Effects of fodder conservation and ration formulation interventions on dairy performance in Kenya

B.N. Sakwa¹, J.O. Ondiek¹, A.M. King’ori¹ and O.A. Ndambi²

Received 8 August 2020, Revised 9 October 2020, Accepted 24 December 2020, Published online 31 December 2020

ABSTRACT

Use of conserved forages and proper ration formulation has great potential to bridge the gap in dairy nutrition and reduce seasonal variations in milk yield. This study determined the effects of various fodder and ration formulation interventions on dairy farm performance in North Rift, Eastern, and Central regions of Kenya. Seventy-two farms were purposively selected as participating farms and assigned into six groups of twelve as follows: two groups on silage production, two groups on ration formulation, and two control groups having similar production systems and in the same geographical locations as the other groups. Data on daily dry matter feed intake and milk yield were recorded while laboratory analysis was done to determine milk butterfat and protein content. The data was analyzed using a multilinear regression model to assess the relationship between independent and dependent variables. The results showed that farmers using feed rationing with advisory services had the highest average daily milk yield (19.7 kg/cow) compared to maize train silage (16.8 kg/cow) and those with silage support from Service Provider Enterprises (SPE) (13.3 kg/cow) (P<0.05). Daily dry matter feed intake/cow varied significantly across the interventions as well as feed utilization efficiency (P<0.05). Milk butterfat and milk protein content did not differ (P>0.05) across the interventions. In conclusion, use of maize train silage and feed rationing with advisory services increased milk yield and reduced seasonal milk fluctuation.

Keywords: Feed intake, Maize silage, Milk yield, Silage bales, Service provider enterprises.

¹Department of Animal Sciences, Egerton University P.O. Box 536-20115, Egerton, Kenya.
²Animal Science Group, Wageningen University and Research, Wageningen, Netherlands.

*Corresponding author’s email: boniface396@gmail.com (B.N. Sakwa)

Introduction

The dairy sector is the largest agricultural subsector in Kenya, and its share in gross domestic product (GDP) is approximately 4% (Odero-Waititu, 2017). Dairy farming in Kenya is concentrated in the high altitude Agro-ecological zones of the Eastern, Central highlands and North Rift regions with a high and bimodal rainfall and relatively low temperatures between 15-24°C. More than three-quarters of the households in the regions engage in agriculture with 73% practicing integrated crop/dairy production (Wambuuga et al., 2011). Dairy feed management and utilization efficiency is the key determinant of dairy farm performance. Conserved forages have great potential to bridge the gap in forage supply and support milk yield during seasonal variations, which will reduce fluctuations in milk supply. The availability of quality forage all year-round is a major challenge of dairy farmers in Kenya leading to low milk yields, low milk solid content and high cost of milk production (Kashangakiand Ericksen, 2018).

Faced with a myriad of constraints, the dairy farmers need to adopt a promising dairy and forage technology especially in utilizing the limited forage resources. This remains critical for increased fodder and milk production and improvement of the performance of dairy industry for economic growth (Mutavi, 2017). This justifies the need to adopt production-enhancing forage innovations and dairy feed rationing as better ways of stimulating milk production to meet the ever-increasing demand for milk.

The SNV Market led Dairy Program (KMDP) in Kenya, funded by the Embassy of the Kingdom of
Netherlands introduced some interventions on fodder conservation and ration formulation on dairy farms in Kenya, i.e. use of maize train/baled silage and production of silage with support from Service Provider Enterprises (SPEs), and supporting on-farm ration formulation. Maize train and baled silage; - is a concept of silage making that involves a lot of mechanization and commercialization as well as the concept of silage baling to facilitate transportation and proper storage practices. Service provider enterprises maize silage; - Involves groups of entrepreneurial youth trained by the Netherlands development organization (SNV) under the KMDP project. This study therefore, determined the effects of these interventions on dairy farm performance.

Materials and Methods

Description of study areas

The study was done in North Rift, Eastern, and Central regions of Kenya. The rainfall in these regions ranged from 900-1300, 1000-2020 and 700-1400 mm/year, respectively. While the altitude ranged from 1800-2500, 1000-2000, and 1800-2500 meters above sea level, respectively (Jaetzoldet al., 2010).

