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Abstract 

Brown adipose tissue, a thermogenic organ, previously thought to be present in only small 

mammals and children has recently been identified in adult humans. Located primarily in the 

supraclavicular and cervical area, it produces heat by uncoupling oxidative phosphorylation 

due to the unique presence of uncoupling protein 1 by a process called nonshivering 

thermogenesis. BAT activity depends on many factors including age, sex, adiposity and 

outdoor temperature. Positron-emission tomography using 18F-fluorodeoxyglucose and 

computed tomography (18F-FDG PET–CT), magnetic resonance imaging (MRI) and thermal 

imaging (IRT) are among several methods used to detect BAT in humans. The importance of 

BAT is due to its role in whole body energy expenditure and fuel metabolism. Thus it is 

postulated that it may be useful in the treatment of metabolic diseases. However, there are still 

many unanswered questions to the clinical usefulness of this novel tissue. 
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Introduction 

The rediscovery of functional brown adipose tissue 

(BAT) in adult humans has generated interest in its 

potential as a therapeutic target to improve 

metabolic health. BAT is a thermogenic organ 

located primarily in the supraclavicular area in 

adult humans. Smaller deposits are also located in 

the paravertebral, perinephric and mediastinal 

areas [1-4]. They possess uncoupling protein 1 

(UCP-1) which acts as an alternate proton channel 

through which hydrogen ions travel down the 

electrochemical gradient, bypassing adenosine 

triphosphate (ATP) synthase and dissipating energy 

as heat [5,6]. This process is called nonshivering 

thermogenesis and is activated by cold and 

regulated by the sympathetic nervous system [6,7]. 

Several studies have demonstrated that this 

thermometabolic organ contributes to whole body 

energy expenditure [8-11] and plays a role in 

glucose [11] as well as lipid metabolism [12]. 

There is ongoing research to explore the role of 

BAT in diseases such as type 2 diabetes mellitus, 

dyslipidaemia and nonalcoholic fatty liver disease. 

This review aims to highlight the morphology, 

location, mechanism of action, detection and 

clinical usefulness of BAT. 

 

Morphology 

BAT is richly vascularized and densely innervated 

by terminal fibres of the sympathetic nervous 

system. It is characterized by polygonal cells with 

a central nucleus and multiple, small vacuoles that 

store triglycerides (i.e. multilocular lipid droplets). 

They are characteristically rich in large, spherical 

UCP-1 containing mitochondria. UCP-1 is 

uniquely expressed in the inner mitochondrial 

membrane and is essential in the uncoupling of 

mitochondrial oxidative phosphorylation [5].  

 

Location and amount of BAT 

BAT is strategically located around major blood 

vessels to ensure adequate delivery of substrates and 
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effective dissipation of heat throughout the body 

[13]. Infants and children have a considerable amount 

of active BAT which gradually regresses with age, 

especially after puberty [14]. In infants, BAT 

consists of around 1-5% of their body weight [15] 

and is predominantly found in the interscapular 

region. Retrospective studies under non-cold 

stimulated conditions have found that 18F-

fluorodeoxyglucose (18F-FDG) uptake is present in 

6.8-8.5% of adults [1,16,17]. Out of these adults 

with detectable BAT activity, 18F-FDG uptake is 

most commonly observed in the supraclavicular and 

cervical area (94.2%), paravertebral area (61.6%), 

mediastinal/para-aortic (28%) and perirenal areas 

(20.1%) [17]. Histological examination of tissue 

from the supraclavicular region has confirmed the 

presence of BAT [1-4,8,16,17]. The estimated 

amount of active BAT found in adult humans 

ranges from 4 to more than 1500 ml [18]. 

 

Mechanism of nonshivering thermogenesis  

As noted earlier, BAT is characterized by an 

abundance of UCP-1 containing mitochondria. 

 

Fig-1. Nonshivering thermogenesis in brown adipocyte. Cold activates BAT via release of noradrenaline which 

binds with the β3 receptor on the cell surface. This activates a downstream cascade of events in which PPARγ 

coactivator 1α (PGC1α) is a key regulator of thermogenesis due to its ability to induce expression of UCP-1 [6]. 

β3AR: β3 adrenoreceptor, AC: adenylate cyclase, cAMP: cyclic adenosine monophosphate, PKA: protein kinase A, 

p38α map kinase: p38α mitogen-activated protein kinase, ATF2: activating-transcription factor-2, PGC1α: PPARγ 

coactivator 1α, UCP-1: uncoupling protein 1, HSL: hormone sensitive lipase, TG: triglyceride, FA: fatty acid, 

ETC: electron transport chain. 
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UCP-1, a six-domain transmembrane protein, is 

central to the production of heat by nonshivering 

thermogenesis. The expression of UCP-1 can be 

enhanced by adrenergic stimulation and peroxisome 

proliferator-activated receptor-γ (PPARγ) agonists 

[6]. Factors that can increase the metabolic activity 

of BAT include the use of sympathomimetics, β 

adrenergic agonists and cold exposure [6,7,19-

21,25]. During BAT activation, there is 

upregulation of UCP-1, which allows protons to 

travel down the electrochemical gradient while 

bypassing the ATP synthase. As a result of this 

uncoupling of oxidative phosphorylation, ATP is 

not synthesized and energy is dissipated as heat. 

With less ATP production, there is no negative 

feedback inhibition of the respiratory chain, 

producing a futile cycle [6] (Figure 1). 

