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ABSTRACT 
 

Clostridium tetani is an anaerobic bacterium that 
produces second most poisonous protein toxins than 
any other bacteria. Tetanus in animals is sporadic in 
nature but difficult to combat even by using 
antibiotics and antiserum. It is crucial to understand 
the fundamental mechanisms and signals that control 
toxin production for advance research and medicinal 
uses. This review was intended for better 
understanding the basic patho-physiology of tetanus 
and neurotoxins (TeNT) among the audience of 
related field. 
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INTRODUCTION 
 

Tetanus is an acute, often fatal disease caused by the 
exotoxin of Clostridium tetani, characterized by 
generalized muscle rigidity and autonomic instability 
(Freshwater-Turner et al., 2007).  C. tetani is a motile, 
spore-forming and obligate anaerobic bacterium with a 
natural habitat of soil but can also be isolated from 
feces of domestic animals and humans (Wilkins et al., 
1988; Afshar et al., 2011). Tetanus is considered as one 
of the most dramatic and cosmopolitan diseases of 
humans and vertebrate animals for over 24 centuries 
(Bruggemann et al., 2003). Inoculation with C. tetani 
spores typically occurs through a contaminated wound 
but in 20% of cases the sources of infection may be 
unknown (Ogunrin, 2009). As an obligate anaerobe, the 
bacillus cannot grow in healthy oxygenated tissue, thus 
wounds are usually associated with co-infection, 

necrotic tissue, a foreign body or localized ischaemia 
(Cook et al., 2001; Schloss et al., 2011).  
 

The incubation period of tetanus varies from eight days 
to several months (Vandelaer et al., 2003; Brauner et al., 
2002) based on the location of injury site from the 
central nervous system (CNS). Severity of symptoms is 
incubation period dependent: shorter the incubation 
period, the more severe the symptoms and vice versa 
(Farrar et al., 2000; Brook, 2008; Afshar et al., 2011). 
Under anaerobic conditions the spores germinate and 
the bacteria produce tetanus neurotoxin (TeNT), which 
is released by bacterial autolysis and enters the body 
fluids. Followed by reaching the main peripheral 
targets of this toxin that is presynaptic membrane of 
motoneurons nerve terminals (Rossetto et al., 2014). 
There is also evidence that TeNT may bind to sensory 
and adrenergic terminals (Habermann and Dreyer, 
1986). In immunocompromised subjects TeNT can 
block inhibitory neurons causing hyperreflexia, muscle 
hypertonia and muscle spasms; sympathetic 
hyperexcitability and increased circulating 
catecholamine levels (Gomes et al., 2011). Tetanus is 
designated as notifiable disease at the national level in 
the countries having disease burden (CDC, 2010). It is 
an occupational zoonotic disease and veterinarians, 
physicians and other zoo staffs coming in contact are in 
risk of tetanus zoonosis (Chethan-Kumar et al., 2013).  
  

C. TETANI STRAINS 
 

The C. tetani species contains toxigenic and non-
toxigenic strains and is similar culturally and 
biochemically to C. cochlearium and C. tetanomorphum, 
but it can be distinguished from the two latter species 
by DNA comparison (16S rDNA) (Nakamura et al., 
1979; Wilde et al., 1989; Kalia et al., 2011). Comparative 
genomic analysis is possible using partial genome 
sequence, and phylogenesis of a few conserved 
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proteins involved in cellular processes and metabolism. 
A genome sequence is available for only one C. tetani 
strain (Bruggemann et al., 2003; Alam et al., 2010). 
 

FACTORS RELATED TO BACTERIAL 
COLONIZATION 

 

The spores are noninvasive and require a skin break for 
germination. Hosts having wound that is contaminated 
by soil and with low oxygen tension are optimal 
locations for C. tetani under optimum temperature at 
37°C in vivo (Ernst et al., 1997). To defeat oxygen 
tension a few identified systems such as superoxide 
dismutases, peroxidases and heme oxygenase (hemeT 
gene) are probably responsible for protection 
(Brüggemann et al., 2004). Bacterial collagenases also 
play a crucial role in host colonization (Eckhard et al., 
2014). Among all animal species, horses, goats, sheep, 
monkeys (Macacus rhesus) and cattle, which are 
sensitive to the toxin of C. tetani, but dogs are relatively 
resistant, and cats are more resistant (Shumacker et al., 
1939; De Risio and Gelati, 2003).  In reality, the 
resistance of avian species to tetanus is due to a 
mutation at the cleavage site for VAMP 
(synaptobrevin) (Hamza and Abdellah, 2011). Thus, 
host is an important factor to set an infection.  
 

