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ABSTRACT

Despite the significant progress in the recent efforts toward developing an effective vaccine 
against toxoplasmosis, the search for new protective vaccination strategy still remains a challenge 
and elusive goal because it becomes the appropriate way to prevent the disease. Various exper-
imental approaches in the past few years showed that developing a potential vaccine against 
the disease can be achievable. The combination of multi-epitopes expressing different stages of 
the parasite life cycle has become an optimal strategy for acquiring a potent, safe, and effective 
vaccine. Epitope-based vaccines have gained attention as alternative vaccine candidates due to 
their ability of inducing protective immune responses. This mini-review highlights the current 
status and the prospects of Toxoplasma gondii vaccine development along with the application 
of epitope-based vaccine in the future parasite immunization as a novel under development and 
evaluation strategy.
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Introduction

Toxoplasmosis is a prevalent disease caused by Toxoplasma 
gondii (T. gondii), which is a zoonotic parasite that infects 
humans, domestic, and wild mammals [1,2]. It is a signifi-
cant, life-threatening disease with medical, veterinary, and 
economic importance worldwide [3,4]. Immunocompetent 
individuals infected with toxoplasmosis are usually asymp-
tomatic or might have mild symptoms, while, this disease 
in immunocompromised patients can be quite severe or 
even fatal [5,6]. Despite several available antiparasitic 
chemical drugs used to prevent or cure the infection and 
to limit and control the spread of T. gondii parasite in an 
infected host, these drugs still have limited efficacy and 
are not absolutely safe and could cause severe side effects 
[7–9]. Thus, acquiring safe and effective vaccine to control 

the vital impact of toxoplasmosis in both humans and ani-
mals is urgently needed [10].

Intensive efforts and significant advances toward 
acquiring an effective vaccine are under way to control 
infection and limit the incidence of the disease; however, 
no vaccine has, thus, far been available for use in humans 
[11–13]. Currently, the live attenuated tachyzoites of the 
strain S48 (commercially named “Toxovax”) is the only 
approved vaccine for veterinary use. This vaccine was 
unfortunately shown limited efficacy [14].

Consequently, numerous studies on toxoplasmosis vac-
cination have been conducted and different forms of the 
parasite or parasitic antigens were tested, including inac-
tivated or life attenuated vaccine, crude or recombinant 
antigen, subunit or multi-antigenic vaccines, and DNA 
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vaccine [15]. Interestingly, the results indicated acquiring 
an effective vaccine against toxoplasmosis can be achieved.

The lack of available vaccine highlights the needs of 
exploring alternative reagents that can be used for immu-
nization purposes. Further discussion was conducted to 
address the challenges, along with difficulties to acquire 
potential vaccine construct. Many suggestions were pro-
posed and put forward in order to identify possible direc-
tions of the future research studies on the development 
of potential vaccines against T. gondii. In response to this 
scenario, the scientific suggestions were based on pay-
ing special focus on multi-epitope antigens that contain 
various immunoreactive epitopes of different T. gondii 
antigens. The potential use of the epitope-based antigen 
was explored to develop a new approach that expected to 
meet the demand of achievement of an effective vaccine. 
Characterization and identification of immunogenic epi-
topes from organism antigens could help in developing 
sensitive diagnostic assays, potential vaccines, as well as 
effective therapeutic agents [16].

The application of epitope-based vaccine in the immuni-
zation attempts of various infections has shown encourag-
ing results and proved to stimulate protective cellular and 
humoral immunity [17–21]. Accordingly, epitope-based 
vaccine has suggested as a new potential candidates for 
acquiring a novel and effective T. gondii vaccine.

To date, the large number of immunization attempts 
highlight that future T. gondii vaccination approaches 
should apply antigens with potential to stimulate pro-
tective immunity against the parasite and are expressed 
in most of the parasite life stages [22,23]. Therefore, 
epitope-based vaccine features excellent immunogenicity 
and is valuable for acquiring new immunization strategy 
[22,24]. This review summarizes the approaches in devel-
oping vaccines against toxoplasmosis with emphasis on 
epitope-based vaccine and describes the designing and 
construction strategies of such vaccines, the advantages, 
disadvantages, and the current applications of these types 
of vaccines in toxoplasmosis vaccination strategies.