Data collection and laboratory analysis

The dairy farms were sampled based on the fodder interventions adopted using the purposive sampling technique. A typology of the farms, which had access to these interventions, was done and the farms classified based on the interventions adopted. A structured questionnaire was used to obtain farm characteristics. Two groups of farms were identified, that is farms producing silage and farms practicing feed rationing. These two groups were further sub-divided as follows:

a) Two groups on silage:
 i. Smallholder farms with support from Service Provider Enterprises (SPEs).

 \[Y = \beta_0 + \beta_1X_1 + \beta_2(X_1X_2) + \beta_3(X_1X_3) + \beta_4(X_1X_4) + \beta_5(X_3X_4) + \beta_6(X_1X_2X_3) + \beta_7(X_1X_2X_4) + \beta_8(X_1X_3X_4) + \beta_9(X_1X_2X_3X_4) + \varepsilon \]

 Where,
 \(Y \) = the predicted value of a dependent variable (Daily dry matter intake, Milk yield, milk butter fat, milk protein content, and feed efficiency).
 \(\beta_0 \) = the intercept
 \(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \beta_8, \) and \(\beta_9 \) = regression coefficients
 \(X_1, X_2, X_3, X_4 \) = independent variables (interventions, region, farm size and grazing system).
 \(\varepsilon \) = random error term

Results

The results from the study on milk yield, milk quality, feed intake, and feed efficiency are presented in Table 1, Figure 1 and Figure 2. Milk yield from different interventions differed \((P<0.05)\), where by farms using feed rationing with regular visits and advisory services recorded the highest daily milk yield (19.7 kg/cow) compared to farms using maize train/baled silage and those with support from SPEs interventions (16.8 and 13.3 kg/cow), respectively (Table 1). Rationing without visits, maize train/baled and SPEs controls had the lowest daily milk yield per cow compared to their respective farms using the interventions \((P<0.05)\) (Table 1).
Table 1. Dairy performance under different Interventions.

<table>
<thead>
<tr>
<th>Interventions</th>
<th>DMFI (kg)</th>
<th>Milk yield per farm (kg)</th>
<th>Milk yield per cow (kg)</th>
<th>MP (%)</th>
<th>MBF (%)</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize train silage (n=5)</td>
<td>16.3±0.32a</td>
<td>438.7±53.49ab</td>
<td>16.8±0.53b</td>
<td>2.7±0.03b</td>
<td>3.6±0.04b</td>
<td>1.1±0.03a</td>
</tr>
<tr>
<td>Maize Train Control (n=5)</td>
<td>14.4±0.18b</td>
<td>220.2±50.96bc</td>
<td>14.2±0.27cd</td>
<td>2.6±0.02c</td>
<td>3.7±0.04a</td>
<td>0.9±0.04b</td>
</tr>
<tr>
<td>Rationing and advisory services</td>
<td>17.3±0.34a</td>
<td>630.4±181.92a</td>
<td>19.7±0.64a</td>
<td>2.8±0.02a</td>
<td>3.6±0.04b</td>
<td>1.1±0.05a</td>
</tr>
<tr>
<td>(n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationing without visits (n=5)</td>
<td>14.9±0.42b</td>
<td>467.8±132.82ab</td>
<td>15.1±0.61bc</td>
<td>2.7±0.02b</td>
<td>3.7±0.02a</td>
<td>1.0±0.03b</td>
</tr>
<tr>
<td>SPEs silage (n=5)</td>
<td>13.7±0.45c</td>
<td>113.8±39.23c</td>
<td>13.3±0.88d</td>
<td>2.6±0.02c</td>
<td>3.7±0.04a</td>
<td>0.9±0.08b</td>
</tr>
<tr>
<td>SPEs Control (n=5)</td>
<td>13.2±0.73c</td>
<td>23.1±4.05c</td>
<td>10.4±0.47e</td>
<td>2.6±0.03c</td>
<td>3.7±0.04a</td>
<td>0.8±0.04c</td>
</tr>
<tr>
<td>P value</td>
<td><0.0001</td>
<td>0.0014</td>
<td><0.0001</td>
<td>0.1336</td>
<td><0.0001</td>
<td>0.0010</td>
</tr>
<tr>
<td>R²</td>
<td>0.72</td>
<td>0.54</td>
<td>0.85</td>
<td>0.28</td>
<td>0.70</td>
<td>0.55</td>
</tr>
</tbody>
</table>

DMFI= Dry matter feed intake, FE= Feed efficiency, MBF= Milk butterfat, MP= Milk protein, SPEs= Service provider enterprises, ab, b, cMeans within columns with different superscripts differ significantly at P<0.05.

