
min at 72°C. Amplification results were seen using an elec-
trophorized agarose gel stained with ethidium bromide 
to check the gene fragment’s sizes. The purified products 
of PCR from both genes were subsequently subjected to 
sequencing.

Analysis of QRDRs

QIA quick PCR product extraction kit from Qiagen Inc. in 
Valencia, California, was utilized for the refinement of the 
PCR products. Cycle sequencing kit with Bigdye Terminator 
V3.1, cat-number 4336817, from the Perkin-Elmer in 
Foster city, California, and Applied Biosystems 3130 
genetic analyzer (HITACHI, Japan) were used to do gene 
sequencing and analysis. In addition, kit number CS-901 
of 100 reactions was utilized to purify the sequence reac-
tion, as well as Applied Biosystems 3130 automated DNA 
sequencer (ABI, 3,130, United States of America). Through 
the National Center for Biotechnology Information website 
(http://www.ncbi.nlm.nih.gov/BLAST), the Basic Local 
Alignment Search Tool was applied to verify the nucleotide 
sequences with those in the GenBank database.

Table 1.  List of oligonucleotide primers used in this study. 

Gene Primer name Primer sequence (5¢→3¢) (bp) Reference

16S rRNA 16S-F F: GACCTCGGTTTAGTTCACAGA 585 [16]

16S-R R: CACACGCTGACGCTGACCA

DNA gyrA gyrA-F F: TACACCGGTCAACATTGAGG 648 [20]

gyrA-R R: TTAATGATTGCCGCCGTCGG

Topoisomerase IV 
subunit C

Par C-F F: AAACCTGTTCAGCGCCGCATT 395 [22]

Par C-R R: GTGGTGCCGTTAAGCAAA

PMQR qnrS-F F: ACGACATTCGTCAACTGCAA 417 [25]

qnrS-R R: TAAATTGGCACCCTGTAGGC

QnrA-F F: TCAGCAAGAGGATTTCTCA
627 [23]

QnrA_R R: GGCAGCACTATTACTCCCA

QnrB-F F: CGACCTGAGCGGCACTGAAT
515 [24]

QnrB-R R: TGAGCAACGATGCCTGGTAG

QnrD-F F:CGAGATCAATTTACGGGGAATA 582 [26]

QnrD-R R: AACAAGCTGAAGCGCCTG
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Detection for plasmid-mediated quinolone resistance 
(PMQR) gene 

Escherichia coli isolates were submitted to PCR for deter-
mination of PMQR, including qnrA [23], qnrB [24], qnrS 
[25], and qnrD [26] using specific primers (Metabion inter-
national/AG/Germany) shown in Table 1, and a thermal 
cycler condition mentioned by the referred authors was 
used to amplify the specific fragments. PCR products were 
separated by electrophoresis on a gel of agarose 1% hav-
ing 0.5 mg/l of ethidium bromide and then photographed 
under UV light with a Gel Documentation System (Cleaver 
Scientific Ltd, UK).

Assessment of antibiotic sensitivity test in the availability of 
the efflux pump inhibitor 

The antibiotic sensitivity testing of QR isolates was done 
in the existence and absence of the inhibitor of the efflux 
pump, epinephrine [27]. The broth dilution technique 
was employed to identify the minimal inhibitory dose of 
epinephrine for the isolates under research, following the 
CLSI guidelines [28]. At 37°C, two tubes of Muller Hinton 
(MH) broth (Oxoid) and MH broth containing 150 g/ml 
of epinephrine (MISR CO.-EGYPT) were inoculated with 
each strain for 24 h. On MH agar plates, a loopful of each 
tube was spread, antibiotic discs were inserted, and the 
plates were incubated at 37°C overnight. A ruler was used 
to measure the inhibition zones encircling the antibiotic 
discs. The distinction in the inhibition zones was evaluated 
in the existence and absence of epinephrine [29].

Results

Prevalence of E. coli isolates

In this work, 120 samples were examined for the existence 
of E. coli using the conventional cultural techniques stated 
to evaluate the prevalence of E. coli from poultry meat (n = 
60) and beef meat (n = 60). Forty-one isolates (34.2%) 
were biochemically revealed to be E. coli from poultry meat 
(24/60; 40%) and beef meat samples (17/60; 28.33%). All 
41 biochemically identified isolates were then confirmed 
as E. coli by PCR (Fig. 1). 

