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Abstract

The extraction of Rare Earth Elements (REESs) is important for clean energy, electronics,
and high-tech materials. While minerals like monazite and bastnasite are the main
sources, granite is also being studied as a backup source because it contains REE-rich
minerals such as apatite, zircon, and allanite. But extracting REEs from granite is
difficult due to its hardness, low REE content, and radioactive materials, which make
separation and recovery more complex. This paper reviews different extraction methods,
including standard physical processes, bio-based techniques, and newer, greener
methods like using ionic liquids. Additionally this study also reviews the importance of
finding cleaner, more efficient ways to recover REEs from granite, focusing on better
results with less harm to the environment. The findings show that pre-treatment with
microwaves reduces the strength of the rock, making it easier to process, and acid
leaching after this treatment improves the REE extraction rate.

Key words: Rare Earth Elements; Granite Leaching; Microwave Pre-treatment;
Sustainable Extraction

Introduction

REEs consist of 17 elements, including 15 lanthanides, Yttrium (Y), and Scandium (Sc),
with similar chemical properties (Hoshino et al., 2016; Hu et al., 2004). Although widely
distributed in the Earth's crust, Promethium (Pm) is excluded due to its radioactive
nature. REEs are critical for modern technologies, particularly in clean energy and
electronics, where they are used in permanent magnets for electric vehicles (Dent, 2012),
wind turbines (Per Kalvig and Machacek, 2018), and electronics (Daigle and DeCarlo,
2021). REEs also play an essential role in catalysts for petroleum refining (Nieto et al.,
2013), pollution control (Patel et al., 2024) , medical imaging (Reddy and Pranav, 2024).
The global demand for REESs continues to rise, driven by the shift toward renewable
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energy (Drobniak and Mastalerz, 2022). China dominates the REE market, holding
significant reserves and leading in production (Massari and Ruberti, 2013). Due to their
low concentrations, REEs are typically obtained as byproducts during the processing of
other minerals (Jha et al., 2016), with common minerals such as allanite, bastnaesite, and
monazite being the primary sources of REEs (Lashen et al., 2016). However, granite,
typically composed of quartz, mica, and feldspar, has emerged as an underutilized source
of REEs (Balaram and Sawant, 2022). A-type and S-type granites contain REE-rich
minerals like apatite, zircon, allanite, and monazite, and weathering processes can
concentrate these elements in regolith-hosted deposits, offering easier extraction options
than primary ore bodies (Bucher and Seelig, 2018; Li et al., 2017). Granite extraction
presents unique challenges, including the presence of radioactive elements such as
thorium (Th) and uranium (U), which complicate the process (Balaram, 2023a).
Analytical techniques like ICP-MS, gamma spectrometry, and SEM-EDS are crucial for
understanding ore composition and optimizing extraction methods (Pinto et al., 2012).
Eco-friendly methods such as ionic liquids and bio-extraction offer sustainable options
for recovering rare earth elements (REEs). lonic liquids allow for selective and low-
impact extraction, while bio-extraction uses microorganisms to recover REEs in a cost-
effective and environmentally safe way. The results show that using microwave pre-
treatment weakens the rock, making it easier to break down, and that acid leaching after
this step leads to better REE recovery.

Mineralogical specification of REE in granite

REEs possess unique chemical, physical, magnetic, and luminescent properties, owing to
their distinctive atomic structures and electronic configurations (Dushyantha et al., 2020).
Analyzing REE distribution within granite is essential for developing efficient extraction
methods, as highlighted in several studies.

Nature of occurrence of REESs in granite

In granite, REEs are primarily concentrated in accessory minerals like monazite,
bastnésite, and xenotime, which are often part of the igneous mineral assemblage. These
minerals are important for the primary extraction of REEs from granite deposits (Ishihara
et al., 2008) (Table 1). Demonstrates various granite types along with their concentration
of REEs and economic potential, highlighting the correlation between mineral
composition and REE concentration.
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Table 1. Demonstrates various granite types along with their concentration of REEs and economic
potential, highlighting the correlation between mineral composition and REE concentration.