Medium/large scale farms practicing feed rationing with advisory services and regular visits performed better than farms using maize train/baled silage interventions (P<0.05). While their medium/large scale control farms’ (maize train control and farms practicing feed rationing without advisory services and regular visits) performance did not vary significantly. Farms using maize train silage interventions in North Rift region of Kenya had higher average daily milk yield (16.7 kg/cow) compared to those with support from service provider enterprises (SPE) intervention in both Eastern and Central regions of Kenya (13.8 and 13.2 kg/cow), respectively (Fig. 1).

Regions

Fig. 1. Comparison of fodder conservation interventions in different regions of Kenya.

However, farms in Central and Eastern regions of Kenya practicing feed rationing with advisory services and regular visits had higher daily milk yield (19.1 and 18.6 kg/cow), respectively, compared to those practicing fodder conservations using maize train intervention in North Rift (Fig. 2).

Milk butterfat and milk protein contents differed ($P<0.05$) across the interventions. Medium/large-scale farms not using the interventions and the smallholder farms under SPE had higher milk butter fat content (3.7%) than those medium/large-scale farms using maize train and feed rationing with advisory services interventions (3.6%) (Table 1). Milk protein content was higher in medium/large-scale farms practicing feed rationing with advisory services (2.8%) and lowest in smallholder farms using support from SPE and the medium/large-scale maize train control farms (Table 1).

Average daily dry matter feed intake (DMFI kg/cow) varied significantly across the interventions. Medium/large-scale farms practicing feed rationing with advisory services and those using maize train silage interventions had the highest average DMFI per cow was 17.3 kg and 16.3 kg, respectively. Medium/large-scale farms under maize train control and feed rationing without advisory services, and the smallholder farms with support from SPEs had the lowest daily DMFI per cow was 14.4 kg, 14.9 kg, and 13.7 kg, respectively (Table 1).

Feed efficiency which measures the effectiveness of a diet on milk yield, varied significantly ($P<0.05$) across the interventions. Medium/large farms practicing feed rationing with advisory services and those using maize train interventions had an average feed efficiency of 1.1 higher than 0.8 from smallholder SPE control farms (Table 1).

The results from the regression models used are presented in Table 2 below for the derived optimal models on the basis of smallest AIC, BIC, C(p) and SSE values and largest R^2. About 70% of the variations in daily milk yield/cow was explained by the interventions and grazing systems. Only 30% variability in daily milk yield/cow was due to variations in region and farm size. Similarly, 66% of the variability in feed intake per cow per day (kg DM) was explained by the different intervention levels and grazing systems. In contrast, variability in milk butter fat (26%), milk protein (0.7%) and feed efficiency (45%) was due to different interventions, grazing systems, farm sizes and grazing systems, respectively (Table 2).

![Fig. 2. Comparison of rationing and fodder interventions in different regions of Kenya.](image-url)

Table 2. Optimal models selected for explaining dependent variables.

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables in the model</th>
<th>R^2</th>
<th>AIC</th>
<th>BIC</th>
<th>C(p)</th>
<th>SSE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily milk yield/cow</td>
<td>Interventions, grazing system</td>
<td>0.7</td>
<td>27.3</td>
<td>31.1</td>
<td>1.7</td>
<td>59.4</td>
<td>0.004</td>
</tr>
<tr>
<td>Daily dry matter feed intake/cow</td>
<td>Interventions, grazing system</td>
<td>0.7</td>
<td>22.8</td>
<td>25.9</td>
<td>2.9</td>
<td>45.7</td>
<td>0.007</td>
</tr>
<tr>
<td>Milk butter fat content</td>
<td>Interventions</td>
<td>0.3</td>
<td>-63.2</td>
<td>-60.6</td>
<td>1.8</td>
<td>0.3</td>
<td>0.425</td>
</tr>
<tr>
<td>Milk protein content</td>
<td>Interventions, grazing system</td>
<td>0.1</td>
<td>-95.8</td>
<td>-92.6</td>
<td>-0.4</td>
<td>0.1</td>
<td>0.912</td>
</tr>
<tr>
<td>Feed efficiency</td>
<td>Intervention, grazing system</td>
<td>0.5</td>
<td>-78.1</td>
<td>-74.3</td>
<td>1.2</td>
<td>0.1</td>
<td>0.102</td>
</tr>
</tbody>
</table>
The optimal models derived for estimating the dependent variables were:

- **Milk yield** = $25.97 - 0.63R - 1.77\text{Int} + 0.69\text{FS} - 2.95\text{GS}
- **Dry matter feed intake** = $24.50 - 0.69R - 1.28\text{Int} - 0.55\text{FS} - 2.40\text{GS}
- **Milk butterfat** = $3.45 + 0.08R + 0.03\text{Int} - 0.06\text{FS} - 0.09\text{GS}
- **Milk protein content** = $2.68 - 0.002R + 0.01\text{Int} + 0.02\text{FG} - 0.02\text{GS}
- **Feed efficiency** = $0.89 + 0.01R - 0.01\text{Int} + 0.11\text{FG} - 0.07\text{GS}

Where,

$$R = \text{Regions (North Rift, Central and Eastern)}$$
$$\text{Int} = \text{Interventions (FRASV=Feed rationing with advisory services and regular follow-ups, Maize train/baled silage, Service provider enterprises (SPEs) silage)}$$
$$\text{FS} = \text{Farm sizes (Large and Medium scale)}$$
$$\text{GS} = \text{Grazing systems (Zero grazing and Semi-zero grazing system).}$$

$$R^2 = \text{coefficient of determination, } AIC = \text{Akaike information criterion, } BIC = \text{Bayesian information criteria, } C(p) = \text{Cp statistic metric, and } \text{SSE} = \text{residual sum of squares. (Metrics used for comparing regression models quality and selection, measuring the performance of regression model. The higher the } R^2 \text{the better the model, while the lower the AIC, BIC gives the optimal model).}$$

Discussion

This study gave an insight into the impact of fodder conservation and ration formulation interventions on daily dry matter feed intake, milk yield, milk butterfat, milk protein, and feed efficiency among dairy farms in Kenya. The genetic potential of a cow is achieved only when the diet fed meets the nutritional requirements commensurate with the genetic potential. Therefore, a well-formulated feed ration and quality conserved fodder is required for increased productivity (FAO, 2012; Garg et al., 2013). However, cows kept in most of the dairy farms in Kenya are rarely fed based on their nutritional requirement (Garg et al., 2013). This is confirmed by this study among the farms not using the interventions.

When all the animal factors (breed, stage of lactation, and body weight) were kept constant, dairy cows on rations from feed balancing with advisory services and regular follow-ups had better performance compared to the other interventions and their controls. The variations in milk yield within the interventions may be explained by variations in feed quality and quantity being used. The feed balancing with advisory services and regular follow-ups enabled dairy ration formulation by considering the animal’s nutrient requirements for production. An increase in metabolizable energy and crude protein intake leads to an increase in milk yield (Johnson et al., 2016). Significant high daily milk yield was observed among the farms practicing feed rationing with advisory services and regular visits. This demonstrated that the cows responded well to well-balanced rations. This is in line with findings by FAO, (2012) where a ration balancing was introduced. Research carried out by Kannan et al. (2011); Sherasia et al. (2016); Deen et al. (2019) showed a positive effect of balanced rations on daily milk yield. This shows that feed rationing with advisory services and regular visits can be an effective way to increase dairy performance among dairy farms in Kenya.

During the adoption of these interventions by most dairy farms, general advisory services and regular follow-ups were given to improve farm management. Examples of the advices were on forage production, conservation and storage, housing, re-grouping of cows based on their production potential, calf rearing, etc. (Ettema, 2015). These general improvements in management probably led to better animal health and welfare and thereby an increase in dairy performance (Moran, 2009). Therefore, in addition to a well-balanced feed rations, changes in farm management were likely contributors to the observed increase in dairy productivity among the farms practicing feed balancing with advisory services.

Farms, which were not using any of the interventions (control farms) had lower milk yield, which was attributed to the feeding rations that did not meet the production potential of the dairy cows. This was due to feeding of low-quality feed resources, predominantly Napier grass, natural pastures, and crop residues that are low in metabolizable energy and crude protein. Kashongwe et al. (2017) reported that Napier grass and other natural pastures are low in dry matter content (20-35%), crude protein (8-10%) and contain high crude fibre of over 37%, which makes them insufficient to support high milk production.