Antibiotic susceptibility testing

The tested isolates exhibited a remarkable resistance to DA 
and CXM (41/41, 100%), followed by AM (40/41, 97.6%), 
DO (38/41, 92.7%), AMC (38/41, 92.7%), SXT (29/41, 
70.7%), and C (26/41, 63.4%), CN and AZM (24/41, 58.5% 
each). Regarding resistance to quinolones, 80.5% (33/41) 
of E. coli isolates had resistance to NA, followed by CIP 
(20/41, 48.78%), LEV (18/41, 43.9%), and NOR (16/41, 
39%) (Table 2). Escherichia coli isolates exhibiting resis-
tance to three or more different antimicrobial classes were 

termed MAR. In accordance with the prior terminology, 
MAR was detected in 97.6% (40/41) of the tested isolates 
(Table 3). 

Detection of QRDRs

Ten QR isolates (isolates displayed resistance to all quino-
lone antimicrobials used) were investigated for mutations 
in gyrA of QRDR (Fig. 2) and parC (Fig. 3) by PCR and then 
DNA sequencing. The results of sequencing revealed that 5 
out of the 10 isolates held S83L mutation in gyrA; among 
them, 2 isolates harbored D87N and D87Y alterations at 
the same gene of gyrA at 83 and 87 residues (S83L/D87N/
D87Y). The obtained sequences for mutations in DNA gyrA 
were submitted to GenBank under the accession num-
bers OM105873, OM105874, OM105875, OM105876, and 
OM105877. For parC, one typed mutation at the parC gene 
coding Ser80I was found in three isolates, and they were 
uploaded in the GenBank under the following accession 
numbers: OM105878, OM105880, and OM105882. 

Determination of PMQR genes

The PMQR was evaluated to explore further resistance’s 
mechanisms in QR E. coli isolates. The qnrs gene encoding 
QR was observed in 7 isolates out of the 10 resistant iso-
lates (Fig. 4). While, qnrA, qnrB, and qnrD were not deter-
mined in the examined isolates. 

The inhibitor of the efflux pump (epinephrine) influence on 
the antibiograms

Epinephrine, as an inhibitor of the efflux pump, was 
employed to evaluate the action of efflux for 10 QR iso-
lates. The minimal inhibitory concentration (MIC) of 

Figure 1. Escherichia coli identification targeting 16S rRNA (585 
bp). Lane L: 100:3,000 bp DNA size marker, Lane 1:24, 26, 28: 
positive samples. Lane 25, 27: negative samples.
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epinephrine was found to be 500 µg/ml. Lower doses for 
the inhibitor of the efflux pump (150 µg/ml) than inhib-
itory ones were used. All E. coli strains that appeared to 
a specific antibiotic resistance were checked. Sensitivity 
tests for antibiotics were run with and without epineph-
rine, measuring the distinction in the inhibition zones 
(Abp—Ab 0) with availability or lack of epinephrine. The 
considerable discrepancy was 2 mm at least. (2 of 10 sam-
ples) for NA showed considerable distinctions in the zones 
of inhibition suggesting that it was possibly effluxed out 
of the cells. While 98% of the tested isolates did not show 
the difference in the inhibition zone (with and without the 
addition of epinephrine) with NA. The disparity in the inhi-
bition zones of NOR, CIP, and LEV for all the tested isolates 
was determined to be insignificant, indicating that no role 
to the efflux pump in the resistance of these isolates.

Discussion

The spreading of Qs resistance in E. coli has considerably 
increased recently as a result of MDR phenotypes com-
monly emerge in this organism [30,31]. Accordingly, the 
already high health risk posed by these strains as food-
chain intermediaries for antibiotic-resistance genes is 
greatly increased. In this study, a total of 120 poultry meat 
and beef samples were investigated for E. coli contamina-
tion. Escherichia coli prevalence in the examined samples 
was 34.2% (41/120). Noticeably, the contamination rate 
(40%, 24/60) of poultry meat was higher than that of beef 
samples (28.3%, 17/60). In agreement with our findings, 
Moawad et al. [32] and Belotindos et al. [33] have recorded 
a high rate of contamination of poultry meat compared 
with beef. While, Adzitey et  al. [34] recorded an overall 

prevalence rate of 55% of E. coli from both poultry meat 
and beef, while, beef samples were reported to be more 
contaminated (80%) than poultry samples (20%).