Approaches in Development of Vaccines Against 
Toxoplasmosis

The development of protective vaccines against T. gondii 
parasite can reduce the high incidence of the disease 
and prevent the clinical outcome in humans and animals 
[24,25]. Therefore, effective immunization is expected to 
reduce the shedding of the oocyst and prevent the cyst 
formation. Such vaccination would significantly reduce 
parasite transmission to intermediate hosts and definitely 
improve disease control [24]. Economically, the vaccine 
could also reduce losses in the livestock industry [26]. 
Thus, achieving effective vaccines against toxoplasmosis 

is a high priority and extremely important, given the high 
incidence of the disease worldwide, as well as the serious 
veterinary and clinical outcomes of the parasite, includ-
ing chorioretinitis, abortions, mental defects, and death 
[26,27].

During the last 20 years, different immunization strat-
egies in the achievement of effective T. gondii vaccine 
have been investigated. Consequently, the protection level 
has been evaluated with different types of immunogens, 
including the following: life-attenuated parasites, killed 
vaccines, native parasite antigens, recombinant antigens, 
and DNA vaccine; these immunogens have been tested as 
a new immunization strategy [22–25]. Moreover, inocula-
tion of live parasites significantly induces effective immune 
protection against toxoplasmosis reinfection [28].

Despite the significant efforts in developing T. gondii 
vaccine, only the live attenuated tachyzoites of strain 
S48 (commercially named “Toxovax”) was approved and 
licensed in 1992 to minimize the abortion rate in sheep. 
Unfortunately, this vaccine cannot be used for human 
immunization because of the risk of reverting to a virulent 
form; likewise, the vaccine may be pathogenic in immuno-
compromised patients [24]. Toxovax has a short shelf life 
and entails high costs [22]. In addition, immunization with 
other strains (ts-4) has been widely used in T. gondii immu-
nization studies, providing significant resistance against 
cyst formation but partial protection against congenital 
toxoplasmosis. This approach increased the survival rate 
during acute toxoplasmosis [29]. Mouse inoculated with 
the temperature-sensitive mutant strain ts-4 induced 
protective immunity against lethal infection after a par-
asite challenge. By contrast, injection of mice with killed 
tachyzoite lysate provided no protection, neither alone nor 
with an adjuvant [21]. Despite the numerous vaccination 
strategies studied, as well as the vast knowledge of the 
molecular genetics, immunology, and pathology related 
to the T. gondii pathogen, no safe and protective vaccine 
exists for both humans and animals [22].

Thus far, all information obtained from the large num-
ber of immunization attempts have indicated that future 
T. gondii vaccination approaches should use antigens with 
the potential to stimulate cell-mediated immunity against 
the parasite, expressed in all parasite life stages and com-
patible with appropriate vaccination routes [22,23].

Vaccine in Cats and Livestock

The key step in controlling T. gondii infection is the pre-
vention of oocyst formation in the definitive host (cats 
and other felines). Given that cats are the only source of 
oocysts, and that most probably, transmission of infection 
to intermediate hosts occurs through contaminated feces, 
the development of any protective vaccines to be used in 
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this species must be able to limit the shedding of oocyst to 
prevent environmental contamination by the oocysts [30]. 
Only, few studies have, thus, far focused on the cat vacci-
nation. The use of a live mutant bradyzoite named T-263 
was the first trial in which kittens were vaccinated [31]. 
After the oral inoculation, most of the kittens generated 
protective immunity; oocyst shedding was successfully 
prevented in 84% of the cats when challenged with the 
T. gondii parasite [31,32]. Unfortunately, T-263 has many 
disadvantages, including the need to use live bradyzoites 
and high costs [33]. Similarly, the effect of 60Co-irradiated 
tachyzoites on the stimulation of protective immunity 
against the Beverley strains of T. gondii was investigated. 
The vaccine induced partial resistance after infection chal-
lenge; however, the vaccine showed disadvantages, such 
as the need for refrigeration and high costs [34]. Oocyst 
shedding was not reduced when DNA vaccines encoding 
rhoptry protein (ROP) 2 were used [35] even though DNA 
vaccine currently shows potential as an immunization tool.

