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5. Conclusions
Group delay and in-body to on-body path loss must be considered when 
developing a channel model for in-body to on-body implant communication. 
Based on a well-defined channel model, we may create an appropriate 
transceiver structure and optimize communication performance. Using a tiny 
dipole and loop antenna, we evaluated the propagation properties of  an 
implant channel operating in the 10-60 MHz HBC band. The simulations 
were carried out using an anatomical human body model and FDTD. For the 
10-60 MHz HBC band, it has been discovered that the path loss model 
expression has path loss exponents of  6.62 and 4.65 and shadowing standard 
deviations of  3.98 and 3.07, respectively when a small dipole and loop 
antennas were used for transmitting and receiving along the height direction 
of  the body. The group delays for a small dipole and loop antenna were 
found to be around 1 ns and less than 1 ns, respectively, which has less impact 
on data rates below 20 Mbps. Both antennas are good, but the loop antenna 
is more effective than the dipole antenna, according to the data rate.
 This study shows a robust channel model for future wireless medical 
devices which exploits the advantages of  HBC band. Its experimental 
verification is our future subject.
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Abstract
Distributed Hash Tables (DHTs) are integral components in peer-to-peer systems, providing 
storage and lookup services for key-value pairs. While they have proven highly successful in 
managing and locating replicas of  small files (typically under 1 MB), their efficiency in 
handling larger files diminishes. Factors like sluggish data senders and slow receivers further 
exacerbate the inefficiencies in peer-to-peer systems, causing delays in the file propagation 
process. To address these challenges, peer-to-peer systems require more efficient protocols 
and resources to expedite the handling of  relatively large data files. This study introduces a 
novel, efficient, and effective mechanism to propagate substantial files within DHTs while 
balancing load and minimizing system overhead. To assess the proposed protocol's 
effectiveness, we evaluated using the PeerSim simulator. We analyzed two crucial metrics 
linked to our proposed system: overhead and propagation time. The outcomes of  this research 
demonstrate a significant reduction in propagation time while system overhead remains 
minimal. Consequently, the proposed protocol can ensure seamless operation in real-world 
streaming applications.

Keywords DHTs, Overhead, Peer-to-peer systems, Propagation, Protocol, Replication

Paper type   Research paper

1. Introduction
The advent of  digital communication has witnessed significant growth in the 
development of  peer-to-peer systems. Many applications, including Skype, 
WhatsApp, Spotify, Facebook Messenger, and many others, have emerged as 
exemplars of  the capabilities of  peer-to-peer systems (Tran, Nguyen, & Ha, 
2016). These systems typically fall into two categories: 
unstructured and structured. Unstructured systems, while 
versatile, often compromise performance, as they do not 
employ pre-arranged peer organization for 
communication (Rodrigues & Druschel, 2010). 
Conversely, structured peer-to-peer systems utilize 
overlays to consolidate their peers, prioritizing 
performance enhancements. These purpose-built overlays 
expedite peer lookup and facilitate efficient data retrieval 
(Nasir, Muhammad, Bellavista, Lee, & Sajjad, 2020).

 Distributed Hash Tables (DHTs), serving a similar purpose as overlays, 
employ various topologies to organize their peers (Galuba & Girdzijauskas, 
2009). For example, Kademlia employs a binary tree structure, while Chord 
arranges peers in a ring formation. Generally, DHTs excel in storing and 
propagating relatively small datasets, typically under 1 MB, operating through 
interfaces such as put, get, and remove (Hassanzadeh-Nazarabadi, Kupcu, & 
Ozkasap, 2021). DHTs initiate their operations by dispatching requests (e.g., 
put(value)) into the DHT ring. These requests undergo hashing and are 
directed toward a designated peer, the coordinator, whose identifier closely 
matches or equals the hashed value. The coordinator replicates the value 
among the DHTs (Franchi & Poggi, 2019). In scenarios where the size and 
number of  replicas are substantial, and the peer bandwidth is limited or slow, 
the coordinator's workload becomes overwhelming, significantly impacting 
the overall system's performance. Consequently, DHTs are more suited for 
storing relatively small data files (Kaur, Gabrijelcic, & Klobucar, 2022).
 The central objective of  this thesis is to empower DHTs to efficiently 
store and utilize peer bandwidth for relatively large data files. While research 
has explored mutable DHTs and those with transactional consistency, more 
attention should be given to developing suitable protocols or solutions for 
propagating large data files within DHTs. The load-balancing capabilities of  
DHTs experience a sharp decline when handling a substantial increase in the 
size and number of  stored files. Similarly, file propagation within DHT 
becomes time-consuming under low-bandwidth connections with the 
coordinator (Nakayama & Asaka, 2017).
 This paper's motivation lies in designing a protocol that enables DHTs 
to swiftly store and propagate relatively large files while preserving load 
balancing and minimizing system overhead. Our proposed approach involves 
breaking large files into smaller pieces and facilitating collaborative exchange 
among interested peers. To evaluate the effectiveness of  our new 
propagation protocol, we have implemented a simulation, emulating 
real-world events using a partial dataset from Wikipedia. We focus on two 
critical metrics during the evaluation: overhead and propagation time.
 The remainder of  this article is structured as follows: Section 2 provides 
an in-depth examination of  peer-to-peer systems, Distributed Hash Tables 
(DHTs), and SpiderCast within the context of  background analysis. Section 
3 delineates the problems, emphasizing the formidable challenge of  
efficiently propagating large files within DHTs. Section 4 offers a distinctive 
resolution by introducing an innovative propagation protocol. Section 5 
elucidates the experimental methodology, detailing the utilization of  the 
PeerSim simulator alongside a Wikipedia dataset. Section 6 unveils the 