Antibiotics are frequently administered to chickens 
during the raising process, both for disease prevention 
and treatment and for body development [35]. Penicillins, 
sulfonamides, tetracyclines, and quinolones are the most 
often utilized antibiotic classes in bred poultry [36]. 
Consequently, in this research, the greatest resistance fre-
quency was detected against DA and CXM with a percent-
age of 100% followed by AM (97.6%), and then DO and 
AMC with a percentage of 92.7%, and then NA, SXT, and C 
with percentages of 80.5%, 70.7%, and 63.4%, respectively. 
In addition, 58.5% of the tested strains were resistant to 
CN and AZM. These findings are concerning and directly 
threaten human health. Antimicrobial resistance has the 
potential to minimize the effectiveness of first-trial zoo-
nosis treatment and constrict postdiagnosis therapeutic 
options. Resistant (foodborne) bacteria strains are more 
likely than susceptible types to produce invasive sickness, 
greater mortality, and hospitalization [37].

Fluoroquinolones are synthesized drugs with a broad 
range of action that are frequently applied for treating 
bacterial infections [38]. As a result of their widespread 
use, fluoroquinolones resistance has emerged, raising the 
possibility of treatment failure [39]. In this study, 90.2% 
(37/41) of QR E. coli isolated were detected from both 
sources. Twenty-three E. coli isolates out of 24 isolates from 
poultry samples were resistant to quinolones (95.8%), 
while, 82% (14/17 isolates) of beef isolates showed QR 
which goes in line with Caruso et  al. [1] and Belotindos 
et  al. [33]. The highest resistance against the quinolone 

Table 2.  Antimicrobial susceptibility testing results. 

Antibiotics Family
Disc 
code

CPD
Chicken meat isolates (n = 24) Beef meat isolates (n = 17) Total (n = 41)

Resistant Sensitive Resistant Sensitive Resistant Sensitive

AM β-lactam AM 10 24 (100%) 0 (0.00%) 16 (94%) 1 (6%) 40 (97.6%) 1 (2.4%)

AMC Β-lactams AMC 30 24 (100%) 0 (0.00%) 14 (82.4%) 3 (17.6%) 38 (92.7%) 3 (7.3%)

CN Aminoglycoside CN 10 18 (75%) 6 (25%) 6 (35.3%) 11 (65.7%) 24 (58.5%) 17 (41.5%)

DO Tetracycline DO 30 23 (95.8%) 1(4.2%) 15 (88.2%) 2 (11.8%) 38 (92.7%) 3 (7.3%)

AZM Macrolide AZM 15 16 (66.7) 8 (33.3%) 8 (47%) 9 (53%) 24 (58.5%) 17 (41.5%)

C Phenicols C 30 22 (91.7%) 2 (8.3%) 4 (23.5%) 13 (76.5%) 26 (63.4%) 15 (36.6%)

DA Lincosamide DA 2 24 (100%) 0 (0.00%) 17 (100%) 0 (0.00%) 41 (100%) 0 (0.00)

SXT Sulphonamide SXT 25 23 (95.8%) 1 (4.2%) 6 (35.3%) 11 (65.7%) 29 (70.7%) 12 (29.3%)

CXM Cephalosporin CXM 30 24 (100%) 0 (0.00%) 17 (100%) 0 (0.00%) 41 (100%) 0 (0.00%)

NA Quinolones NA 30 23 (95.8%) 1 (4.2%) 10 (58.8%) 7 (41.2%) 33(80.5%) 8 (19.5%)

NOR Fluoroquinolone NOR 10 12 (50%) 12 (50%) 4 (23.5%) 13 (76.5%) 16 (39%) 25 (61%)

CIP Fluoroquinolone CIP 5 13 (54.2%) 11 (45.8%) 7 (41%) 10 (59%) 20 (48.78%) 21 (51.22%)

LEV Fluoroquinolone LEV 5 10 (41.7%) 14 (58.3%) 8 (47%) 9 (53%) 18 (43.9%) 23 (56.1%)
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group was recorded against NA (80.5%) followed by CIP 
(48.78%), LEV (43.9%), and then NOR (39%). 

Alterations in the genes encoding the relevant enzymes 
are known to be the most frequent mechanism of Qs resis-
tance. Genetic analysis of selected E. coli isolates relied 
on the gyrA and parC genes’ sequences revealed that 5 
strains carried a point mutation at gyrA with a serine to 
leucine change at position 83, one of the widely recorded 
resistance granting mutations [40]. In addition, other gyrA 
mutations were detected at position 87 with an aspartate 
to asparagine substitution and an aspartate to tyrosine 
substitution. Single-or double-point alterations at gyrA 

were recorded in this work. Regarding parC of QRDR, a ser-
ine into isoleucine substitution at position 80 was detected 
in 3 isolates. The combination between both single and 
double gyrA mutations with parC mutations has been 
recorded. Similarly, prior researches report that the most 
frequent forms of known amino acid change in E. coli were 
in gyrA (S83 L and D87 N) as well as parC (S80I) [40–42]. 