GERMINATION OF SPORE INTO HOST 
 

To cause disease spores must return to active 
vegetative form. Bacterial spore germination is induced 
when specific environmental cues, termed germinants, 
are sensed by specific germinant receptors (GRs) 
(Olguín-Araneda et al., 2014). Upon binding of the 
germinant to the GR, a series of irreversible biophysical 
and biochemical reactions are triggered which lead to 
the degradation of the spore's peptidoglycan (PG) 
cortex, allowing the rehydration of the spore core and 
resumption of metabolism (Paredes-Sabja et al., 2011). 
Notably, although spores germinate normally under 
anaerobic conditions (Sorg et al., 2008; Paredes-Sabja et 
al., 2008), presence of oxygen hampers subsequent 
development and growth of the nascent vegetative cell 
(Plowman et al., 2002).  
 

MOLECULAR BASIS OF TOXINS 
PRODUCTION 

 

The C. tetani genome is composed of a chromosome 
that contains 2,799,250 bp and a plasmid, pE88 that 
contains 74,082 bp (Bruggemann et al., 2003). The 
neurotoxin genes are encoded in the plasmid (Marvaud 
et al., 2000). Actin like protein (Alp12) is suggested a 
dynamically unstable force-generating motor involved 
in segregating the pE88 for TeNT (Popp et al., 2012). 

The C. tetani locus (Dupuy et al., 2006) contains the 
toxin gene tetX and the accessory regulatory gene tetR 
(Marvaud et al., 2000; Carter et al., 2013). The tetR 
found upstream of the tetX gene (Marvaud et al., 1998a; 
Marvaud et al., 1998b). In order to protein regulators, 
bacteria utilize another class of regulatory molecule 
known as small regulatory RNAs know as sRNA that 
have been identified in C. tetani (Chen et al., 2011). The 
sRNA can vary in length from 50 to 300 nucleotides 
and act either in cis or in trans (Storz et al., 2011). Most 
of the sRNAs interact with mRNA targets through an 
antisense mechanism, and can alter transcription, 
translation and/or mRNA stability of target genes for 
TeNT production (Lalaouna et al., 2013). Thus, 
interaction of sRNAs influences a wide range of 
cellular processes including toxins production and 
virulence processes (Ternan, 2013), and their role being 
subjected to change in response to stress 
(Venkataramanan et al., 2013).   
 

TOXINS BIOLOGY 
 

The tetanus bacillus secretes two toxins: tetanospasmin 
and tetanolysin (Cook et al., 2001). Tetanolysin is 
capable of locally damaging otherwise viable tissue 
surrounding the infection and optimizing the 
conditions for bacterial multiplication (Pinder, 1997). 
Tetanus produces tetanospasmin. This toxin may 
constitute >5% of the weight of the microorganism 
(Mellanby, 1968). Tetanus toxin gene is encoded on a 
75-kb plasmid, and synthesised as a single polypeptide 
with a molecular weight (MW) of 150,000. The 
complete amino acid sequence of the toxin is known 
from gene cloning (Finn et al., 1984; Eisel et al., 1986; 
Fairweather et al., 1986). Neurotoxin share a common 
structure composed of a heavy (Hc; 100 kDa) and a 
light (Lc; 50 kDa) chain linked by a disulphide bond 
(Herreros et al., 1999). The amino-terminal domain HN 

(fraction of Hc domain) is responsible for translocating 
the LC across the plasma membrane, whereas the 
carboxyl-terminal domain HC is responsible for the 
binding of TeNT to gangliosides on neurons (Rummel, 
2003). These three functional domains are structurally 
distinct, and are arranged in a linear fashion, such that 
there is no contact between the LC and HC domains 
(Lacy and Stevens, 1999; Turton et al., 2002). 
 

TRANSMISSION OF TETANOSPASMIN 
FROM INFECTION SITE 

 

TeNT spreads from the infected site by diffusing into 
the adjacent muscle tissue by being transported via 
lymphatic system or by nerves passages (Baldassi, 
2005). TeNT enters the blood from the lymphatic
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Figure 1: (A) Common pathway of tetanus infection in susceptible host. (B) TeNT molecules are transported along the axon of 
the lower motor neuron to the central neuron of CNS, where the catalytic Lc chain is transcytosed into inhibitory interneurons 
and blockade of synaptic vesicle to release GABA, resulting in uninterrupted excitatory impulses and signs of tetani. 

