Variations of Lung Function Status in Hypertension and Antihypertensive Medication

Nahar MN¹, Begum S², Ferdouzi S³, Sultana S⁴, Parveen Z², Akhter T⁵, Habib T⁷

Abstract

Introduction: Essential hypertension is associated with altered pulmonary function. Antihypertensive medication and lung function are also associated. Amlodipine (calcium channel blocker) and Atenolol (beta blocker) are commonly used antihypertensive drugs.

Objective: To evaluate the effects of antihypertensive drugs on lung function status in patients with essential hypertension.

Materials and Methods: This prospective observational study was carried out in the Department of Physiology of Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka, from July 2012 to June 2013 on 100 newly diagnosed essential hypertensive patients. Based on prescribed treatment, these study subjects were divided into two groups - B1 and B2. B1 included 50 patients who received amlodipine 5mg daily and B2 included 50 patients who received atenolol 50mg daily. Lung function tests were done in both B1 and B2 groups before taking medication, after 3 months of medication and after 6 months of medication. For assessing lung function status, Forced Vital Capacity (FVC), Forced Expiratory Volume in 1st second (FEV₁) and Peak Expiratory Flow Rate (PEFR) were measured with a computer based Spirometer. Age, sex and BMI matched 50 apparently healthy normotensive subjects were also studied as control (group A). Data were compared among subjects of different groups. For statistical analysis independent sample’t test and paired sample’t test were performed.

Results: Mean FVC, FEV₁ and PEFR were significantly lower in newly diagnosed hypertensive patients in comparison with that of healthy normotensive subjects. Mean FVC, FEV₁ and PEFR were found significantly higher in the group taking amlodipine for 6 months when compared to newly diagnosed hypertensive patients but lower than those of controls. In addition mean FVC and FEV₁ were found significantly lower in the group taking atenolol for 6 months when compared to newly diagnosed hypertensive patients and those of controls.

Conclusion: Reduced lung function occurs in newly diagnosed essential hypertensive patients which improve by treatment with amlodipine but decreases after treatment with atenolol.

Key-words: Newly diagnosed essential hypertensive patients, lung function status, antihypertensive drugs.

Introduction

Hypertension is an increasingly important public health challenge throughout the world among the cardiovascular diseases⁴. Essential hypertension is the most common form, accounts for 90-95% of all causes of hypertension². Although several studies observed that high blood pressure has link to multiple clinical outcomes including cardiac, cerebrovascular, renal and eye diseases⁵, a few studies found an association between lung function and hypertension⁶. All antihypertensive drugs lower high blood pressure, though drugs from different classes differ in their mechanisms of action. Therefore changes in pulmonary function with chronic

¹ Maj Mst Nasrin Nahar, MBBS, MD, Assistant Professor of Physiology, AFMC, Dhaka 2. Dr Shelina Begum, MBBS, MPhil, Professor and Chairman of Physiology, BSMMU, Shahbag, Dhaka 3. Dr Sultana Ferdousi, MBBS, MPhil, Associate Professor of Physiology, BSMMU, Shahbag, Dhaka 4. Lt Col Sharmin Sultana, MBBS, MPhil, Assistant Professor of Physiology, AFMC, Dhaka 5. Lt Col Zinia Parveen, MBBS, MPhil, Assistant Professor of Physiology, AFMC, Dhaka 6. Dr Tunerjina Akhter, MBBS, MPhil, Assistant Professor of Physiology, Army Medical College, Bogra 7. Dr Tamanna Habib, MBBS, MD, Assistant Professor of Physiology, Anower Khan Modern Medical College and Hospital, Dhaka.
antihypertensive drugs therapy would be expected to differ depending on the site and mechanism of action of the drugs. Several studies suggested that Calcium channel blockers have no adverse effects on resting airway function in patients with asthma11,12. Some studies revealed no significant bronchodilatation 45 minutes after Calcium channel blocker administration in asymptomatic asthma patients13. On the other hand, another study observed improvement of airway resistance, peak expiratory flow rates and FEV\textsubscript{1} after one and two hours of Calcium channel blocker administration in patients with bronchial asthma14. Few studies revealed that relatively cardioselective agents has been considered contraindicated in patients with asthma or COPD, as it may produce broncho-constriction and thereby worsen respiratory flows and symptoms in these patients15,16. On the other hand, Two systematic reviews of randomized controlled trials revealed that the cardioselective beta blocker has no adverse effects on lung functions in patients with asthma or COPD17,18.