The majority of the genes that cause antibacterial resis-
tance are found on plasmids and other portable genetic 
components, which can and frequently disseminate to 
bacteria of various genera and species. [43,44]. In this 
research, most of the Qs-resistant isolates (7/10) were 

Table 3.  Pattern of antimicrobial susceptibility testing.

Pattern Resistance pattern
Isolates no.(%) 

N = 41
MAR index

1 AMC, AM, DO, AZM, C, SXT, CXM, CN, DA, NA 4(10%) 0.77

2 AMC, AM, DO, AZM, C, SXT, CXM, CN, DA, NA, NOR 1(2.4%) 0.85

3 AMC, AM, DO, AZM, C, SXT, CXM, CN, DA, NA, NOR, LEV 1(2.4%) 0.92

4 AMC, AM, DO, AZM, C, SXT, CXM, CN, DA, NA, CIP, LEV 1(2.4%) 0.92

5 AMC, AM, DO, AZM, C, SXT, CXM, CN, DA, NA, NOR, CIP, LEV 6(15%) 1

6 AMC, AM, DO, C, SXT, CXM, CN, DA, NA 2(5%) 0.69

7 AMC, AM, DO, C, SXT, CXM, CN, DA, NA, CIP 1(2.4%) 0.77

8 AMC, AM, DO, C, SXT, CXM, CN, DA, NA, NOR, CIP, LEV 1(2.4%) 0.92

9 AMC, AM, DO, C, SXT, CXM, AZM, DA, NA, NOR, CIP, LEV 2(5%) 0.92

10 AMC, AM, DO, C, CXM, AZM, CN, DA, NA 1 (2.4%) 0.69

11 AMC, AM, DO, C, CXM, AZM, CN, DA, NA, CIP 1(2.4%) 0.77

12 AMC, AM, DO, SXT, CXM, AZM, DA, NA 1(2.4%) 0.6

13 AMC, AM, DO, SXT, CXM, AZM, DA, NA, NOR, CIP 1(2.4%) 0.77

14 AMC, AM, DO, SXT, CXM, C, DA, NA 1(2.4%) 0.6

15 AMC, AM, DO, SXT, CXM, C, DA, NA,NOR, CIP 1(2.4%) 0.77

16 AMC, AM, SXT, CXM, C, AZM, DA, NA,NOR,CIP,LEV 1(2.4%) 0.85

17 AMC, AM, DO, ,CXM, AZM, CN, DA, LEV 1(2.4%) 0.6

18 AMC, AM, DO, ,CXM, AZM, CN, DA,NOR,CIP, LEV 1(2.4%) 0.77

19 AMC, AM, DO, ,CXM, SXT, CN, DA, NA 1 (2.4%) 0.6

20 AMC, AM, DO, ,CXM, AZM,C, DA, NA, CIP 1(2.4%) 0.69

21 AMC, AM, DO, CXM, SXT, DA, NA 1(2.4%) 0.54

22 AMC, AM, DO, CXM, SXT, DA, NA, CIP 1(2.4%) 0.6

23 AMC, AM, DO, CXM, SXT, DA, NA, NOR, LEV 1(2.4%) 0.69

24 AMC, AM, DO, ,CXM,CN, DA, NA, LEV 1(2.4%) 0.6

25 AMC, AM, DO, ,CXM,CN, DA, CIP, LEV 1(2.4%) 0.6

26 AM, DO, CXM, DA, NA 1(2.4%) 0.38

27 AM, AMC, DO, CXM, DA, CIP, LEV 1(2.4%) 0.54

28 AMC, AM, C, SXT, CXM, DA. 1 (2.4%) 0.46

29 AMC, DO, AZM, CXM, DA 1 (2.4%) 0.38

30 AM, DO, CXM, DA 1 (2.4%) 0.31

31 CXM, DA 1 (2.4%) 0.15
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PMQR-positive (qnrS). Similarly, previous reports world-
wide have reported a high prevalence of PMQR-positive 
among Q-resistant E. coli [45–48] which highlights their 
significant contribution to acquiring Qs resistance. On 
the other hand, a lower prevalence of PMQRs was men-
tioned among QR E. coli in Egypt (26.6%) [49], Taiwan 
(14.9%) [50], and Germany (3.7%) [51]. According to 
Woyda et al. [52], chicken production isolates were more 
likely than human clinical isolates to carry acquired AMR 
genes (65.7%), and they also carried an average of more 
acquired AMR genes per isolate. Furthermore, Juraschek 
et al. [51] verified that the existence of qnr alone can result 
in phenotypic (fluoro) QR without the need for PMQR or 
point mutations in the relevant chromosomal area.