 

Factors associated with BAT activity in humans 

In addition to the cooling protocol, the prevalence 

of BAT also depends on age, sex, adiposity and 

outdoor temperature [17]. Age is an independent 

negative predictor of BAT activity and mass, with 

BAT being more prevalent in younger individuals 

[2,10,16,17,22,23]. However, the cause of this 

age-dependent decline in BAT is currently 

unknown, but changes in sex and thyroid hormones 

as well as the activity of the sympathetic nervous 

system associated with increasing age have been 

speculated to be contributing factors [24]. Females 

have been observed to have more BAT activity and 

mass compared to males in some studies [16,17,22] 

but not all studies [23,25,26]. The difference in the 

prevalence of BAT between males and females 

may be due to the different effects of sex hormones 

on BAT activity [22] and the fact that females start 

to shiver at a higher temperature compared to 

males [27]. Body mass index (BMI), central 

obesity, body fat percentage and visceral fat are 

consistently lower in people with detectable BAT 

activity [2,10,16,23,28,29]. BMI is not only 

negatively correlated with BAT, but is also an 

independent predictor [1,2,16-17,28]. Whether 

increased BAT activity results in a lower BMI or 

vice versa is still not known. Nahon and colleagues 

reported that larger individuals with higher lean 

mass require exposure to lower temperatures to 

activate cold-induced thermogenesis due to higher 

basal heat generation in this population. As such, 

studies investigating the relationship between BAT 

and adiposity should consider body size, composition 

and energy expenditure when designing cold-

induced thermogenesis studies [30]. BAT is more 

likely to be detected during the winter compared to 

summer [1,2,31]. In addition, BAT activity and 

mass is inversely related with outdoor temperature 

at the time [1] or day [17,32] of the scan. These 

studies show that lower outdoor temperature is 

associated with increased BAT prevalence, volume 

and activity. 

 

Methods of BAT detection  

Multiple imaging modalities have been utilized to 

characterize and differentiate BAT from 

surrounding tissues based on its unique anatomical 

and functional properties. These techniques include 
18F-FDG PET-CT, magnetic resonance imaging 

(MRI), infrared thermography (IRT) and autonomous 

temperature sensors (i.e. iButtons). A detailed 

review outlining recent advances in BAT detection 

has recently been published by our group and 

therefore will only be briefly discussed [33]. 18F-

FDG PET-CT is the current reference standard in 

the detection of BAT. This modality measures the 

uptake of a glucose analogue (i.e. 18F-FDG) that is 

taken up by BAT but is not metabolized [34]. 

Moreover, PET-CT has been instrumental in 

advancing our knowledge in the identification, 

location and nature of BAT [1-3,8,16,17]. 

However, a major limitation of PET-CT is the 

significant and unnecessary exposure to ionizing 

radiation precluding its use in large cohorts and in 

children [35]. Thus, alternative modalities including 

MRI have been utilized in the detection of BAT. 

The use of this technique is dependent on the 

morphological differences between BAT and 

surrounding tissues resulting in unique MR 

signatures which can be measured using fat-

fraction (FF) and T2* relaxation (T2*). Generally, 

BAT is characterized by smaller FF and T2* 

values due to its lower lipid content, greater 

vascularization and abundance of iron-rich 

mitochondria. In addition, both FF and T2* can 

also be used to measure BAT metabolic activity as 

reductions in these parameters have been 

associated with 18F-FDG uptake [36]. Imaging 

modalities that measure changes in skin 

temperature including IRT and autonomous 
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temperature sensors have been used to detect BAT 

[13]. These techniques rely on the heat produced 

by BAT via non-shivering thermogenesis in the 

overlying skin when activated. However, the use 

of these modalities in measuring BAT activity is 

often confounded by skin thickness, increased 

blood flow and muscle activity upon cold 

exposure. As such, further investigation is 

warranted before these modalities can be widely 

adapted in the measurement of BAT. Other 

emerging modalities are currently being developed 

to measure BAT. However, these methods are of 

limited availability, expensive and still in their 

infancy. Examples include detection of BAT using 

hyperpolarized MRI [37,38], contrast ultrasound, 

near-infrared fluorescence imaging [39] and near-

infrared time-resolved spectroscopy. 

 

Therapeutic potential 

As alluded above, BAT presence and activity is 

negatively associated with weight and central 

adiposity, suggesting a possible role of this tissue 

in the context of obesity [8-11,29]. In addition, 

when BAT is activated, it uses endogenous 

derived fatty acids, free fatty acids [12,41] and 

glucose [11] as its fuel source, suggesting that 

this thermometabolic organ contributes to whole-

body energy homeostasis. A study by Iwen and 

colleagues demonstrated that cold-induced BAT 

activation resulted in increased peripheral glucose 

uptake and higher insulin sensitivity without 

influencing pancreatic hormone secretions [41]. 

As such, it is not surprising that fasting blood 

glucose is lower in those with BAT than those 

without; and BAT activity is inversely correlated 

with fasting glucose concentration [16,41-43]. 

Chronic cold exposure induces weight loss [44] 

and increases insulin sensitivity by activating 

BAT in humans [45,46]. Recent studies showing 

metabolic improvement independent of 

thermogenesis after BAT transplantation in mice 

postulate that BAT is an endocrine organ, 

secreting cytokines such as IL-6 and FGF21 

which have beneficial effects on other organs of 

the body [47,48]. Therefore, BAT shows 

potential in the treatment of not only obesity, but 

also diabetes mellitus, dyslipidaemia and 

nonalcoholic fatty liver disease and thus warrants 

further investigation. 

Conclusion 

There has been considerable research over the last 

few decades demonstrating the morphology, 

mechanism and presence of BAT in adult humans. 

Although there is ongoing work regarding the 

measurement of this novel tissue in humans, many 

challenges still need to be overcome. Furthermore, 

studies need to be designed to determine ways to 

stimulate and recruit BAT as well as to determine 

how effective and clinically relevant BAT 

thermogenesis will be in the treatment of metabolic 

disorders. 
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