 
 
system, attaches to a receptor on the nerve ending, and 
a fragment of the bound toxin is taken into the nerve 
cell and passes on to the CNS by retrograde movement 
through the nerve axons (Veronesi and Focaccia, 1981; 
Rossetto et al., 2014). The TeNT is 2,000 times more 
toxic at central inhibitory nerves than at peripheral 
synapses (Morton and Meunier-powell, 1997).  
 

CELL ENTRY STRATEGY 
 

Bindings to cell surface receptor: Tetanus toxin binds 
to the adjacent motor neuronal membranes of terminals 
and cell bodies. The heavy chain (Hc) plays a major 
role in specific binding to the neuron (Binz and 
Rummel, 2009). Tetanus toxin binds specifically to 
polysialogangliosides (GD1b, and GT1b), as well as cell 
surface proteins (von Bartheld, 2004).  
 
Internalization: Debates are exists about the 
Internalization process of TeNT, either the coated-pit 
pathway (Parton et al., 1987) or in noncoated pits 
(Herreros et al., 1999). One receptor for tetanus toxin 
was identified as the Thy1 protein, a common GPI-
anchored protein on surface membranes of projection 
neurons. Additional receptors for tetanus toxin may 

include the p75 neurotrophin receptor (Butowt and von 
Bartheld, 2003). Both the Thy1 and p75 proteins are 
preferentially associated with lipid rafts and binding of 
surface antigen (Sheets et al., 1997; Bilderback et al., 
1999; Fewou et al., 2014). Endocytosis of tetanus toxin 
into presynaptic motor terminals requires presynaptic 
electrical activity, but not postsynaptic stimulation 
(Miana-Mena et al., 2002). 
 
Axonal transport: Channel formation is enhanced by 
receptor binding and dependent on acidic lipids that 
are modulated by the membrane environment (Burns 
and Baldwin, 2014). It is then moved from the 
peripheral to the CNS by retrograde axonal transport 
(Schiavo et al., 2000) as well as anterograde axonal 
transport (Manning et al., 1990). 
 

In central neurons: The entire toxin molecule is 
internalized into presynaptic cells and, in a process 
requiring the HN fragment, the Lc is released from the 
endosome. The metalloprotease activity of the tetanus 
neurotoxin (TeNT) light chain cleaves the neuron-
specific soluble N-ethylmaleimide-sensitive factor 
attachment protein receptor (SNARE) protein called 
vesicle-associated membrane protein 2 (VAMP2, SV2 or 
synaptobrevin 2) (Schiavo et al., 1992; Yeh et al., 2010; 
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Blum et al., 2012). Synaptobrevin is an integral 
membrane component of synaptic vesicles and is 
essential for the fusion of synaptic vesicles with the 
presynaptic membrane (Li et al., 1994). Cleavage by 
tetanus toxin Lc prevents release of their contents, the 
inhibitory neurotransmitter γ-aminobutyric acid 
(GABA), into the synaptic cleft (Bleck, 1986; Salinas et 
al., 2010). The α motor neurons are under no inhibitory 
control, and undergo sustained excitatory discharge, 
causing the characteristic motor spasms of tetanus 
(Ataro et al., 2011) (Figure 2). The toxin exerts its effects 
on the spinal cord, the brain stem, peripheral nerves, at 
neuromuscular junctions, and directly on muscles 
(Farrar et al., 2000) mediated by bindings with the 
synaptic vesicle binding protein SV2A and SV2B (Yeh 
et al., 2010) (Figure 1).  
 

 
Figure 2: A five months old Jamunapari goat is suffering 
from tetanus with typical signs: locked jaw and stiffness of 
the body after an accidental wound (right forelimb) and use 
of unhygienic cloth as a bandage material in injured part by 
the owner himself. The signs appeared nine days post-
accident. 

 

FATE OF TOXINS 
 
The toxin has a half-life of 5-6 days. Both the heavy and 
the light chains of tetanus toxin are degrading at 
similar rates (Habig et al., 1986). Neuronal binding of 
toxin is irreversible thus recovery requires the growth 
of new nerve terminals, which explains the prolonged 
course (6-8 weeks) of tetanus (Bleck, 1987; Thwaites et 
al., 2014). Therefore, antitoxin should be given as soon 
as possible for management (Thwaites, 2014). In the 
developed world, this is usually human-origin (tetanus 
immune globulin or human immunoglobulin) but 
equine forms are also available (Kabura et al., 2006).  
 
 

CONCLUSION 
 
Despite an ever-increasing amount of knowledge 
related to C. tetani and neurotoxin, the problem is still 
unresolved. New developments in our understanding 
of the tetanus toxin and the C. tetani organism can help 
for better treatments, prevention and control. Public 
awareness is unbeatable and need to be emphasized 
among the new generation practitioners.   
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