Country Types/classification ~ Concentration of ~ Mineral composition Reference
names of Granite REE( ppm)
USA (New Granites (Various Tajo Granite: Monazite, zircon, (Dietz and
Mexico) Types) / Peralkaline  174.9 (avg.), apatite,feldspars,fluorite, McLemore)
Granite Sevilleta Granite:  xenotime,thorite, allanite,
107.1 (avg.), samarskite
Gallinas Granite:
264.5 (avg.)
China Peralkaline Granites ~ Dingnan Biotite Alkali feldspars, quartz, (Zhao et al.,
(Jiangxi /HREE-enriched Granite: 358,429 biotite, zircon, aegirine, 2022)
Province) Granites ppm, Wuliting fluorite,allanite, samarskite,
Mafic Biotite xenotime
Granite: 344 ppm
Cameroon Granites (S-type, Weathered Quartz, alkali feldspars, (Sababa et al.,
(Biou Area) Peraluminous) / materials: 200to  biotite,muscovite, 2021)
Weathered Granites 1,400 ppm plagioclase,zircon,
monazite,apatite, fluorite
Egypt (W. Monzogranites / 43 ppm (average)  Plagioclase, quartz, alkali (Saleh et al.,
Hawashia, Intrusive Granites feldspars, biotite 2019)
North Accessory minerals: apatite,
Eastern zircon
Desert)
Indonesia A-type Unggan Average REE = Quartz, feldspar, mica (dark  (lrzon et al.,
(Sijunjung, Granite 860 ppm, with red coarse-grained granite) 2018)
West Laand Ndasthe  with significant presence of
Sumatra) major REE Ga, Nb, and Y, indicating

A-type affinity

Major and minor mineral constituents

REEs occur in various mineral classes such as oxides, phosphates, silicates, carbonates,
and halides (Balaram and Sawant, 2022), but current production is primarily sourced
from fewer than ten key minerals, notably bastnésite, xenotime, and monazite (Jordens
et al., 2013). In granite systems, important REE-bearing minerals include apatite, allanite,
xenotime, and zircon (Zhang et al., 2021; Ishihara et al., 2008; Anitha et al., 2020b).
Studies from southern Jiangxi Province (China) and Skye (UK) show significant LREE
enrichment in allanite and apatite (Ishihara et al., 2008; Anitha et al., 2020a).
Additionally, ion-exchangeable clays formed from the weathering of minerals such as
allanite, titanite, and fluorocarbonates are major hosts for secondary REEs (Kanazawa
and Kamitani, 2006; Sanematsu et al., 2015). Less commonly, minerals like britholite
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and thorite also contribute to REE distribution in some granite complexes (Zozulya et al.,
2019; Santana and Botelho, 2022).

Spectroscopic and mineralogical analysis: Characterization Method

Accurate identification and quantification of REEs require a combination of elemental,
isotopic, and mineralogical techniques. ICP-MS is widely used due to its sensitivity and
ability to detect low REE concentrations in rock and mineral samples (Alnour et al.,
2015; Navarro et al., 2008). For in-situ measurements, LA-ICP-MS allows REE mapping
within individual minerals without full digestion (Sindern, 2017; Jarvis and Williams,
1993). XRD and SEM-EDS are used to identify REE-hosting minerals and determine
their textural relationships within the rock (Balaram, 2023b). INAA is also effective for
multi-element analysis, offering high sensitivity without the need for chemical separation
(El-Taher, 2007; Silachyov, 2020). For rapid, non-destructive elemental assessment, XRF
is used, though with lower sensitivity for trace REEs; it performs better when combined
with pre-concentration or calibration methods (Srivastava and Premadas, 1999; Sitko
et al., 2005). Raman spectroscopy can support the identification of REE-bearing
phosphates, especially in lateritic or weathered granites (Zhukova et al., 2022).

Processing techniques for rare earth element recovery from granite

REEs, due to their similar ionic sizes and stable trivalent states, are challenging and
costly to separate. Efficient isolation methods have been the focus of extensive research,
with fractional crystallization being an early technique that exploits slight solubility
differences in REE salts.

