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ABSTRACT

CRISPR-associated proteins and clustered regularly interspaced short palindromic repeats 
(CRISPR-Cas) technology has emerged as a groundbreaking advancement in animal and poultry 
nutrition to improve feed conversion efficiency, enhance disease resistance, and improve the 
nutritional quality of animal products. Despite significant advancements, there is a research gap 
in the systematic understanding and comprehensive use of the CRISPR-Cas method in animal and 
poultry nutrition. The purpose of this study is to elucidate the latest advancements in animal and 
poultry nutrition through CRISPR-Cas genome editing technology, focusing on gene manipulation 
in metabolism, immunity, and growth. Following preferred reporting items in meta-analysis and 
systematic reviews guidelines, we conducted a systematic search using several databases, includ-
ing Scopus, PubMed, and Web of Science, until May 2024, and finally, we included a total of 108 
articles in this study. This article explores the use of the CRISPR-Cas system in the advancement 
of feed additives like probiotics and enzymes, which could reduce the use of antibiotics in ani-
mal production. Furthermore, the article discusses ethical and regulatory issues related to gene 
editing in animal and poultry nutrition, including concerns about animal welfare, food safety, 
and environmental impacts. Overall, the CRISPR-Cas system holds substantial promise to over-
come the challenges in modern animal agriculture. By enriching the nutritional quality of animal 
products, increasing disease resistance, and improving feed efficiency, it offers sustainable and 
cost-effective solutions that can revolutionize animal and poultry nutrition.
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Introduction

Considering the growing worldwide demand for sustain-
able farming to fulfill the sustainable development goals 
(SDGs) and ensure environmental sustainability, a discus-
sion concerning the effective uses of CRISPR-associated 
proteins and clustered regularly interspaced short palin-
dromic repeats (CRISPR-Cas) technology in animal and, 
poultry nutrition is crucial. By investigating the possible 
uses of the CRISPR-Cas method in advancing ecological 
sustainability and the SDGs in the context of animal agri-
culture, this review’s objective is to bridge this gap. By 
analyzing the complex interactions between gene edit-
ing and sustainable food production, this study aims to 
bring out the groundbreaking promise of the CRISPR-Cas 

method in overcoming major issues currently facing ani-
mal agriculture.

The CRISPR-Cas method is a revolutionary skill that per-
mits specific and efficient editing of genetic information. 
The abbreviations for CRISPR-Cas are “Clustered Regularly 
Interspaced Short Palindromic Repeats and CRISPR-
associated proteins.” Its mechanism enables bacteria to 
protect themselves from viruses by cutting and deactivat-
ing viral Deoxyribonucleic acid (DNA) sequences. In the 
areas of agriculture, biotechnology, and medicine, CRISPR-
Cas has various potential applications. The CRISPR-Cas 
method has been designed based on innate defense mech-
anisms against viral infection of bacteria and archaea, 
where it works as an adaptive immunity [1,2]. This method 
comprises three main constituents: (1) the “CRISPR 
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array”, which contains the specific guide Ribonucleic acids 
(RNAs) that target the DNA sequence of interest; (2) the 
Cas (CRISPR-associated) proteins, that cleave the DNA at 
the selected site, and (3) the repair techniques of the cell, 
which then repair the cut site in one of two ways by using 
the host cell’s natural DNA repair systems: non-homolo-
gous end joining or homology-directed repair (HDR) [3]. 
The CRISPR-Cas system functions by attaching a guide 
RNA molecule that matches a certain DNA sequence to the 
target DNA. Then, the Cas enzyme cuts and modifies the 
target DNA sequence as needed [3].

The CRISPR-Cas system has an extensive range of appli-
cations, from basic research to clinical use. In addition to 
being used to treat human diseases such as sickle cell ane-
mia, beta-thalassemia [4], and cystic fibrosis by correcting 
the underlying genetic mutations, the CRISPR-Cas method 
has been adapted for use in genome editing, allowing 
researchers to make precise changes to DNA sequences in 
a wide range of organisms, including animals and plants 
[5,6]. Although this innovation is being applied to address 
disease resistance, it is still in the early stages of trial. At 
this stage, the results have shown significant advance-
ments, suggesting that CRISPR-Cas is promising to trans-
form animal husbandry. Nevertheless, these attributes still 
need to be thoroughly optimized and corrected. To fully 
realize the potential of CRISPR-Cas technology and provide 
long-term, practical solutions for animal and poultry nutri-
tion, further research and experiments are needed to get 
over the current barriers.