Although several investigators observed the effect of amlodipine and atenolol on lung function separately no report compared the effect of amlodipine and atenolol on lung function in newly diagnosed hypertensive patients. Therefore this study aimed to evaluate the lung function in untreated hypertensive patients and compare the effect of amlodipine and atenolol on lung function.

Materials and Methods
This prospective observational study was carried out in the Department of Physiology of Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka, from July 2012 to June 2013. Hundred newly diagnosed hypertensive patients aged 30-55 years were selected as study group. Age, sex and BMI matched 50 apparently healthy normotensive subjects were also studied as control (group A). Based on treatment, these study subjects were divided into two groups; B1 and B2. B1 included 50 patients who received amlodipine 5mg daily and B2 included 50 patients who received atenolol 50mg daily. Lung function tests were done in both B1 and B2 groups before taking medication, after 3 months of medication and after 6 months of medication. Basing on the duration of the treatment group B1 was named as B1\textsubscript{a} (newly diagnosed hypertensive patients before treatment), B1\textsubscript{b} (after 3 months of medication with amlodipine) and B1\textsubscript{c} (after 6 months of medication with amlodipine). Similarly subjects of group B2 were named as B2\textsubscript{a} (newly diagnosed hypertensive patients before treatment), B2\textsubscript{b} (after 3 months of medication with atenolol) and B2\textsubscript{c} (after 6 months of medication with atenolol). These patients were selected from the Out Patient Department of Cardiology, BSMMU.

Subjects with history of acute or chronic lung and chest wall disease e.g. pneumonia, tuberculosis, asthma, COPD, malignancy etc, history of coronary heart disease, diabetes mellitus, alcohol/tobacco users and smokers were excluded from the study. After random selection of the subjects a detail personal, medical, family, socioeconomic, occupational and drug history were recorded in a preformed questionnaire and thorough physical examinations were done and documented. For the assessment of lung function FVC, FEV\textsubscript{1} and PEFR were measured with a computer based Spirometer.

Then all the patients were requested to attend the Department of Physiology of BSMMU, again after 3 months and after 6 months of antihypertensive medication, to have the assessment of the above mentioned study variables. For statistical analysis independent sample’t test and paired sample’t test were performed by using SPSS (Statistical Package for Social Sciences) for windows version 16.0 as applicable. P value <0.05 was accepted as level of significance.

Results
The mean of the percentages of predicted values of FVC, FEV\textsubscript{1} and PEFR were significantly lower in group B1\textsubscript{a}, B1\textsubscript{b} and B1\textsubscript{c} respectively than those of control. In addition, the mean percentage of predicted values of FVC, FEV\textsubscript{1} and PEFR were significantly increased in group B1\textsubscript{a} and B1\textsubscript{c} in comparison to their corresponding base line values of group B1\textsubscript{a} (Table-I).

Table-I: Percentages of predicted values of FVC, FEV\textsubscript{1} and PEFR in different groups (n=100)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A (n=50)</th>
<th>B1\textsubscript{a} (n=50)</th>
<th>B1\textsubscript{b}</th>
<th>B1\textsubscript{c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>88.9±0.827</td>
<td>73.9±1.037</td>
<td>76.2±0.960</td>
<td>78.1±0.40</td>
</tr>
<tr>
<td>FEV\textsubscript{1} (L)</td>
<td>90.6±0.772</td>
<td>79.38±1.157</td>
<td>81.0±1.151</td>
<td>83.3±1.0</td>
</tr>
<tr>
<td>PEFR (L/s)</td>
<td>78.38±1.373</td>
<td>72.96±1.289</td>
<td>73.5±1.235</td>
<td>75.6±1.3</td>
</tr>
</tbody>
</table>
The mean of the percentages of predicted values of FVC, FEV₁, and PEFR were significantly lower in group B₂₁, B₂₂, and B₂₃ respectively than those of control. In addition, the mean percentage of predicted values of FVC and FEV₁ were significantly decreased in group B₂₀ and B₂₁ in comparison to their corresponding base line value B₁. But the mean percentage of predicted value of PEFR was nonsignificantly increased in group B₂₀ and B₂₁ in comparison to their corresponding base line values of group B₂₂ (Table-II).