The low milk yield observed in smallholder SPEs farms was due to low quality and quantity of feeds. Most farms relied on Napier grass and little silage for their dairy cows. The cows were often fed concentrates, either dairy meal or other industrial by-products (maize germ, wheat bran, wheat pollard) most often in low amounts of less than 2 kg DM/day. Feeding in these farms was not adjusted based on the production potential of cows. Similar observations are reported by Richards et al. (2015, 2016). The low rates of
energy and protein supplied resulted to under-nutrition in the early part of the lactation cycle and affected milk production throughout the lactation, a similar observation was reported by Moghaddam (2016). Jansen et al. (2019) reported increases in daily milk production and better animal health, linking the change to the SPE services. Farms from Meru County in Eastern region, where SPEs made the most silage, reported daily milk increases from between 5.0-6.0 to between 8.0-9.5 litres per cow. This was lower than 13.8 litres per cow increase reported in this study in Eastern region. This was due to more improved and availability of conserved maize silage in the region.

Farms using maize train silage had better daily milk yield/cow compared to SPE silage farms. This can be attributed to the good quality of maize train silage in terms of metabolizable energy (11.9 MJ/kg DM), dry matter (>30%) and organic matter digestibility (56.4%) compared to SPE silage which had metabolizable energy of 9.2 MJ/kg DM, <30% dry matter content, and organic matter digestibility of 50.9%. Most of the SPE farmers in Central and Eastern regions lacked sufficient land for forage production, majority of who own between 0.5 to 5.0 acres out of which 80% is committed to food crop production (Kashangaki and Ericksen, 2018). This contributed to high milk yield in North Rift region under the interventions and low yield in Central and Eastern regions. Similar findings were reported by Kilelu et al. (2017, 2018) in a study done in Central, Eastern and Rift Valley regions of Kenya. Farms under maize train silage and those practicing feed rationing with advisory services in North Rift Kenya performed better due to the sustainable intensification of feeding systems with efficient use of fodder and concentrate feed, so that the proportion of the intake from feeds remained high, and the efficiency of use of concentrate (kg milk/kg concentrate) was also high compared to their controls which was attributed to feeding systems with low input grazing strategy adopted. Similar observations were reported by Llanos et al. (2018).

Medium/large-scale farms in Central and Eastern regions invested more in commercial concentrates to supplement their dairy cows with the required metabolizable energy and protein for milk production. This was possible due to close proximity of readily available market for milk as the urban centres are very near, hence need for high energy and protein feeds for their dairy cows. However, the quantity of concentrates used in smallholder farms using support from SPE silage was low (<2 kg/cow/day) which was not commensurate with amount of milk produced due to unavailability of quality feeds throughout the year. Similar observations were reported by Muia et al. (2011). Lukuyu et al. (2011) attributed low milk yield to poor nutrition and lack of supplementation with high proteins. The results from small-scale dairy farms using SPEs silage concurs with reports by Kilelu et al. (2017, 2018) who noted that farms using support from SPEs intervention performed better than the controls. However, comparing with farms using maize train silage in North Rift region, SPEs had low performances, which is attributed to in adequate and low-quality feed resources.

The low milk yield of 10.4 kg/cow/day observed in the farms without support from SPE intervention was comparable to the results by Muia et al. (2011) who reported milk production of 8.4 kg/cow/day in the Central regions while Mungube et al. (2014) reported milk yield of 6kg/cow/day in the semi-arid region of Eastern Kenya. This shows that dairy interventions had a significant improvement on dairy cow performance. Feeding higher amounts of concentrate in early-mid lactation stages is reported to increase milk yield by 20% (Purcell et al., 2016). This finding was observed in medium/large-scale farms using feed rationing with advisory services, where large amounts of concentrates was being used to supply enough nutrients for milk synthesis.

High daily feed intake was attributed to quality feed rations, made of quality maize silage and concentrates formulated with advisory services and regular follow-ups by the feed nutritionists from the Kenya market-led dairy program (KMDP), this concurs with reports by Ferguson, (2017) and Ayuna et al. (2018) who noted that dairy feed ration balanced with all nutrients particularly for protein and calcium is essential for both rumen digestion of feedstuffs and milk production. This also suggests that cows in control farms lacked a balanced supply of nutrients in the feeds and feed rations provided, which led to low dry matter feed intake as well as milk production. Explanations can be lack of nutritional knowledge, costs of diet ingredients or availability of feed resources. With the increase in human population, increasing acreage for forage production to meet nutritional requirements is not the solution (FAO, 2018). Sustainable production intensification is required to meet fodder productivity potential (Jayne et al., 2014). Therefore, high quality forage should be produced and conserved (Ettema, 2015; Lukuyu et al., 2011).