In animal and poultry nutrition, the CRISPR-Cas 
method is a groundbreaking technology in genome edit-
ing, gene therapy, epigenetic modification, and drug deliv-
ery within the genome of the animal [7,8]. Its application 
also involves the creation of genetically adapted crops 
that are more resistant to pests and diseases and have 
high nutritional value [9]. Moreover, compared to exist-
ing gene-editing instruments, this technique is far more 
user-friendly, affordable, and highly efficient [10]. For 
example, CRISPR-Cas 9 is an affordable method of treating 
avian viral infections in poultry by modifying the host or 
virus’s DNA [11], and it has a therapeutic role in neuro-
logical disorders [12]. Moreover, CRISPR-Cas 9 has more 
potential in various aspects of diabetes research [13] and 
the prevention and treatment of Alzheimer’s disease [14]. 
Additionally, therapeutic uses of this technology include 
the treatment of congenital heart disease, the preven-
tion of ischemia-reperfusion injury, hyperlipidemias, and 
arrhythmogenic cardiomyopathies [15]. To control Eimeria 
tenella infection, CRISPR-Cas9 was used to construct a 
mCherry-GCS1 fusion in E. tenella to improve understand-
ing of its transmission and aid the development of gameto-
cidal drugs [16]. Besides, gene editing can be utilized to 
induce genome modifications that increase tolerance to 

high temperatures, high humidity, and other extreme con-
ditions in poultry [17].

Furthermore, it is possible to easily design the guide 
RNA and synthesize it to target any desired sequence, 
and the Cas nuclease can then be used to cut and edit 
the targeted gene [18]. This precision allows research-
ers to do more accurate gene editing, which reduces the 
risk of unintended consequences. CRISPR-Cas is crucial 
for improving feed efficiency, disease resistance, and the 
nutritional quality of products in animal and poultry nutri-
tion. It permits functional feed additives, preserves genetic 
diversity, and demands ethical and regulatory consider-
ations [19,20–21].

There is a critical research gap in understanding the 
comprehensive applications of the CRISPR-Cas method in 
animal and poultry nutrition. Besides, its potential bene-
fits and challenges for sustainable livestock production 
are still unclear. There are also significant research gaps 
that include investigating the endless consequences of 
CRISPR-Cas modifications on animal health, behavior, 
and reproductive capabilities, as well as understanding 
the implications of gene editing on genetic diversity and 
breeding strategies. Additionally, exploring the efficiency 
of CRISPR-Cas delivery systems and addressing safety 
and regulatory considerations will be crucial in ensuring 
responsible and sustainable implementation. Moreover, 
consumer perception and acceptance of CRISPR-Cas-
modified products, as well as conducting comparative 
analyses with other nutritional strategies, are critical to 
framing the future of this technology in the livestock and 
poultry industries. Modern agriculture is facing some 
urgent issues such as enhancing food security, reducing 
environmental impact, and promoting animal welfare, and 
those could be resolved by applying CRISPR-Cas technol-
ogy. To meet the increasing demand for global food pro-
duction while maintaining the welfare of both animals 
and consumers, it is necessary to understand the scope 
and implications of CRISPR-Cas applications in this con-
text. Research endeavors in the future have the potential 
to create new opportunities and overcome current restric-
tions, ranging from investigating novel genetic targets to 
addressing ethical and regulatory problems. This article 
highlights the advancement of CRISPR-Cas in animal and 
poultry nutrition, focusing on improved feed efficiency, 
disease resistance, and gene manipulation. It also explores 
functional feed additives’ potential and addresses ethical 
and regulatory concerns.