outcomes of  our experiments, incorporating lucid figures and 
comprehensive analyses. Finally, in Section 7, we conclude our study, 
summarizing its primary findings, addressing the challenges and potential 
remedies for propagation time and overhead management, and outlining 
future research directions and the broader implications of  the proposed 
protocol.

2. Background
2.1 Peer-to-peer (P2P) systems
Peer-to-peer (P2P) systems have emerged as significant contributors to 
digital communication. These systems exhibit uniform functionality across 
all participating peers, encompassing routing, storage, processing, and more 
(Lamport, 2019). However, the relative architectural simplicity of  P2P 
systems can pose a challenge for application developers seeking to construct 
complex applications, such as online video games, multimedia streaming 
services, and robust storage solutions (Stoica, Morris, Liben-Nowell, Karger, 
& Balakrishnan, 2003).
P2P systems offer several advantages, as outlined below (Hentschel, 
Hassanzadeh-Nazarabadi, Seraj, Shirley, & Lafrance, 2020): 

• Minimal infrastructure requirements for operation.
• Independence from central servers, ensuring robustness.
• High scalability due to an equitable distribution of  workloads among  
       peers.
• Exceptional robustness, capable of  handling churn and failures 
       effectively.
• Accurate load balancing across all peers.
• Efficient mechanisms for handling failures, preventing disruptions 
       in the event of  Byzantine or computer crashes.

2.1.1 Types of  P2P systems
P2P mechanisms encompass two primary variants: structured and 
unstructured peer-to-peer systems.
Structured P2P Systems: Within structured P2P systems, peers are organized 
systematically, avoiding the random allocation of  values to peers. Such 
structured systems effectively utilize peer bandwidth, expedite data retrieval 
from peers, and eliminate unnecessary broadcast requests. Prominent 
overlays, such as Chord, Pastry, and Kademlia, arrange peers in structured 
P2P systems (Kwon & Ryu, 2004).
Unstructured P2P Systems: Conversely, unstructured P2P systems involve 
peers needing knowledge of  overlays before or during network entry. This 

paper does not delve into unstructured P2P systems (Kwon & Ryu, 2004).

2.1.2 DHTs
Distributed Hash Tables (DHTs) offer storage and lookup services for values 
and their associated keys. DHTs are widely adopted in distributed systems 
due to their demonstrated efficiency in load balancing, availability, low 
overhead, scalability, and user-friendly interfaces (Hassanzadeh-Nazarabadi, 
Kupcu, & Ozkasap, 2021). The proposed protocol for data propagation can 
be applied to both mutable and immutable DHTs, enabling the propagation 
of  large data files while reducing latency and maintaining load balancing 
within the DHT.

2.2 SpiderCast
SpiderCast is a decentralized overlay that operates without reliance on a 
central server. This characteristic equips it with a robust failure-handling 
mechanism during distributed processing (Zhao, Huang, Stribling, Rhea, 
Joseph, & Kubiatowicz, 2004). This section provides insight into how 
SpiderCast maintains connected replicas of  the same file within the network.