In pigs, live T. gondii vaccines exhibited mild protec-
tion against the parasite but still showed risks of reverting 
to the virulent type and cause the disease [36]. Thus, in 
this species, the development of killed vaccines was nec-
essary [22]. Recently, intradermal immunization of pigs 
with a DNA vaccine expressing GRA1–GRA7 of Toxoplasma 
antigens elicited high humoral and cellular immunity. The 
study proved that DNA vaccine could be effectively induce 
strong immune protection [37]. In addition, the potential 
of the tachyzoites of strain S48 in reducing the number 
of cysts in pork, and thus, improving food safety has been 
highlighted [38].

Recombinant and DNA Vaccines

Among the various approaches for acquiring effective 
T. gondii vaccines, the recombinant DNA technology is 
an alternative strategy of great potential [25,39]. The 
immunological effects of several Toxoplasma recombi-
nant antigens have been widely evaluated in the last few 
years; these include surface antigens (SAGs), microne-
mal proteins, dense-granule proteins (GRAs), and ROPs 
[9,35,40,41]. Of them, only limited antigens were capable 
of inducing a strong and protective immunity. Unluckily, 
recombinant antigens tend to lack immunogenicity, espe-
cially vaccination trails of the intracellular pathogens. 
Therefore, uses of appropriate adjuvants are required to 
enhance their potency [42]. In addition, the production of 
the recombinant proteins within another expression sys-
tem or organism could cause an allergic reaction [43].

The establishments of DNA vaccination strategies have 
opened a new perspective in the future of vaccine devel-
opment [34,44]. Recently, various DNA vaccines against T. 
gondii have been developed and evaluated; some of them 

have shown promise [45]. The ability of such vaccines to 
induce high humoral and cell-mediated immunity makes 
it a promising vaccination strategy against intracellu-
lar pathogens including Toxoplasma[15]. DNA vaccines 
exhibit several advantageous such as easy to produce, easy 
to administer, stable, very immunogenic, and possess the 
potential for long-lasting immunity. In addition, DNA vac-
cines show high flexibility as several types of genes can be 
encoded in one DNA vaccine. Moreover, DNA vaccine has 
little risk of reverting to a virulent form or cause secondary 
infection [46].

Epitope-Based Vaccines

Antigenic variation and genetic polymorphisms represent 
major obstacles in the attempts of acquiring a successful 
vaccine of any particular pathogen. Therefore, understand-
ing of these variation and polymorphisms in the popula-
tions is crucial for proper vaccine design and evaluation. 
Such data might also provide invaluable insights into 
parasite–host interaction [21,47]. The improved knowl-
edge in bioinformatics tools, along with the advances in 
recombinant DNA technology, has allowed new strategies 
toward the design and production of novel epitope-based 
vaccines [48]. Epitopes or antigenic determinants are 
the minimal immunogenic part of any particular antigen, 
which are capable of inducing specific immune responses 
[49]. Accordingly, various immunogenic epitopes have 
been identified in different infectious pathogens and can-
cer, and they have significantly improved the development 
of potential epitope-based vaccines [50].

The improved understanding of how the immune cells 
recognize and interact with pathogenic antigens at the 
molecular and cellular level has significant contribution in 
the development and acquiring of rationally designed epi-
tope vaccines [7]. The concept of epitope vaccines mainly 
relies on the prediction of immunodominant T and B cell 
epitopes that can elicit specific and protective immune 
response [51]. The antigenic variation in most infectious 
agents has impeded the development of effective vaccines 
[17]. Therefore, the use of immunogenic peptides in trials 
of acquiring epitope-based vaccine has recently drawn 
attention [51].

The most critical requirements include the proper 
identification of both T and B cells epitopes, as well as the 
selection of a novel and powerful approach to deliver those 
epitopes [48]. Immunization with multi-epitope vaccine 
expressing T-cell or/and B-cell epitopes against different 
pathogens showed significant increase in both cellular 
and humoral immunes responses, as well as prolonged 
survival time [30]. Numerous studies identified potential 
epitope-based antigens that could effectively induce high 
and protective immunity against diverse pathogens. The 
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approach has been used to develop and evaluate vaccines 
to various infectious agents, such as Influenza Virus [52], 
Human Immunodeficiency Virus [53], Epstein-Barr Virus 
[19], and hepatitis B virus [54].

