OPEN ACCESS

SHORT COMMUNICATION

DOI: 10.5455/javar.2015.b74

Evaluation of certain crop residues for carbohydrate and protein fractions by cornell net carbohydrate and protein system

Venkateswarulu Swarna¹, Srinivas Kumar Dhulipalla^{2,*}, Raghava Rao Elineni² and Narendra Nath Dhulipalla³

¹College of Veterinary Science, Proddatur, India; ²NTR College of Veterinary Science, Gannavaram, India; ³College of Veterinary Science, Tirupati, India. *Corresponding author's e-mail: <u>kumardhulipalla@rediffmail.com</u>

ABSTRACT

Four locally available crop residues viz., jowar stover (JS), maize stover (MS), red gram straw (RGS) and black gram straw (BGS) were evaluated for carbohydrate and protein fractions using Cornell Net Carbohydrate and Protein (CNCP) system. Lignin (% NDF) was higher in legume straws as compared to cereal stovers while Non-structural carbohydrates (NSC) (% DM) followed the reverse trend. The carbohydrate fractions A and B₁ were higher in BGS while B₂ was higher in MS as compared to other crop residues. The unavailable cell wall fraction (C) was higher in legume straws when compared to cereal stovers. Among protein fractions, B1 was higher in legume straws when compared to cereal stovers while B₂ was higher in cereal stovers as compared to legume straws. Fraction B₃ largely, bypass protein was highest in MS as compared to other crop residues. Acid detergent insoluble crude protein (ADICP) (% CP) or unavailable protein fraction C was lowest in MS and highest in BGS. It is concluded that MS is superior in nutritional value for feeding ruminants as compared to other crop residues.

Keywords

Carbohydrate fractions, CNCPS, Crop residues, Protein fractions

ARTICLE HISTORY

Received : 3 December 2014, **Accepted** : 3 February 2015, **Revised**: 2 February 2015, **Published online**: 14 March 2015.

INTRODUCTION

The conventional feed analysis (proximate and detergent systems) provides information only about the concentration or quantity of nutrients present in the feedstuffs and gives little information about their availability in animal system. Further, the different fractions of a particular nutrient vary considerably in their utilization pattern. The different carbohydrate fractions like soluble sugars, starch, non starch polysaccharides and protein fractions like non protein nitrogen, soluble peptides and soluble true proteins are utilized by different rumen microbes and animals differently (Sniffen et al., 1992) and thus, their estimation in feed stuffs gives valuable information (Chaurasia et al., 2006).

The accurate prediction of biological value and performance of animals fed forages has been proposed by Russel et al. (1992) using Cornell Net Carbohydrate and Protein (CNCP) system. However, only few reports are available on carbohydrate and nitrogen fractions of crop residues (Kamble et al., 2011; Raja Kishore and Srinivas Kumar, 2013) in India for feeding ruminants and substantially more information is needed in preparation of balanced rations and in adaptation of advanced standards such as NRC (2001) and CNCP (2007). The present study was therefore undertaken to provide information on the nutrient components especially in terms of carbohydrate and protein fractions of some crop residues available in coastal belt of Andhra Pradesh using CNCP system.

MATERIALS AND METHODS

Crop residues *viz.* jowar stover (JS), maize stover (MS), red gram straw (RGS) and black gram straw (BGS) were procured from the farmers in and around Gannavaram. The samples were dried in hot air oven at 60°C and then ground to pass through 1 mm sieve and stored in plastic bottles. Ground samples of crop residues were analyzed for proximate composition (AOAC, 2007) and fibre fractions (Van Soest et al., 1991).

Estimation of starch in dried samples was followed as per AOAC (2007). Non-structural carbohydrates (NSC) were derived by the equations given by Van Soest et al. (1991) *i.e.*, NSC = 100 - [(NDF - NDIP) + protein + fat + ash]. The carbohydrate fraction *viz.*, A, B₁, B₂ and C of different crop residues were estimated using the procedures of Sniffen et al. (1992). This fractionation is based on degradation rates of feed stuffs. Fraction A is fast and is sugars, fraction B₁ is intermediate and is starch, fraction B₂ is slow and is available cell wall and fraction C is unavailable cell wall.

Primary protein fractions such as non-protein nitrogen (NPN), soluble protein (SP), neutral detergent insoluble nitrogen (NDIN) and acid detergent insoluble nitrogen (ADIN) were estimated by the methods of Licitra et al. (1996). The ptotein fractions *viz.*, A, B₁, B₂, B₃ and C of different crop residues were estimated using the equations of Sniffen et al. (1992). Fraction A is the instantaneously degradable protein *i.e.*, NPN, fraction B₁ is rapidly degradable, fraction B₂ is intermediately degradable, fraction B₃ represents bypass protein while fraction C is unavailable protein.