2.2.1 Modification of  SpiderCast
Our technique for defining coverage differs from SpiderCast. In SpiderCast, 
the highest number of  peers was k*h, where k was the required coverage, and 
h was the total quantity of  entries (Raj & Rajesh, 2016). This method is 
impractical for DHTs with several values. Our method programs the maximum 
number of  peers based on simulator characteristics. SpiderCast’s availability is 
peers hosting an identical file 100% or partially. Another difference is when the 
overlay stops adding links. After covering K subjects, SpiderCast disconnects 
superfluous links. More neighbors than authorized start the disconnection 
process (Zahid, Abid, Shah, Naqvi, & Mehmood, 2018). 

2.3 Replication
Peer-to-peer systems replicate files across several peers. This technique 
improves performance and availability, especially in dynamic contexts with 
rapid peer additions and removals. Replication improves system performance 
by reducing response times, improving load balancing, and scaling 
(Maymounkov & Mazières, 2002). However, communicating with replicas 
hosting the object takes much work. Replication approaches dominate this 
article. Web servers can route traffic to other copies to assist load balancing 
and system scaling as additional users join. However, fixing file copy 
maintenance is necessary for data replication (Tahir, Abid, & Shah, 2017). 

IIUC Studies
Vol.-20, Issue-1, June 2023

pp. 141-166
 © IIUC

ISSN 2408-8544



142 IIUC Studies, Vol.-20, Issue-1, June 2023
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Group delay and in-body to on-body path loss must be considered when 
developing a channel model for in-body to on-body implant communication. 
Based on a well-defined channel model, we may create an appropriate 
transceiver structure and optimize communication performance. Using a tiny 
dipole and loop antenna, we evaluated the propagation properties of  an 
implant channel operating in the 10-60 MHz HBC band. The simulations 
were carried out using an anatomical human body model and FDTD. For the 
10-60 MHz HBC band, it has been discovered that the path loss model 
expression has path loss exponents of  6.62 and 4.65 and shadowing standard 
deviations of  3.98 and 3.07, respectively when a small dipole and loop 
antennas were used for transmitting and receiving along the height direction 
of  the body. The group delays for a small dipole and loop antenna were 
found to be around 1 ns and less than 1 ns, respectively, which has less impact 
on data rates below 20 Mbps. Both antennas are good, but the loop antenna 
is more effective than the dipole antenna, according to the data rate.
 This study shows a robust channel model for future wireless medical 
devices which exploits the advantages of  HBC band. Its experimental 
verification is our future subject.
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1. Introduction
The advent of  digital communication has witnessed significant growth in the 
development of  peer-to-peer systems. Many applications, including Skype, 
WhatsApp, Spotify, Facebook Messenger, and many others, have emerged as 
exemplars of  the capabilities of  peer-to-peer systems (Tran, Nguyen, & Ha, 
2016). These systems typically fall into two categories: 
unstructured and structured. Unstructured systems, while 
versatile, often compromise performance, as they do not 
employ pre-arranged peer organization for 
communication (Rodrigues & Druschel, 2010). 
Conversely, structured peer-to-peer systems utilize 
overlays to consolidate their peers, prioritizing 
performance enhancements. These purpose-built overlays 
expedite peer lookup and facilitate efficient data retrieval 
(Nasir, Muhammad, Bellavista, Lee, & Sajjad, 2020).

 Distributed Hash Tables (DHTs), serving a similar purpose as overlays, 
employ various topologies to organize their peers (Galuba & Girdzijauskas, 
2009). For example, Kademlia employs a binary tree structure, while Chord 
arranges peers in a ring formation. Generally, DHTs excel in storing and 
propagating relatively small datasets, typically under 1 MB, operating through 
interfaces such as put, get, and remove (Hassanzadeh-Nazarabadi, Kupcu, & 
Ozkasap, 2021). DHTs initiate their operations by dispatching requests (e.g., 
put(value)) into the DHT ring. These requests undergo hashing and are 
directed toward a designated peer, the coordinator, whose identifier closely 
matches or equals the hashed value. The coordinator replicates the value 
among the DHTs (Franchi & Poggi, 2019). In scenarios where the size and 
number of  replicas are substantial, and the peer bandwidth is limited or slow, 
the coordinator's workload becomes overwhelming, significantly impacting 
the overall system's performance. Consequently, DHTs are more suited for 
storing relatively small data files (Kaur, Gabrijelcic, & Klobucar, 2022).
 The central objective of  this thesis is to empower DHTs to efficiently 
store and utilize peer bandwidth for relatively large data files. While research 
has explored mutable DHTs and those with transactional consistency, more 
attention should be given to developing suitable protocols or solutions for 
propagating large data files within DHTs. The load-balancing capabilities of  
DHTs experience a sharp decline when handling a substantial increase in the 
size and number of  stored files. Similarly, file propagation within DHT 
becomes time-consuming under low-bandwidth connections with the 
coordinator (Nakayama & Asaka, 2017).
 This paper's motivation lies in designing a protocol that enables DHTs 
to swiftly store and propagate relatively large files while preserving load 
balancing and minimizing system overhead. Our proposed approach involves 
breaking large files into smaller pieces and facilitating collaborative exchange 
among interested peers. To evaluate the effectiveness of  our new 
propagation protocol, we have implemented a simulation, emulating 
real-world events using a partial dataset from Wikipedia. We focus on two 
critical metrics during the evaluation: overhead and propagation time.
 The remainder of  this article is structured as follows: Section 2 provides 
an in-depth examination of  peer-to-peer systems, Distributed Hash Tables 
(DHTs), and SpiderCast within the context of  background analysis. Section 
3 delineates the problems, emphasizing the formidable challenge of  
efficiently propagating large files within DHTs. Section 4 offers a distinctive 
resolution by introducing an innovative propagation protocol. Section 5 
elucidates the experimental methodology, detailing the utilization of  the 
PeerSim simulator alongside a Wikipedia dataset. Section 6 unveils the 