Materials and Methods

Search strategy

We executed a thorough search technique to identify 
related articles from reputable scientific databases such 
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as Web of Science, Pun Med, and Scopus. The preferred 
reporting items in meta-analysis and systematic reviews 
(PRISMA) framework was followed in the course of this 
study [22]. Boolean operators were employed to refine 
the search and extract relevant articles throughout the 
July 2012–May 2024 timeframe to ensure the inclusion 
of current and relevant articles. We resolved any dis-
crepancies in the selection process through discussion. 
Subsequently, 108 articles were chosen for whole-text 
review (Fig. 1).

Addition and deletion criteria

Studies that specifically addressed the utilization of 
CRISPR-Cas tools in animal and poultry nutrition were 
the focus of the addition criterion. Articles that satisfied 
the following criteria were accepted for inclusion: they 
had to address the application of CRISPR-Cas gene-editing 
techniques to improve feed efficiency, nutrition, or other 
pertinent aspects in livestock or poultry, and they had to 
be peer-reviewed and published in English within the allo-
cated time. The effects of genetic alterations on health, pro-
duction, or the quality of the products in different animal 
species, such as cattle and poultry, also have to be included 
in these articles. Exclusion criteria were used to filter out 
irrelevant research. These included editorials, conference 
abstracts, publications that were not subjected to peer 
review, and reviews that lacked primary data. Research 

without pertinent results or unrelated to CRISPR-Cas uses 
in animal and poultry nutrition was also excluded.

Data analysis

Because of the variability in the research design, animal 
species, and outcomes, a meta-analysis was not practically 
possible. Instead, to summarize and interpret the find-
ings of the added studies, a narrative synthesis approach 
was employed. Based on CRISPR-Cas applications, animal 
or poultry species, and the impact on nutrition, feed effi-
ciency, and animal health, themes and trends were identi-
fied, and results were organized.

Results and Discussion

How the CRISPR-Cas method works

CRISPR is a short, repeating sequence of DNA existing in 
the bacterial and prokaryotic genomes, while CRISPR-
associated (Cas) proteins are enzymes that are capable of 
recognizing and cutting DNA at specific locations within 
the genome [23]. This system employs a guide RNA (gRNA) 
that is designed to bind to a target sequence of DNA in the 
genome for gene editing. The gRNA guides the Cas enzyme 
that can induce a double standard break (DSB) at the tar-
get site, triggering the natural DNA-repairing mechanism 
of the cell (3). DSB can lead to insertions, deletions, or 
precise gene editing after repair [24]. This technique has 

Figure 1. PRISMA diagram of the study selection procedure.
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vast implementations in diverse fields, involving medicine, 
agriculture, and biotechnology (Fig. 2).

Practical implications of the CRISPR-Cas method for animal 
nutrition

The major practical uses of CRISPR-Cas technology in ani-
mal and poultry nutrition are probiotics and enzymes. 
Another is the development of genetically modified feed 
additives. These modifications could reduce the require-
ment for antibiotics in animal production systems, enhance 
nutrition utilization, and promote digestive health [25]. 
For instance, researchers have effectively created probiotic 
strains using the CRISPR-Cas method to enhance nutri-
tional absorption and decrease disease invasion in ani-
mals [26]. Besides, researchers could potentially be able to 
breed livestock with higher feed conversion efficiency, dis-
ease resistance, and meat quality qualities by focusing on 
genes associated with metabolism, immunity, and growth 
[27], [28]. For example, according to a recent study, it is 
possible to target certain genes in pigs using CRISPR-Cas 
technology to boost the production of lean meat and mus-
cle growth [27,29].

1.	 Using CRISPR-Cas to enhance feed efficiency

Researchers can introduce specific genetic modifications 
into the candidate genes to enhance their function and, in 
turn, improve feed efficiency by using CRISPR-Cas tech-
nology. For instance, a study showed that introducing a 

specific genetic modification into the growth hormone 
receptor gene in pigs by CRISPR-Cas resulted in increased 
muscle mass and improved feed efficiency [30]. In a differ-
ent study, the Adipocyte-specific fatty acid-binding protein 
gene in pigs was genetically modified using CRISPR-Cas, 
which increased intramuscular fat content and enhanced 
feed efficiency [31]. Furthermore, gene alterations have 
been introduced into livestock’s digestive systems using 
CRISPR-Cas. For example, a study [32] in bovines exhibited 
that introducing genetic modification into the TLR4 gene 
by CRISPR-Cas improved the efficiency of the immune 
response of cattle to pathogen challenges, resulting in 
enhanced mammary epithelial cells in cows (Table 1).