RESULTS AND DISCUSSION

Chemical composition of crop residues (**Table 1**) revealed that CP content was higher in legume straws as compared to non legume straws whereas, lower lignin was observed in non-legume straws than legume straws.

Carbohydrate fractions

The carbohydrate fractions of MS, JS, RGS and BGS were presented in **Table 2**. Lignin (% NDF) was higher in RGS (19.25%) followed by BGS (18.41%), JS (13.6%) and MS (10.90%). Kamble et al. (2011) also reported similar values for lignin (% NDF) in jowar and maize stovers. The NSC (% DM) varied from 29.35% (MS) to 38.66% (BGS). Lignin (% NDF) was higher in legume

straws as compared to cereal stovers while NSC (% DM) followed the reverse trend. Similar findings were also reported earlier (Singh et al., 2002). The quantity of NSC present as starch was higher in RGS followed by JS, BGS and MS. These results corroborated with the findings of Raja Kishore (2012). Among the crop residues, the carbohydrate fraction A (fast degradable) was higher in BGS and lower in RGS. However, in contrast to present findings, Singh et al. (2002) and Kamble et al. (2011) reported lower levels of fraction A in cereal straws as compared to legume straws. Fraction B₁ (intermediately degradable in rumen mostly considered as starch) followed the trend similar to fraction A. However, Kamble et al. (2011) and Raja Kishore (2012) reported as higher for fraction B_1 as compared to the values reported in the present study. Fraction B₂ which is slowly degradable and mostly representing the available cell wall content were higher in cereal straws as compared to legume straws. Similarly, Singh et al. (2002) also reported higher B₂ values in non-legume roughages when compared to legume straws. Further, fraction B2 values reported in the present study was comparable to the values reported earlier (Gupta et al., 2011; Kamble et al., 2011; Raja Kishore, 2012). The available cell wall content was observed to be the lowest in BGS. The unavailable cell wall fraction (fraction C) was lower in cereal stovers as compared to legume straws indicating their superiority in carbohydrate quality. These findings are in agreement with findings of Singh et al. (2002), Kamble et al. (2011) and Raja Kishore (2012).

Table 1. Chemical composition (% DMB) of cropresidues.

Nutrient	IC	MC	DCC	DCC
Nutrient	JS	MS	RGS	BGS
Dry matter	91.45	92.08	93.56	91.67
Organic matter	92.19	92.69	97.65	92.2
Total ash	7.81	7.31	2.35	7.80
Crude protein	3.78	4.68	5.7	7.29
Ether extract	1.76	1.96	1.51	7.23
Crude fibre	41.44	39.34	59.95	54.03
Nitrogen free extract	45.21	46.71	30.49	29.66
Neutral detergent fibre	74.36	76.12	81.98	72.56
Acid detergent fibre	58.65	56.38	72.51	66.69
Acid detergent lignin	10.12	8.3	15.78	13.36
Hemicellulose	15.71	19.74	9.47	5.87
Cellulose	46.9	47.58	58.2	54.6

Protein fractions

Buffer soluble protein fractions among different crop residues was found maximum (38.34%) in BGS and minimum (22.90%) in MS. NPN% of soluble protein was higher in MS (81.92%) and lowest in BGS (33.50%). The SP (% CP) was higher in legume straws as compared to cereal stovers while NPN (% SP) followed

Table 2.	Carbohy	vdrate an	nd Protein	fractions	of cror	residues.

Fraction	Jowar	Maize	Red Gram	Black Gram
	Stover	stover	Straw	Straw
Carbohydrate components				
Lignin (% NDF)	13.60	10.90	19.25	18.41
NSC (% DM)	35.41	29.35	31.30	38.66
Starch (% NSC)	7.40	6.90	7.50	7.20
Carbohydrate fractions				
CĂ	14.07	12.06	9.98	14.57
CB ₁	1.12	0.89	0.81	1.13
CB ₂	56.80	63.91	47.33	45.99
CC	28.01	23.14	41.88	38.31
Protein components				
SP (% CP)	24.77	22.90	33.89	38.34
NPN (% SP)	70.70	81.92	58.66	33.50
NDIN (% CP)	23.12	25.97	22.84	27.53
Protein fractions				
PA	17.52	18.78	19.88	12.84
PB_1	7.26	4.14	14.02	25.50
PB ₂	52.10	51.11	43.26	34.14
PB ₃	9.25	14.79	8.17	10.77
PC	13.87	11.18	14.67	16.75

NSC: Non structural carbohydrate; SP: Soluble protein; NPN: Non protein nitrogen; NDIN: Neutral detergent insoluble nitrogen.