outcomes of  our experiments, incorporating lucid figures and 
comprehensive analyses. Finally, in Section 7, we conclude our study, 
summarizing its primary findings, addressing the challenges and potential 
remedies for propagation time and overhead management, and outlining 
future research directions and the broader implications of  the proposed 
protocol.

2. Background
2.1 Peer-to-peer (P2P) systems
Peer-to-peer (P2P) systems have emerged as significant contributors to 
digital communication. These systems exhibit uniform functionality across 
all participating peers, encompassing routing, storage, processing, and more 
(Lamport, 2019). However, the relative architectural simplicity of  P2P 
systems can pose a challenge for application developers seeking to construct 
complex applications, such as online video games, multimedia streaming 
services, and robust storage solutions (Stoica, Morris, Liben-Nowell, Karger, 
& Balakrishnan, 2003).
P2P systems offer several advantages, as outlined below (Hentschel, 
Hassanzadeh-Nazarabadi, Seraj, Shirley, & Lafrance, 2020): 

• Minimal infrastructure requirements for operation.
• Independence from central servers, ensuring robustness.
• High scalability due to an equitable distribution of  workloads among  
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• Exceptional robustness, capable of  handling churn and failures 
       effectively.
• Accurate load balancing across all peers.
• Efficient mechanisms for handling failures, preventing disruptions 
       in the event of  Byzantine or computer crashes.

2.1.1 Types of  P2P systems
P2P mechanisms encompass two primary variants: structured and 
unstructured peer-to-peer systems.
Structured P2P Systems: Within structured P2P systems, peers are organized 
systematically, avoiding the random allocation of  values to peers. Such 
structured systems effectively utilize peer bandwidth, expedite data retrieval 
from peers, and eliminate unnecessary broadcast requests. Prominent 
overlays, such as Chord, Pastry, and Kademlia, arrange peers in structured 
P2P systems (Kwon & Ryu, 2004).
Unstructured P2P Systems: Conversely, unstructured P2P systems involve 
peers needing knowledge of  overlays before or during network entry. This 

paper does not delve into unstructured P2P systems (Kwon & Ryu, 2004).