2.	 Improving nutrient utilization in animals

By modifying genes involved in nutrient metabolism and 
absorption, the CRISPR-Cas system can improve nutrient 
utilization in animals. For example, using CRISPR/Cas9 
technology, the myostatin (Mstn) in rabbits and goats 
was knocked out to examine the impact on skeletal mus-
cle mass and meat output in animals. The results showed 
the possibility of precise gene editing to enhance the pro-
duction of meat in these animals [33]. Moreover, research 
revealed that a combination of CRISPR/Cas9 technology 
and microinjection has been successfully created for pro-
ducing enhanced melatonin-enriched milk in sheep [34]. 
In addition, to create high-value carotenoids with possi-
ble protection against age-linked macular degeneration, 
research demonstrated the useful commercial applicability 

Figure 2. Overview of CRISPR-Cas mechanism.
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of CRISPR-Cas9 ribonucleoprotein-produced microalgal 
mutants in algal biotechnology [59] (Table 1).

Researchers have altered the genomes of cows using 
CRISPR/Cas to boost the fatty acid metabolism-related 
enzyme lipoprotein lipase output. The absorption and 
metabolism of fatty acids can be improved by increasing 
the production of lipoprotein lipase, which leads to bet-
ter nutrient utilization efficiency in cows [60]. Moreover, 

CRISPR-Cas can also be used to develop animals that are 
resistant to diseases that can impact nutrient absorption 
and metabolism. For instance, African swine fever (ASF) in 
pigs can cause high mortality rates, diarrhea, and reduced 
feed intake, leading to poor nutrient absorption and 
growth. Researchers have used CRISPR-Cas to generate 
pigs that are resistant to ASF by deleting a gene that the 
virus requires to replicate [61] (Table 1).

Table 1. Data analysis—narrative synthesis.

Application of CRISPR-Cas Species of 
animals/ poultry Key results Summary of results References

Improved feed efficiency 
through gene editing

Cattle • Higher growth rates
• �Increased feed conversion 

efficiency

Cattle that had undergone CRISPR editing outperformed 
control groups in terms of demonstrating the potential of 
gene editing to raise the production of animals.

[35–37]

Biomedicine reasons Large animals 
and poultry

• �Enhance livestock 
production efficiency.

• �Promote animal welfare 
and health,

• �Decrease environmental 
impact and

• �Improve pest control

There are financial and technical difficulties. Although it 
may improve animal output and the availability of food, 
ethical and environmental issues need to be considered 
in the CRISPR era.

[38,39]

Raising the demand 
for animal-based food 
products globally while 
reducing its negative 
environmental effects

Cattle, pig, 
sheep and other 
livestock

• �Improves animal welfare 
and performance

• �Potential to lead to 
sustainable livestock 
farming with the right 
regulations

Enhancing livestock productivity and welfare with CRISPR-
Cas genome editing is a sustainable approach. New 
reproductive technologies make it possible to use them 
on-farm, potentially expediting genetic advancements for 
a sustainable future in animal farming.

[37,40,41]

Gene editing to enhance 
the quality of poultry 
meat

Broiler • �Omega-3 fatty acid 
concentrations higher in 
meat 

• �Improved poultry meat 
quality

The meat from CRISPR-edited chickens contained 
larger concentrations of advantageous omega-3 fatty 
acids, leading to healthier poultry products that satisfy 
customer expectations for nutrient-rich alternatives.

[35,42]

Improved muscle growth 
with gene knockout

Pig • �Improved muscle mass
• �Increased in carcass yield

Increased muscle mass in CRISPR-modified pigs due to 
gene deletion suggests the possibility of greater carcass 
yield and meat production efficiency, which could have a 
positive effect on the swine sector.