the reverse trend. Similar findings were reported by Singh et al. (2002). The ADICP (% CP) component was highest in BGS (16.75%) and lowest in MS (11.18%). The protein fractions of different crop residues were presented in Table 2. The fraction A which signifies the instantaneously degradable protein in the ruminant digestive system *i.e.*, NPN was highest in RGS (19.88%) and lowest in BGS (12.84%). Rapidly degradable protein fraction B1 was maximum in legume straws when compared to cereal stovers. Similarly, Singh et al. (2002) reported that fraction B_1 was higher in GN haulms as compared to jowar kadbi. Higher B2 (intermediately degradable protein fraction) value was observed in cereal stovers when compared to legume straws. Singh et al. (2002) and Raja Kishore (2012) also reported similar findings. Among the crop residues, highest percentage of B3 largely a bypass protein, lowest percentage of fraction C (protein associated with lignin, tannin protein complexes and maillard reaction protein) which cannot be degraded by rumen bacteria and does not provide amino acids post ruminally (Krishnamoorthy, 1983) was present in MS indicating that it is a good nitrogen source as compared to other crop residues. Similar findings were also reported earlier (Kamble et al., 2011; Raja Kishore, 2012). Further, MS with lower $A+B_1$ and higher B_2+B_3 content could be used as source of bypass nitrogen (Sharma et al., 2004) for ruminants.

CONCLUSION

It is concluded that CNCP system provides valuable information regarding nutritional quality of feedstuffs and also useful for screening of large number of feed samples in a limited period of time. In the present study, presence of low levels of lignin, CC and PC fractions and high levels of CB₂ and PB₃ fractions in maize stover indicates its superior nutritional quality as compared to other crop residues.

REFERENCES

- AOAC (2007). Official methods of Analysis, (18th edn). Association of Official. Analytical chemists, Washington DC.
- Chaurasia M, Kundu SS, Singh S, Misra AK (2006). Cornell net carbohydrate and protein system for nutritional evaluation of tree leaves, shrubs and grasses. Indian Journal of Animal Sciences, 76: 81-87.
- CNCP (2007). The net carbohydrate and protein system for evaluating herd nutrition and nutrient excretion. CNCPS Version 5.0., Cornell University. 130 Morrison Hall, Ithaca, New York.
- Gupta A, Singh S, Kundu SS, Nisha Jha (2011). Evaluation of tropical feedstuffs for carbohydrate and protein fractions by CNCP system. Indian journal of Animal Sciences, 81: 1154-1160.
- Kamble AB, Puniya M, Kundu SS, Shelke SK, Mohini M (2011). Evaluation of forages in terms of carbohydrate, nitrogen fractions and methane production. Indian Journal of Animal Nutrition, 28: 231-238.
- Krishnamoorthy U, Snifen CJ, Stern MD, Van Soest PJ (1983). Evaluation of a mathematical model of rumen digestion and *in vitro* simulation of rumen proteolysis to estimate rumen undegraded nitrogen

content of feedstuffs. British Journal of Nutrition, 50: 555-568.

- Licitra G, Hernandez TM, Van Soest PJ (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57: 347-358.
- NRC (2001). Nutrient Requirements of Dairy Cattle. 7th Revised Edn. National Academy Press, Washington DC.
- Raja Kishore K (2012). Evaluation of crop residue based complete rations for augmenting milk and meat production in buffaloes and sheep. Ph.D. thesis submitted to Sri Venkateswara Veterinary University, Tirupati.
- Raja Kishore K, Srinivas Kumar D (2013). Evaluation of legume straws for protein fractions and *in vitro* digestibility. Indo-American Journal of Agricultural and Veterinary Sciences, 1: 59-65.
- Russel JB, O'Connor JD, Fox DG, Van Soest PJ, Sniffen CJ (1992). A net carbohydrate and protein system

for evaluating cattle diets. I. Ruminal fermentation. Journal of Animal Science, 70: 3551-3561.

- Sharma RK, Samanta AK, Ramchandran M, Mandal GP (2004). Nitrogen solubility and protein fractions of grasses. Indian Journal of Animal Nutrition, 21: 173-176.
- Singh KK, Das MM, Samanta AK, Kundu SS, Sharma SD (2002). Evaluation of certain feed resources for carbohydrate and protein fractions and *in situ* digestion characteristics. Indian Journal of Animal Sciences, 72: 794-797.
- Sniffen CJ, O'Connor JD, Van Soest PJ, Fox DJ, Russell JB (1992). A net carbohydrate and protein system for evaluating cattle diets: II Carbohydrate and Protein availability. Journal of Animal Science, 70: 3562-3577.
- Van Soest PJ, Robertson JB, Lewis BA (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