2.1.2 DHTs
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due to their demonstrated efficiency in load balancing, availability, low 
overhead, scalability, and user-friendly interfaces (Hassanzadeh-Nazarabadi, 
Kupcu, & Ozkasap, 2021). The proposed protocol for data propagation can 
be applied to both mutable and immutable DHTs, enabling the propagation 
of  large data files while reducing latency and maintaining load balancing 
within the DHT.
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SpiderCast is a decentralized overlay that operates without reliance on a 
central server. This characteristic equips it with a robust failure-handling 
mechanism during distributed processing (Zhao, Huang, Stribling, Rhea, 
Joseph, & Kubiatowicz, 2004). This section provides insight into how 
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Our technique for defining coverage differs from SpiderCast. In SpiderCast, 
the highest number of  peers was k*h, where k was the required coverage, and 
h was the total quantity of  entries (Raj & Rajesh, 2016). This method is 
impractical for DHTs with several values. Our method programs the maximum 
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improves performance and availability, especially in dynamic contexts with 
rapid peer additions and removals. Replication improves system performance 
by reducing response times, improving load balancing, and scaling 
(Maymounkov & Mazières, 2002). However, communicating with replicas 
hosting the object takes much work. Replication approaches dominate this 
article. Web servers can route traffic to other copies to assist load balancing 
and system scaling as additional users join. However, fixing file copy 
maintenance is necessary for data replication (Tahir, Abid, & Shah, 2017). 
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5. Conclusions
Group delay and in-body to on-body path loss must be considered when 
developing a channel model for in-body to on-body implant communication. 
Based on a well-defined channel model, we may create an appropriate 
transceiver structure and optimize communication performance. Using a tiny 
dipole and loop antenna, we evaluated the propagation properties of  an 
implant channel operating in the 10-60 MHz HBC band. The simulations 
were carried out using an anatomical human body model and FDTD. For the 
10-60 MHz HBC band, it has been discovered that the path loss model 
expression has path loss exponents of  6.62 and 4.65 and shadowing standard 
deviations of  3.98 and 3.07, respectively when a small dipole and loop 
antennas were used for transmitting and receiving along the height direction 
of  the body. The group delays for a small dipole and loop antenna were 
found to be around 1 ns and less than 1 ns, respectively, which has less impact 
on data rates below 20 Mbps. Both antennas are good, but the loop antenna 
is more effective than the dipole antenna, according to the data rate.
 This study shows a robust channel model for future wireless medical 
devices which exploits the advantages of  HBC band. Its experimental 
verification is our future subject.
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Distributed Hash Tables (DHTs) are integral components in peer-to-peer systems, providing 
storage and lookup services for key-value pairs. While they have proven highly successful in 
managing and locating replicas of  small files (typically under 1 MB), their efficiency in 
handling larger files diminishes. Factors like sluggish data senders and slow receivers further 
exacerbate the inefficiencies in peer-to-peer systems, causing delays in the file propagation 
process. To address these challenges, peer-to-peer systems require more efficient protocols 
and resources to expedite the handling of  relatively large data files. This study introduces a 
novel, efficient, and effective mechanism to propagate substantial files within DHTs while 
balancing load and minimizing system overhead. To assess the proposed protocol's 
effectiveness, we evaluated using the PeerSim simulator. We analyzed two crucial metrics 
linked to our proposed system: overhead and propagation time. The outcomes of  this research 
demonstrate a significant reduction in propagation time while system overhead remains 
minimal. Consequently, the proposed protocol can ensure seamless operation in real-world 
streaming applications.
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1. Introduction
The advent of  digital communication has witnessed significant growth in the 
development of  peer-to-peer systems. Many applications, including Skype, 
WhatsApp, Spotify, Facebook Messenger, and many others, have emerged as 
exemplars of  the capabilities of  peer-to-peer systems (Tran, Nguyen, & Ha, 
2016). These systems typically fall into two categories: 
unstructured and structured. Unstructured systems, while 
versatile, often compromise performance, as they do not 
employ pre-arranged peer organization for 
communication (Rodrigues & Druschel, 2010). 
Conversely, structured peer-to-peer systems utilize 
overlays to consolidate their peers, prioritizing 
performance enhancements. These purpose-built overlays 
expedite peer lookup and facilitate efficient data retrieval 
(Nasir, Muhammad, Bellavista, Lee, & Sajjad, 2020).