Advantages and Disadvantages of Epitope-Based 
Vaccine

The potential advantages of using this vaccination strat-
egy are as follows: it decreases the biohazard risk associ-
ated with other types of immunization; it has the ability 
to rationally engineer and optimize the epitope structure 
to increase potency in eliciting strong immunity; and it 
provides the opportunity to focus and generate specific 
immune responses to known conserved immunodominant 
epitopes [55]. In addition to the lack of infectious poten-
tial, epitope-based vaccine also shows chemical stability, 
and therefore, such kind of vaccines have been developed 
and tested against various infectious agents, including 
parasitic, bacterial, fungal, and viral infections, as well as 
cancers [51,56]. In the clinical trials of various cancers, 
peptide vaccine has entered phases I and II with satisfac-
tory and promising clinical outcomes [57]. However, more 
effort is needed to eliminate the associated obstacles, 
including the necessity to have a better adjuvant, as well 
as the low or/and lack of resulting immunogenicity during 
antigen processing and presentation. Nonetheless, other 

study showed a significant progress in defying these lim-
itations [51].

Identification of the Immunodominant Epitopes

Development of any potential epitope vaccine requires 
proper prediction and validation of highly immunogenic 
epitopes that are capable of inducing protective immune 
response and constitutes the basis of vaccines develop-
ment as shown in Figure 1 [58]. In fact, significant barrier 
in designing such kind of vaccine is epitope identification 
[59]. Therefore, predicting or identifying T and B cell epi-
topes significantly furthered our understanding of how the 
immune response against the pathogens is generated and 
increased the chances of developing potential vaccines. 
The mechanism of action and how the epitope-based vac-
cines generate specific immune response were illustrated 
in Figure 2. Bioinformatic tools remain the vital option for 
analyzing immunogenic epitopes with high antigenicity 
and immunogenicity even though the inherent complexity 
of microbial antigens recognition complicates the process 
of epitope prediction [21,60]. Yet, significant efforts have 
been put toward acquiring novel strategies and efficient 
tools for epitope analysis. Consequently, different algo-
rithms have been developed and tested for predicting and 
screening of possible epitopes, and the results indicate a 
promising strategy for vaccine development [59].

Figure 1. Schematic illustration of the epitope-based vaccine destination 
and construction.
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Application of bioinformatics approaches in the analy-
sis of conserved sequences and predicting of potential epi-
topes have been widely used against various pathogens. It 
represents a powerful alternative strategy of epitopes dis-
covery that significantly reduces the cost, time, as well as 
the effort involved in the experimental approach of epitope 
screening. However, the variation among epitopic regions 
might affect the prediction process, and thus acquiring func-
tional protective epitopes. Selection of immunogenic epi-
topes is crucial in designating any particular epitope-based 
vaccine; therefore, the differences in pathogens genotypes 
and subtypes should be taken into account.

Epitope-Based Vaccine Against Toxoplasmosis

Since the application of bioinformatics tools in the pro-
duction of epitope-based antigen has become potential 

strategies to acquire a novel and powerful vaccine against 
infectious agents [61], considerable efforts have been 
made toward developing a promising epitope-based vac-
cine against toxoplasmosis (Table 1) [62,63]. Researcher 
assumes that construction of single- or multi-epitope-based 
antigen expressing potential B or/and T cell epitopes of 
both tachyzoite and bradyzoite specific antigens would 
greatly improve T. gondii immunization strategies [64]. 
Accordingly, several studies have been conducted and 
resulted in the identification of various promising epitopes 
that are capable of inducing protective immune response, 
and would possibly contribute to the attempts of devel-
oping a protective vaccine against T. gondii [7]. This evi-
denced by the significant immune protection generated in 
mice models [65,66].

Recently, a synthetic vaccine expressing nine epitopes 
predicted from GRA2, GRA7, and SAG1 of T. gondii was tested 

Figure 2. Mechanism of action of epitope-based vaccination.
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in BALB/c mice. Immunization with this multi-epitope 
vaccine significantly generates mixed Th1/Th2 antibody 
response and high production of IFN-γ cytokine [67]. 
Similarly, significant increase in the cellular and humoral 
immunity was generated when the mice was immunized 
with a multi-epitope vaccine containing two T cell epitopes 
and one B cell epitope of SAG1, GRA1, and GRA4. In addi-
tion, vaccinated mice obtained long-term survival rates 
compared with the unvaccinated controls [12].