[43–45]

Disease resistance with 
gene editing

Livestock and 
Poultry

• �Increased resistance to 
typical infections 

• �A decrease in antibiotic 
use

Improved resistance to common infections in CRISPR-
edited turkeys resulted in lower antibiotic consumption, 
promoting sustainable poultry production methods that 
advance animal welfare and food safety.

[46,47]

Improved Wool/Fiber 
production by gene 
modification

Sheep • �Increased production of 
wool and fibers

• �Improved fiber/wool 
quality

Improved wool/fiber output and quality were seen in 
CRISPR-edited sheep, indicating possibilities for the wool 
industry and generating higher-quality fibers for the 
textile industry.

[48–50]

Gene modification to 
increase milk production

Goat • �Increased milk production
• �Improved composition 

of milk

Goats that had undergone CRISPR editing produced more 
milk and had better milk composition, suggesting that the 
dairy industry may be improved and higher-quality milk 
and dairy products could be produced.

[51–55]

Disease-resistance gene 
knockout

Buffalo • �Increased resistance to a 
certain disease

CRISPR-edited buffalo produced more milk and had a 
better milk composition, indicating that the dairy industry 
may be enhanced and that higher-quality milk and dairy 
products may be produced.

[41,56]

Improved reproductive 
performance by gene 
editing

Other Species • �Improved reproductive 
characteristics

• �A rise in reproductive 
effectiveness

CRISPR-Cas applications demonstrated encouraging 
outcomes in improving reproductive performance and 
efficiency in several additional animal species, opening up 
new opportunities for improved breeding programs and 
genetic diversity.

[57,40,58]
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3.	 Targeted modification of genes related to growth and 
development

Researchers achieved a cutting-edge feat by implement-
ing gene editing to disable the beta-lactoglobulin gene in 
cattle. Their objective was to provide milk that is hypo-
allergenic and ideal for all consumers, which was pub-
lished in Edición génica, 2021. Furthermore, studies 
showed that the CRISPR/Cas9 system’s precise editing or 
elimination of avian leukosis virus (ALV) receptor genes 
is the first step toward the generation of hens immune 
to the ALV [62]. To increase muscle mass and reduce fat 
deposition in broiler chickens, the growth hormone gene 
has been successfully targeted and modified using the 
CRISPR-Cas system [63].

Similarly, the insulin-like growth factor 1 (IGF1) gene 
has been targeted to increase pigs’ growth performance 
and meat quality [64]. Moreover, researchers at Seoul 
National University created swine double-muscled (with 
more muscular mass) utilizing CRISPR-Cas technology 
[65]. Apart from that, according to China’s CRISPR 2019, 
researchers from the Chinese Academy of Sciences created 
leaner meat with increased endurance to cold conditions 
by using CRISPR-Cas technology. In addition, according to 
Genetic Literacy Project 2019, researchers modified the 
CD163 protein structure by deleting a part of a pig gene 
using CRISPR-Cas9 technology, preventing porcine respi-
ratory and reproductive syndrome (PRRS) in the pigs with 
no symptoms of infection or an immune response to the 
virus. Furthermore, to enhance the quality of the pork, 
genes encoding enzymes involved in meat tenderization, 
such as calpastatin and μ-calpain, have been successfully 
modified [57]. Moreover, reducing fat deposition and 
increasing feed efficiency have been achieved by targeting 
the Stearoyl-CoA desaturase (SCD) gene, which is involved 
in the synthesis of fatty acids in pigs [66]. The MC4R gene 
involved in appetite regulation in chickens has been tar-
geted to improve feed efficiency and reduce feed intake 
[35] (Table 2).

4.	 Growth-related genes

In pigs and cattle, scientists have successfully used 
CRISPR-Cas to alter genes associated with muscle growth 
in animals with increased muscle mass and meat yield 
[67–69]. Similarly, the modification of genes for fat metab-
olism in animals has led to reduced fat deposition and 
improved meat quality [43]. In poultry, the modification 
of growth-hormone-related genes has led to increased 
growth rates and body weight [70].

5.	 Improving animal development

In chickens, the alteration of genes involved in embry-
onic development has led to improved hatchability [71]. 