 Distributed Hash Tables (DHTs), serving a similar purpose as overlays, 
employ various topologies to organize their peers (Galuba & Girdzijauskas, 
2009). For example, Kademlia employs a binary tree structure, while Chord 
arranges peers in a ring formation. Generally, DHTs excel in storing and 
propagating relatively small datasets, typically under 1 MB, operating through 
interfaces such as put, get, and remove (Hassanzadeh-Nazarabadi, Kupcu, & 
Ozkasap, 2021). DHTs initiate their operations by dispatching requests (e.g., 
put(value)) into the DHT ring. These requests undergo hashing and are 
directed toward a designated peer, the coordinator, whose identifier closely 
matches or equals the hashed value. The coordinator replicates the value 
among the DHTs (Franchi & Poggi, 2019). In scenarios where the size and 
number of  replicas are substantial, and the peer bandwidth is limited or slow, 
the coordinator's workload becomes overwhelming, significantly impacting 
the overall system's performance. Consequently, DHTs are more suited for 
storing relatively small data files (Kaur, Gabrijelcic, & Klobucar, 2022).
 The central objective of  this thesis is to empower DHTs to efficiently 
store and utilize peer bandwidth for relatively large data files. While research 
has explored mutable DHTs and those with transactional consistency, more 
attention should be given to developing suitable protocols or solutions for 
propagating large data files within DHTs. The load-balancing capabilities of  
DHTs experience a sharp decline when handling a substantial increase in the 
size and number of  stored files. Similarly, file propagation within DHT 
becomes time-consuming under low-bandwidth connections with the 
coordinator (Nakayama & Asaka, 2017).
 This paper's motivation lies in designing a protocol that enables DHTs 
to swiftly store and propagate relatively large files while preserving load 
balancing and minimizing system overhead. Our proposed approach involves 
breaking large files into smaller pieces and facilitating collaborative exchange 
among interested peers. To evaluate the effectiveness of  our new 
propagation protocol, we have implemented a simulation, emulating 
real-world events using a partial dataset from Wikipedia. We focus on two 
critical metrics during the evaluation: overhead and propagation time.
 The remainder of  this article is structured as follows: Section 2 provides 
an in-depth examination of  peer-to-peer systems, Distributed Hash Tables 
(DHTs), and SpiderCast within the context of  background analysis. Section 
3 delineates the problems, emphasizing the formidable challenge of  
efficiently propagating large files within DHTs. Section 4 offers a distinctive 
resolution by introducing an innovative propagation protocol. Section 5 
elucidates the experimental methodology, detailing the utilization of  the 
PeerSim simulator alongside a Wikipedia dataset. Section 6 unveils the 

outcomes of  our experiments, incorporating lucid figures and 
comprehensive analyses. Finally, in Section 7, we conclude our study, 
summarizing its primary findings, addressing the challenges and potential 
remedies for propagation time and overhead management, and outlining 
future research directions and the broader implications of  the proposed 
protocol.

2. Background
2.1 Peer-to-peer (P2P) systems
Peer-to-peer (P2P) systems have emerged as significant contributors to 
digital communication. These systems exhibit uniform functionality across 
all participating peers, encompassing routing, storage, processing, and more 
(Lamport, 2019). However, the relative architectural simplicity of  P2P 
systems can pose a challenge for application developers seeking to construct 
complex applications, such as online video games, multimedia streaming 
services, and robust storage solutions (Stoica, Morris, Liben-Nowell, Karger, 
& Balakrishnan, 2003).
P2P systems offer several advantages, as outlined below (Hentschel, 
Hassanzadeh-Nazarabadi, Seraj, Shirley, & Lafrance, 2020): 

• Minimal infrastructure requirements for operation.
• Independence from central servers, ensuring robustness.
• High scalability due to an equitable distribution of  workloads among  
       peers.
• Exceptional robustness, capable of  handling churn and failures 
       effectively.
• Accurate load balancing across all peers.
• Efficient mechanisms for handling failures, preventing disruptions 
       in the event of  Byzantine or computer crashes.

2.1.1 Types of  P2P systems
P2P mechanisms encompass two primary variants: structured and 
unstructured peer-to-peer systems.
Structured P2P Systems: Within structured P2P systems, peers are organized 
systematically, avoiding the random allocation of  values to peers. Such 
structured systems effectively utilize peer bandwidth, expedite data retrieval 
from peers, and eliminate unnecessary broadcast requests. Prominent 
overlays, such as Chord, Pastry, and Kademlia, arrange peers in structured 
P2P systems (Kwon & Ryu, 2004).
Unstructured P2P Systems: Conversely, unstructured P2P systems involve 
peers needing knowledge of  overlays before or during network entry. This 

paper does not delve into unstructured P2P systems (Kwon & Ryu, 2004).

2.1.2 DHTs
Distributed Hash Tables (DHTs) offer storage and lookup services for values 
and their associated keys. DHTs are widely adopted in distributed systems 
due to their demonstrated efficiency in load balancing, availability, low 
overhead, scalability, and user-friendly interfaces (Hassanzadeh-Nazarabadi, 
Kupcu, & Ozkasap, 2021). The proposed protocol for data propagation can 
be applied to both mutable and immutable DHTs, enabling the propagation 
of  large data files while reducing latency and maintaining load balancing 
within the DHT.

2.2 SpiderCast
SpiderCast is a decentralized overlay that operates without reliance on a 
central server. This characteristic equips it with a robust failure-handling 
mechanism during distributed processing (Zhao, Huang, Stribling, Rhea, 
Joseph, & Kubiatowicz, 2004). This section provides insight into how 
SpiderCast maintains connected replicas of  the same file within the network.