Table-II: Percentages of predicted values of FVC, FEV₁, and PEFR in different groups (n=100)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>A (n=50)</th>
<th>B₂₁ (n=50)</th>
<th>B₂₀</th>
<th>B₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>88.9±0.827</td>
<td>74.72±0.786</td>
<td>72.84±0.997</td>
<td>71.42±1.028</td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>90.6±0.772</td>
<td>79.04±1.079</td>
<td>76.88±1.248</td>
<td>75.62±1.298</td>
</tr>
<tr>
<td>PEFR (L/s)</td>
<td>78.38±1.373</td>
<td>74.36±1.444</td>
<td>75.28±1.353</td>
<td>76.6±1.302</td>
</tr>
</tbody>
</table>

Researchers suggested that the decrement of different ventilatory variables in essential hypertension may be associated with early left ventricular hypertrophy and moderately left ventricular dysfunction which may increase left atrial pressure. As a consequence, an elevation of pulmonary arterial pressure and interstitial oedema in the lung leading to decreased compliance of the lung and mild restrictive disease.⁴⁵,⁶

Different studies suggested various mechanisms for the improvement of lung function status in hypertensive patients after treatment with amlodipine. Calcium causes smooth muscle contraction, degranulation of mast cells and secretion of mucous from different cells in the airway epithelium. Calcium channel blockers are vasodilators and in hypertension it inhibits calcium influx into arterial smooth muscle cells.²² It has been suggested that calcium channel blocker may reduce bronchoconstriction by inhibition of contraction of bronchial smooth muscle and release of mediators from mast cells or polymorphonuclear neutrophils in asthma patients.¹²
Different researchers suggested various mechanisms for the decrement of lung function status in hypertensive patients after treatment with atenolol. In the respiratory system, Beta 2 adrenergic receptors (β2-ARs) represent the 70% of all Beta Adrenergic Receptor (β-AR), with the Beta 1 Adrenergic Receptors (β1-ARs) accounting for the remainder. As a consequence, the use of a selective β1-AR antagonist may not involve only for vascular effect24. It has been suggested that bronchodilatation is mediated by autonomic beta-adrenoceptors, the dominant subtype25 being β2. Beta-blocker cardio-selectivity is dose dependent, with competitive antagonism of both β1 and β2 adrenoceptors at higher plasma concentrations. Therefore with higher doses of cardioselective beta-blockers, β2 receptor blockade may cause minor increases in airflow obstruction possibly through unopposed parasympathetic bronchoconstriction.26 Furthermore, beta-agonist improved the performance of skeletal muscles and also positively affect respiratory muscle strength27,28,29. Therefore Beta blocker medication may result in a slight reduction of expiratory muscle strength causing a proportional decrease of FEV1 and FVC10. The exact mechanisms involved for the decrement of lung functions in hypertension and improvement after treatment with amlodipine but not with atenolol in hypertensive groups of present study could not be elucidated from this type of study. However, it is assumed that all the above mentioned mechanisms may influence the degree of deterioration of these variables in hypertension patients and improvement after treatment with amlodipine but not with atenolol.

Conclusion
The ventilatory variables decrease in newly diagnosed patients with hypertension and lung function status improves after treatment with amlodipine but further decreases after treatment with atenolol. Apart from the suggested mechanism by several researchers these decrement may be associated with silent pulmonary disorders without presenting any pulmonary symptoms.

References