The change in bone development-related genes has also 
led to improved skeletal health and meat quality in pigs 
[72]. Besides, a study on the CRISPR/Cas9 method showed 
that heritable double muscle buttocks in rabbits could be 
achieved through myostatin mutation, which was useful 
for producing rabbit meat [73]. Another study showed 
that a CRISPR/Cas9-mediated knockout of the recombina-
tion activating gene 1 (RAG1) created an immunodeficient 
chicken model, enabling avian-specific immune cell devel-
opment [74].

Implications for poultry nutrition

1.	 Using CRISPR-Cas to enhance immune function in poultry

Recent advancements in gene editing technology, like the 
CRISPR-Cas system, offer new opportunities for poultry 
to enhance their immune function and resistance to dis-
ease. In chickens, it has been demonstrated that utilizing 
CRISPR-Cas technology to delete the avian interleukin-6 
(IL-6) gene increases their resistance to the avian influ-
enza virus [75]. Similarly, the over-expression of the inter-
feron alpha (IFN-α) gene using CRISPR-Cas in chickens has 
been shown to enhance their antiviral response and reduce 
the replication of the infectious bursal disease virus [76]. 
Moreover, it has been demonstrated that utilizing CRISPR-
Cas technology to delete the avian toll-like receptor 7 
(TLR7) gene in hens lowers the birds’ vulnerability to the 
infectious bronchitis virus [77].

2.	 CRISPR-Cas in feed additives

Another approach to CRISPR-Cas use is to enhance immune 
function in poultry by developing functional feed addi-
tives. At present, the probiotic industry commonly utilizes 
CRISPR-Cas technology to create precisely engineered pro-
biotic lactobacilli [78–80].

Furthermore, the overexpression of the chicken inter-
leukin-2 (IL-2) gene in Lactobacillus casei using CRISPR-
Cas technology has been shown to upgrade the growth 
performance and immune function of broiler chickens 
[81]. In addition to directly targeting immune-related 
genes, CRISPR-Cas can also be used for the development of 
functional feed additives that can enhance immune func-
tion. For instance, the gene encoding for the antimicrobial 
peptide cathelicidin has been edited in chicken embryonic 
fibroblasts, resulting in increased resistance to Salmonella 
enteritidis [81] (Table 2).

These edited genes could be incorporated into probi-
otics or other feed additives to increase the immune func-
tion of poultry. Using CRISPR-Cas technology in L. casei 
has been shown to promote the growth performance 
and immune function of broiler chickens [82]. Similarly, 
Levilactobacillus brevis has been genetically modified by 
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CRISPR-Cas technology to enhance the functionality and 
nutritional value of feed additives [91] (Table 2).

3.	 CRISPR-Cas technique in enzyme production 

The CRISPR-Cas technique can be used to engineer micro-
bial strains that produce enzymes beneficial for diges-
tion in poultry. To improve enzyme production efficiency, 
researchers can target specific genes in microbial produc-
ers of enzymes using the CRISPR-Cas system [92,93].

4.	 Reducing the environmental impact

The use of CRISPR-Cas offers significant potential for sus-
tainable agriculture to lessen the environmental impact of 
poultry production. Farmers can lower the environmental 
footprint of poultry production by improving feed effi-
ciency and reducing waste, leading to better food safety 
and reduced environmental pollution [94–96].

Potential challenges and risks

Despite its revolutionary promise, there are limitations 
and restrictions associated with the broad use of CRISPR-
Cas technology. Careful inspection and regulation of 
gene-edited livestock is required due to ethical consider-
ations about animal welfare, food safety, and environmen-
tal effects [97]. Robust safety evaluations and regulatory 
control are crucial due to concerns about unintentional 
off-target effects and long-term health repercussions for 
humans and animals [3].

1.	 Ethical considerations of gene editing in animals

One of the primary ethical considerations of gene editing 
is the potential for unintentional effects in animals. During 
gene editing, off-target effects and unintended mutations 
may occur, which can cause unpredictable and potentially 
harmful effects in animals. Therefore, careful evaluation 
is required for potential risks and benefits during the 

application of CRISPR-Cas technology in animals and to 
minimize the risk of unintended consequences [98].