Beneficiation techniques: Physical approaches: (Gravity and Froth flotation)

Physical separation techniques are often used as a pre-concentration step in REE
extraction from granite-hosted ores, where REEs are found in minerals like monazite,
xenotime, and allanite. These methods help remove gangue before applying
hydrometallurgical processes. Gravity separation exploits the density contrast between
REE minerals (specific gravity ~2.9-7.2) and lighter gangue (2.5-3.5) (Somani et al.,
2017). Devices like shaking tables, spiral concentrators, and centrifugal separators (e.qg.,
Falcon, Knelson) are used to concentrate REE-rich particles. The Wilfley shaking table
has shown effectiveness in processing granite-derived ores, as demonstrated in studies
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from Wadi Abu Dob, and combined use of spirals and centrifugal methods has enhanced
recovery in Eastern Siberia (Hassan, 2023; Khokhulya et al., 2021). Froth flotation is
widely used to separate REE-bearing minerals, particularly when associated with gangue
minerals like ilmenite, rutile, quartz, and zircon. Successful separation depends on
tailoring flotation parameters reagents, pH, and surface chemistry to the ore's mineralogy
(Abaka-Wood et al., 2016). Avazpour et al., (2021) demonstrated that using a Maxblend
impeller significantly improves recovery and enrichment (65% and 3.85x, respectively),
while minimizing environmental impact.

Integrated metallurgical extraction methodology for REE separation

An integrated metallurgical extraction approach for the separation of REEs involves the
combination of various techniques. This comprehensive methodology enhances the
efficiency of REE recovery by addressing the complexities of mineral matrices,
optimizing the purification process.

Pre-Treatment (Thermal)

Granite’s hardness requires high energy for comminution. Pre-treatment methods like
microwave heating, thermal breakage, and ultrasonic reduce energy use by weakening its
structure. Microwave heating is the most energy-efficient, causing localized damage and
reducing compressive strength (Somani et al., 2017; Pressacco et al., 2023). Ji and Zhang
(2021a) showed that thermal treatment at 600 °C improved REE recovery from kaolinite
to 92%, compared to <20% with mechanical grinding. In further studies, thermal pre-
treatment followed by acid leaching significantly boosted REE recovery from both
kaolinite and phosphatic clay to over 80% (Ji and Zhang, 2021b; Ji and Zhang, 2021a).

Hydrometallurgy: Methods and Application

Physical beneficiation methods are often ineffective for REE recovery due to mineral
complexity, making chemical leaching essential (Liu and Chen, 2021). Table 2 shows the
summary of Hydrometallurgical REE Extraction Methods: Reagents, Advantages, and
Limitations.

Enhance recovery and purification of REEs

The purification of REEs requires removal of impurities often present in processing
streams. Gupta and Krishnamurthy (1992) reported methods such as vacuum melting,
electrorefining, zonerefining, and solid-state electrotransport to eliminate volatile,
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Table 2. Summary of Hydrometallurgical REE Extraction Methods: Reagents, Advantages, and
Limitations (W. Liu et al., 2024) (Hazan et al., 2022) (Prasastia et al., 2015) (Merroune et al., 2024;
Xie etal., 2014).

Method Target REE Host Typical Advantages Limitations
Mineral(s) Reagent(s)/Process
Acid Granite-associated H2SO4, HCI, HNOs — High LREE recovery  Less effective for
leaching silicate minerals commonly used mineral ~ (~85%), well-suited monazite; acid
(e.g., allanite, acids for silicate REE for granite silicates. waste generation.
apatite) dissolution .
Alkaline Phosphate-rich NaOH. Efficient breakdown High
Leaching minerals (e.g., of phosphate matrix; temperature;
monazite in granite) selective REE caustic waste
liberation. handling.
Sequential ~ Mixed mineral Stepwise acids/bases Phase-specific REE Lab-scale
Leaching phases in weathered  (e.g., acetic acid, HNOs,  targeting; improved complexity;
granite NaOH) depending on overall recovery. slower and
mineral matrix. reagent-
intensive.
Solvent Leachate from D2EHPA, TBP, High selectivity and Multistage; uses
Extraction  previous leaching HEHEHP, Versatic 10, purity; widely used at  hazardous
(SX) steps (acidic or Aliquat 336 — organic industrial scale. organic solvents.

alkaline)

solvents for REE
separation.