Efflux pumps, also known as MDR pumps, have been 
identified as a major determinant of antibiotic concen-
tration within a bacterial cell. As a result, inhibiting efflux 
pumps can be used to increase the concentration of anti-
biotics inside a pathogenic cell, thereby increasing the 
efficacy of these drugs [53]. In the present study, epi-
nephrine was used as an EPI, by investigating its effect 
in certain concentrations (150 mg/ml) on the inhibition 
zone values of selected antibiotics. 20% of the isolates 

revealed the efflux action indicating that this drug was 
probably effluxed from the cells, while, 80% of the tested 
isolates did not show that action with NA. NOR, CIP, and 
LEV showed no differences in their inhibition zones for all 
tested isolates, indicating that no role to the efflux pump 
action in the resistance. Similarly, a lower prevalence of 
efflux pump effect was recorded by Hooper and Jacoby 
[54] (12.1%), Hamed et al. [55] (18.3%), and Vieira et al. 
[56] among quinolone resistant (QR) isolates suggested a 
higher contribution of other resistance mechanisms. Porin 
reductions and decreased bacterial drug accumulation are 
linked to fluoroquinolone resistance in Gram-negative bac-
teria, although assessments of diffusion levels indicate that 
reductions of porin alone, typically are not enough to cause 
resistance [13,57,58].

In this study, 97.6% of the tested isolates expressed MDR 
phenotypes with a MAR index of more than 0.2. The high-
est resistance rate was recorded in 32% of these tested iso-
lates that resisted 9 various antibiotic classes and 20% of 
E. coli isolates resisted 8 different antibiotic classes. While, 
21%, 12%, and 10% of tested isolates displayed resistance 
to 7, 6, and 5 different antibiotic classes, respectively. The 
lowest percentage of isolates (2.5%) resist to two and 
four different antibiotic classes. These findings agree with 
those of recent investigations [33, 58–60] demonstrating 
greater incidence of MDR between Q-resistant E. coli. The 
high percentages of resistant strains isolated in this study 
may pose a direct risk to consumers by colonizing their 
intestinal tract until conditions are favorable for extrain-
testinal infection, or indirectly by transferring resistance 
genes to human commensal flora [61]. The MAR index is 
a reliable, valid, and affordable method for tracing the ori-
gins of antibiotic-resistant organisms [62]. A MAR of more 
than 0.2 indicates a great threat of contamination origin 
in areas where antimicrobials are routinely utilized [63]. 
In this investigation, the highest MDR was presented in E. 
coli with a MAR value of 1.00, in 17% of the tested isolates 

Figure 2. Amplification of gyrA at 648-bp in the QRDRs in QR 
E. coli strains. Lane L: 100:3,000-bp DNA size marker, Lane 1:10 
QR E. coli strains.

Figure 3. Amplification of parC at (395-bp) in the QRDRs. Lane 
L: 100:3,000-bp DNA size marker, Lane 1:10 QR E. coli strains.

Figure 4. Amplification of PMQR (qnrS, 417-bp) in QR 
E. coli strains. Lane L: 100:3,000-bp DNA size marker, Lane 
1,2,3,5,7,8,9: positive samples. Lane 4,6,10: negative samples.
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which goes in line with Ayandele et al. [64] who recorded 
a high MDR with a MAR index of 1.00 in 34% of E. coli iso-
lates and Jaja et al. [65] who reported MAR indexes ranged 
from 0.2 to 0.5. Antimicrobial drugs used in veterinary 
medicine must be used responsibly and prudently to pre-
serve both animal and human health [66]. To address the 
antimicrobial resistance crisis, various degrees of safety 
precautions must be considered such as "tertiary preven-
tion" (improving the immune systems ability of animals to 
react to diseases) [67] and vaccines based on broadly pre-
served antigens [68,69].

Conclusion

In conclusion, personal protective precautions, such as 
the wearing of safety clothes such as gloves and masks, as 
well as the usage of basic health measures such as hand 
washing and showering, should be promoted to avoid the 
dissemination of resistant microbes from food of animal 
origins to humans. Furthermore, slaughterhouses in addi-
tion to food handling practices must be considered in the 
effort to reduce foodborne transmission, in accordance 
with the concept of “farm-to-fork”.
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