2.2.1 Modification of  SpiderCast
Our technique for defining coverage differs from SpiderCast. In SpiderCast, 
the highest number of  peers was k*h, where k was the required coverage, and 
h was the total quantity of  entries (Raj & Rajesh, 2016). This method is 
impractical for DHTs with several values. Our method programs the maximum 
number of  peers based on simulator characteristics. SpiderCast’s availability is 
peers hosting an identical file 100% or partially. Another difference is when the 
overlay stops adding links. After covering K subjects, SpiderCast disconnects 
superfluous links. More neighbors than authorized start the disconnection 
process (Zahid, Abid, Shah, Naqvi, & Mehmood, 2018). 

2.3 Replication
Peer-to-peer systems replicate files across several peers. This technique 
improves performance and availability, especially in dynamic contexts with 
rapid peer additions and removals. Replication improves system performance 
by reducing response times, improving load balancing, and scaling 
(Maymounkov & Mazières, 2002). However, communicating with replicas 
hosting the object takes much work. Replication approaches dominate this 
article. Web servers can route traffic to other copies to assist load balancing 
and system scaling as additional users join. However, fixing file copy 
maintenance is necessary for data replication (Tahir, Abid, & Shah, 2017). 
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5. Conclusions
Group delay and in-body to on-body path loss must be considered when 
developing a channel model for in-body to on-body implant communication. 
Based on a well-defined channel model, we may create an appropriate 
transceiver structure and optimize communication performance. Using a tiny 
dipole and loop antenna, we evaluated the propagation properties of  an 
implant channel operating in the 10-60 MHz HBC band. The simulations 
were carried out using an anatomical human body model and FDTD. For the 
10-60 MHz HBC band, it has been discovered that the path loss model 
expression has path loss exponents of  6.62 and 4.65 and shadowing standard 
deviations of  3.98 and 3.07, respectively when a small dipole and loop 
antennas were used for transmitting and receiving along the height direction 
of  the body. The group delays for a small dipole and loop antenna were 
found to be around 1 ns and less than 1 ns, respectively, which has less impact 
on data rates below 20 Mbps. Both antennas are good, but the loop antenna 
is more effective than the dipole antenna, according to the data rate.
 This study shows a robust channel model for future wireless medical 
devices which exploits the advantages of  HBC band. Its experimental 
verification is our future subject.
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Distributed Hash Tables (DHTs) are integral components in peer-to-peer systems, providing 
storage and lookup services for key-value pairs. While they have proven highly successful in 
managing and locating replicas of  small files (typically under 1 MB), their efficiency in 
handling larger files diminishes. Factors like sluggish data senders and slow receivers further 
exacerbate the inefficiencies in peer-to-peer systems, causing delays in the file propagation 
process. To address these challenges, peer-to-peer systems require more efficient protocols 
and resources to expedite the handling of  relatively large data files. This study introduces a 
novel, efficient, and effective mechanism to propagate substantial files within DHTs while 
balancing load and minimizing system overhead. To assess the proposed protocol's 
effectiveness, we evaluated using the PeerSim simulator. We analyzed two crucial metrics 
linked to our proposed system: overhead and propagation time. The outcomes of  this research 
demonstrate a significant reduction in propagation time while system overhead remains 
minimal. Consequently, the proposed protocol can ensure seamless operation in real-world 
streaming applications.
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1. Introduction
The advent of  digital communication has witnessed significant growth in the 
development of  peer-to-peer systems. Many applications, including Skype, 
WhatsApp, Spotify, Facebook Messenger, and many others, have emerged as 
exemplars of  the capabilities of  peer-to-peer systems (Tran, Nguyen, & Ha, 
2016). These systems typically fall into two categories: 
unstructured and structured. Unstructured systems, while 
versatile, often compromise performance, as they do not 
employ pre-arranged peer organization for 
communication (Rodrigues & Druschel, 2010). 
Conversely, structured peer-to-peer systems utilize 
overlays to consolidate their peers, prioritizing 
performance enhancements. These purpose-built overlays 
expedite peer lookup and facilitate efficient data retrieval 
(Nasir, Muhammad, Bellavista, Lee, & Sajjad, 2020).