metallic, and interstitial impurities. SX is commonly used to purify REEs from pregnant
leach solutions (PLS), utilizing kerosene as diluent and P507 as extractant, with
scrubbing and stripping stages. Due to similar REE behaviors, some SX systems exceed
1500 stages (McNulty et al., 2022). Precipitation methods using hydroxides, carbonates,
sulfates, and oxalates are also widely applied (Han, 2020). U and Th, common in
monazite and xenotime, are removed via selective precipitation, leaching, or solvent
extraction (Garcia et al., 2020). Combined approaches precipitation, sorption, and
extraction efficiently separate radioactive impurities (Mukhachev et al., 2021), while
selective Th precipitation is used industrially, And ion exchange with dual resins enables
>99% recovery of REEs and U [96]. Impurities such as Co, Zn, Cu, Pb, Cr, Fe, Mn, Ni,
and others are typically removed via ion exchange, SX, adsorption or precipitation (Altas
et al., 2018). Judge and Azimi (2020) provide a detailed review on recent impurity
removal advancements. Cerium purification via ceric hydroxide and manganese dioxide
achieves >98% recovery and 99-99.5% purity (Abreu and Morais, 2010). REE
processing involves roasting, leaching (acid/alkali), and subsequent purification by
techniques such as ion exchange, SX, precipitation, bioleaching and membrane
separation (Judge and Azimi, 2020).
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Recent developments and innovations in REE extraction and purification

REE recovery from ores is limited to 50-80% due to process constraints (McNulty et al.,
2022). Table 3 shows the. Comparison of Advanced Methods for REE Extraction:
Biohydrometallurgy, lonic Liquids, Polymer-Based Materials, and Membrane Separation.
With rising demand, focus is shifting to alternative resources and eco-friendly methods.
Clay in weathered granite shows potential for HREE extraction, though traditional
methods are ineffective. Greener alternatives like in-situ leaching with ammonium salts
are being explored (Azimi, 2025). Fig. 1 shows the schematic diagram depicts the
bioleaching mechanisms and ionic-liquid mechanisms.

Complications in the extraction of REEs and recommendation

REE extraction from granite is challenging due to uneven distribution across ore minerals
and alteration processes, such as K-silicate, sericitic, and tourmalinization, which can
result in the loss of specific REEs (Alderton et al., 1980). Alterations can form REE-rich
minerals like cerite and bastn&site but also cause unpredictable changes in composition.
Granite's hardness complicates physical separation, requiring energy-intensive grinding.
Extracting REEs from complex mixtures is time-consuming and energy-demanding,
especially for high purity. The presence of radioactive elements, such as uranium and
thorium, further complicates extraction and raises environmental and health concerns
(Taalab et al., 2024). A multi-method approach is proposed for REE extraction from
granite to overcome challenges related to its hardness, low REE concentrations, and
environmental impact.1. Microwave-Assisted Acid Leaching. The use of microwave
heating weakens the granite’s dense structure, reducing the energy needed for grinding
and improving the efficiency of subsequent acid leaching. Advantages: High recovery
rates (up to 92%), cost effective by reducing grinding energy and chemical usage,
environmentally sustainable, minimizing energy consumption and chemical waste,
Scalable for industrial applications. 2. lonic Liquid-Based Extraction. It can be
customized for high selectivity of lanthanides, improving the purity of extracted materials
while being environmentally friendly and recyclable. Advantages: High selectivity for
REEs, improving purity, Eco-friendly due to low toxicity and recyclability, Sustainable
with minimal chemical waste. Disadvantages: High cost and limited scalability for large-
scale applications, currently in the early stages.
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Conclusion

Granite contains REEs, but traditional extraction methods are energy-intensive and
environmentally challenging. Microwave-Assisted Acid Leaching is recommended for its
ability to enhance ore reactivity, reduce energy use, and improve recovery rates, offering
a cost-effective and environmentally friendly solution. Additionally, lonic Liquid-Based
Extraction provides a selective, sustainable alternative to traditional solvents, with high
potential for purity and minimal waste, though it remains in the early stages of industrial
use. Combining these methods optimizes REE recovery from granite, ensuring better
efficiency, sustainability, and reduced environmental impact.
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