This study shows a significant effect of quality feed rations on milk yield as observed among farms using the feed balancing software. Maize train silage intervention farms had better feed intake compared to farms using silage from SPEs that was attributed to the quality of silage used based on the right stage of harvesting and proper ensiling process that increases organic matter digestibility, dry matter intake, and energy...
content. Lawrence, (2019) noted that highest dry
matter intake of conserved maize silage in dairy
ow occurs when maize is harvested at
physiological maturity stage with (32 to 40%
DM).
Low milk butterfat recorded in farms with feed
balancing software was attributed to the type of
rations used, which was high in concentrate to forage
ratio. Farms using SPEs silage intervention had high milk butter fat content
attributed to the high proportion of forages used
compared to concentrates. Roughages are
associated with higher acetate production, hence
higher milk butter fat content (Kashongwe et al.,
2014).

Conclusion
The study revealed that use of maize train/baled
silage and feed rationing with advisory services and
regular follow-ups are ideal and sustainable
interventions for increased milk yield in
medium/large-scale farms. Similarly, use of SPE
silage by smallholder farms in Central and
Eastern regions of Kenya increased milk production leading to increased farm incomes
and growth in sustainable and competitive
farming enterprises.

Acknowledgements
The authors wish to thank the 3R (Robust,
Reliable, and Resilient) - from 'Aid to Trade'
project, funded by the Embassy of the Kingdom
of Netherlands in Kenya for supporting this
research work. Much gratitude also goes to the
dairy farmers who participated in this project.

Conflicts of Interest
The authors declare no conflict of interest.

References
AOAC. 2012. Official Methods of
Analytical Chemists. Washington, DC, USA.
pp. 12-56.
Potential impact of strategies by dairy
entrepreneurs to tackle fodder shortages.
Research report 007, Wageningen
University and Research, Wageningen, The
2020.
Deen, A.U., Tyagi, N., Yadav, R.D., Kumar, S.,
balanced ration can improve the
productivity and economics of milk
production in dairy cattle: a comprehensive
51: 737-744.
https://doi.org/10.1007/s11250-018-1747-8
Ettema, F. 2015. SNV/KMDP Status Report
Medium-scale farmers and commercial
fodder producer's agenda (including PUM
FAO. 2012. Balanced feeding for improving
livestock productivity-Increase in milk
production and nutrient use efficiency and
decrease in methane emission. In: FAO
Animal Production and Health Paper. Rome,
Italy. pp. 31-42.
FAO. 2018. Livestock production systems
spotlight: Cattle and poultry sectors in
Kenya. pp. 46-49. Retrieved from
http://www.fao.org/ag/againfo/programme
s/en/ASL2050.html
Ferguson, J.D. 2017. Nutritional strategies to
improve nitrogen efficiency and milk protein
synthesis in dairy cow. Achieving
1, BurleighDodds Science Publishing.
https://doi.org/10.19103/AS.2016.0005.11
Garg, M.R., Sherasia, P.L., Bhandari, B.M.,
Phondba, B.T., Shelle, S.K. and Makkar,
H.P.S. 2013. Effects of feeding nutritionally
balanced rations on animal productivity,
feed conversion efficiency, feed nitrogen use
efficiency, rumen microbial protein supply,
parasitic load, immunity and enteric
methane emissions of milking animals
under field conditions. Animal Feed Sci.
https://doi.org/10.1016/j.anifeedsci.2012.11.005
Jaetzold, R., Schmidt, H., Hornetz, B. and
Shisanya, C. 2010. Farm management
handbook of Kenya. Vol. II. Natural
conditions and farm management
information. 2nd Edition, Part B. Central
Kenya-Southern Rift valley Province. pp. 18-
21.
Jansen, A., Kilelu, C., David, M. and van der Lee,
J. 2019. Youth-led providers enterprise
Kenya. SNV’s Kenya Market-led Dairy
Programme (KMDP), the 3R Kenya project,
Wageningen University and Research,
January 2020.
Jayne, T.S., Chamberlin, J. and Headey, D.D.
2014. Land pressures, the evolution of
farming systems, and development
strategies in Africa: A synthesis. Food
Policy. 48: 1–17.
https://doi.org/10.1016/j.foodpol.2014.05.014
Johnson, I.R., France, J. and Cullen, B.R. 2016. A
model of milk production in lactating
dairy cows in relation to energy and nitrogen
https://doi.org/10.3168/jds.2015-10068
Effect of ration balancing on milk
production, microbial protein synthesis and
methane emission in crossbred cows under
field conditions in Chittoor district of