Besides, the effect of gene editing on animal welfare is 
a crucial ethical concern. While it can improve health and 
disease resistance, there is a risk of unintended conse-
quences like suffering and reduced fitness. Hence, evaluat-
ing impact and ethical considerations is essential [99,100]. 
Moreover, the utilization of CRISPR-Cas technology in ani-
mals also raises ethical concerns regarding human health 
and safety. The potential health risks connected with 
consuming genetically modified food products should be 
carefully evaluated to confirm that they are safe for human 
consumption [99,101].

To efficiently use CRISPR-Cas technology in animal 
and poultry nutrition, it is crucial that future veterinar-
ians, technicians, and farmers get an education in this 
particular field. Incorporating the most recent biotech-
nological advancements, practical training, and ethical 
concerns, a comprehensive and updated curriculum is 
needed [102]. Professionals are equipped to manage the 
societal ramifications of gene editing through interdisci-
plinary education, which integrates biological sciences, 
ethics, and communication [103]. Besides, social media 
also plays an integral role in providing research updates 
related to welfare and health, with platforms such as 
Instagram containing posts, stories, reels, live videos, 
hashtags, and so on [104]. Additionally, the policy impli-
cations are crucial and need to be aligned with recent 
government policies. Its scope must be feasible for the 
potential implementation of CRISPR-Cas technology in 
countries with similar socio-economic orientations for 
the adoption of innovative technology and fostering 
global dissemination. Globally, many countries have 
different legal statuses for CRISPR-edited organisms. 
For example, the USA and China allow their use under 
certain conditions, whereas the EU and other countries 
impose restricted limitations or outright prohibitions. 

Table 2. Use of the CRISPR-Cas system in the animal or poultry involved.

Application CRISPR-Cas system Animal/Poultry Study

Improved growth performance CRISPR-Cas9 Swine [83,84]

Increased disease resistance CRISPR-Cas9 Chicken [8,85]

Improved feed efficiency CRISPR-Cas9 Swine [43,61]

Increased meat quality CRISPR-Cas9 Swine [31,43]

Decreased influence on the environment CRISPR-Cas9 Cattle [41,58]

Improved reproductive efficiency CRISPR-Cas9 Swine [45]

Reduced vulnerability to viral infection CRISPR-Cas13 Chicken [86,87]

Improved immunological response CRISPR-Cas9 Swine [45,88]

Decreased allergic potential CRISPR-Cas9 Swine [56,89]

Increasing milk production CRISPR-Cas9 Cattle [39,89,90]



http://bdvets.org/javar/	 � 490Mishu et al. / J. Adv. Vet. Anim. Res., 11(2): 483–493, June 2024

The development and application of CRISPR technolo-
gies in animal and poultry feeding are impacted by these 
diverse legal contexts.

2.	 Potential unintended consequences and risks of CRISPR-
Cas technology

Before the widespread adoption of the CRISPR-Cas tech-
nique for various applications, the potential unintended 
consequences and risks of this technology need to be care-
fully considered and evaluated.

Off-target effects

When the Cas enzyme accidentally cuts DNA at unexpected 
sites, off-target effects occur that lead to unintended muta-
tions. Many studies have shown that, depending on the 
specific CRISPR-Cas system used, off-target effects can 
occur and that their frequency can vary [105,106].

Unintended on-target effects

When the desired genetic modification leads to unin-
tended consequences due to its location in the genome or 
its interaction with other genes or regulatory elements, 
these occur [107].

Unintended consequences of gene drives

Through a population, gene drives can rapidly spread 
a specific genetic modification. However, regarding the 
potential unintended consequences for the ecosystem, the 
practice of gene-drive technology raises concerns [108].

Conclusion

CRISPR-Cas technology holds significant promise to revo-
lutionize animal and poultry nutrition, offering improved 
health, reduced environmental impact, and enhanced 
welfare. However, challenges like ethical concerns and 
ecological risks must be considered carefully. We can har-
ness the capability of CRISPR-Cas to advance sustainable 
and ethical practices in animal production by addressing 
such kinds of challenges through responsible research and 
application.
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