In contrast, epitope vaccine composed of a single B or 
T cell epitopes has been used previously and confirmed 
to elicit strong immune responses, for instance, synthetic 
B and T cell epitopes identified from GRA2 antigen were 
able to stimulate both cellular and humoral immunity and 
to increase the survival rate of immunized animals [64]. 
Similarly, mice immunized with epitopes vaccine identi-
fied form ROP19 protein induced significant T and B cell 
immune response and also indicated effective protection 
following parasite challenge with PRU strain T. gondii cysts 
[68]. However, effective systemic and mucosal immunity 
was enhanced with both single and mixed peptides with a 
strong lymphoproliferative response associated with sig-
nificant IFN-γ, IL-2, and IL-4 production, and a high level 
of specific antibody responses. In addition, partial immune 
protection against acute and chronic toxoplasmosis was 
also generated [7]. Furthermore, a combination of DNA/
peptide vaccine significantly reduced the formation of the 
brain cyst among the immunized mice [69].

This emphasized the involvement of single or mixture of 
epitopes has shown to remarkably induce effective humoral 
and cellular immune response against toxoplasmosis. This 

could be powerful and efficient strategy that can be con-
sidered in the production of possibly protective vaccine 
candidate against toxoplasmosis.

Conclusion

The development of potential vaccine against T. gondii has 
significantly progressed in the last few years. Numerous 
experimental studies of preventive immunization have 
explored various forms of T. gondii antigens including 
live-attenuated vaccines, subunit vaccines, recombinant 
vaccine, and DNA vaccines [13]. Accordingly, significant 
strides have been conducted in antigen isolation and char-
acterization, gene cloning, and immunological techniques. 
In addition to all the prevention strategies, new options 
to produce effective vaccines are currently needed as the 
appropriate way to prevent the disease [15].

Previous studies on developing effective vaccines 
against T. gondii revealed that vaccines that express only 
single antigen or single stage induce partial immune pro-
tection against the parasite [64]. Thus, a vaccine that 
expresses multiple stages of the parasite life cycle must be 
synthesized. Adopting bioinformatics to identify antigenic 
epitopes and theoretically arranging multiple epitopes in a 
single antigen could aid in the achievement of potential T. 
gondii vaccines. The use of epitope-based antigens is highly 
promising in the development of potential vaccine candi-
dates that would generate lasting protective immune reac-
tion against T. gondii. Furthermore, the use of epitope-based 
antigens could be an important approach in investigating 
the improvement of the disease vaccination in the future. 
Future studies should also consider the exploration of 

Table 1.  List of predicted Epitopes evaluated as potential Epitope-based vaccine.

Epitope Antigen Gene Reference

LGPVKLSAEGPT,	
TAAKTHTVRGFKV,	
SYFAADRLVP

SAG1,	
GRA2,	
GRA7

[41]

KLFETTDMY,
VRQEAIARALARAAA

Anopheles mosquito salivary proteins [70]

GNIEGQWALKNHSLVSLSEQVLVSCDNIDD CPA (Cysteine peptidase A) [59]

YSNIGVCK [71]

QTLIAIHTLAIRYAN Paracoccidioides brasiliensis gp43 antigen [72]

RPPIFIRRL,	
sSVRDRLARL

EBNA3 [19]

Residues 137–160 and 197–211 VP1 gene of foot-and-mouth disease virus [73]

(TAKDGMEYYNKMGELYKQ, (RCLLGFKEVGGKCVPASI) Plasmodium knowlesi merozoite surface protein-142 [7]

TCPDKKSTA SAG1 (59–67) [9]

KSFKDILPK,	
STFWPCLLR,	
AVVSLLRLLK,	
SSAYVFSVK,	
AMLTAFFLR)

SAG1,	
SAG2,	
GRA5,	
SRS52A,	
GRA6

[17]
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appropriate adjuvants that can be used along with epi-
tope-based vaccination strategies and establishing optimal 
immunization protocols along with evaluation criteria.
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