 Distributed Hash Tables (DHTs), serving a similar purpose as overlays, 
employ various topologies to organize their peers (Galuba & Girdzijauskas, 
2009). For example, Kademlia employs a binary tree structure, while Chord 
arranges peers in a ring formation. Generally, DHTs excel in storing and 
propagating relatively small datasets, typically under 1 MB, operating through 
interfaces such as put, get, and remove (Hassanzadeh-Nazarabadi, Kupcu, & 
Ozkasap, 2021). DHTs initiate their operations by dispatching requests (e.g., 
put(value)) into the DHT ring. These requests undergo hashing and are 
directed toward a designated peer, the coordinator, whose identifier closely 
matches or equals the hashed value. The coordinator replicates the value 
among the DHTs (Franchi & Poggi, 2019). In scenarios where the size and 
number of  replicas are substantial, and the peer bandwidth is limited or slow, 
the coordinator's workload becomes overwhelming, significantly impacting 
the overall system's performance. Consequently, DHTs are more suited for 
storing relatively small data files (Kaur, Gabrijelcic, & Klobucar, 2022).
 The central objective of  this thesis is to empower DHTs to efficiently 
store and utilize peer bandwidth for relatively large data files. While research 
has explored mutable DHTs and those with transactional consistency, more 
attention should be given to developing suitable protocols or solutions for 
propagating large data files within DHTs. The load-balancing capabilities of  
DHTs experience a sharp decline when handling a substantial increase in the 
size and number of  stored files. Similarly, file propagation within DHT 
becomes time-consuming under low-bandwidth connections with the 
coordinator (Nakayama & Asaka, 2017).
 This paper's motivation lies in designing a protocol that enables DHTs 
to swiftly store and propagate relatively large files while preserving load 
balancing and minimizing system overhead. Our proposed approach involves 
breaking large files into smaller pieces and facilitating collaborative exchange 
among interested peers. To evaluate the effectiveness of  our new 
propagation protocol, we have implemented a simulation, emulating 
real-world events using a partial dataset from Wikipedia. We focus on two 
critical metrics during the evaluation: overhead and propagation time.
 The remainder of  this article is structured as follows: Section 2 provides 
an in-depth examination of  peer-to-peer systems, Distributed Hash Tables 
(DHTs), and SpiderCast within the context of  background analysis. Section 
3 delineates the problems, emphasizing the formidable challenge of  
efficiently propagating large files within DHTs. Section 4 offers a distinctive 
resolution by introducing an innovative propagation protocol. Section 5 
elucidates the experimental methodology, detailing the utilization of  the 
PeerSim simulator alongside a Wikipedia dataset. Section 6 unveils the 

outcomes of  our experiments, incorporating lucid figures and 
comprehensive analyses. Finally, in Section 7, we conclude our study, 
summarizing its primary findings, addressing the challenges and potential 
remedies for propagation time and overhead management, and outlining 
future research directions and the broader implications of  the proposed 
protocol.

2. Background
2.1 Peer-to-peer (P2P) systems
Peer-to-peer (P2P) systems have emerged as significant contributors to 
digital communication. These systems exhibit uniform functionality across 
all participating peers, encompassing routing, storage, processing, and more 
(Lamport, 2019). However, the relative architectural simplicity of  P2P 
systems can pose a challenge for application developers seeking to construct 
complex applications, such as online video games, multimedia streaming 
services, and robust storage solutions (Stoica, Morris, Liben-Nowell, Karger, 
& Balakrishnan, 2003).
P2P systems offer several advantages, as outlined below (Hentschel, 
Hassanzadeh-Nazarabadi, Seraj, Shirley, & Lafrance, 2020): 

• Minimal infrastructure requirements for operation.
• Independence from central servers, ensuring robustness.
• High scalability due to an equitable distribution of  workloads among  
       peers.
• Exceptional robustness, capable of  handling churn and failures 
       effectively.
• Accurate load balancing across all peers.
• Efficient mechanisms for handling failures, preventing disruptions 
       in the event of  Byzantine or computer crashes.

2.1.1 Types of  P2P systems
P2P mechanisms encompass two primary variants: structured and 
unstructured peer-to-peer systems.
Structured P2P Systems: Within structured P2P systems, peers are organized 
systematically, avoiding the random allocation of  values to peers. Such 
structured systems effectively utilize peer bandwidth, expedite data retrieval 
from peers, and eliminate unnecessary broadcast requests. Prominent 
overlays, such as Chord, Pastry, and Kademlia, arrange peers in structured 
P2P systems (Kwon & Ryu, 2004).
Unstructured P2P Systems: Conversely, unstructured P2P systems involve 
peers needing knowledge of  overlays before or during network entry. This 

paper does not delve into unstructured P2P systems (Kwon & Ryu, 2004).

2.1.2 DHTs
Distributed Hash Tables (DHTs) offer storage and lookup services for values 
and their associated keys. DHTs are widely adopted in distributed systems 
due to their demonstrated efficiency in load balancing, availability, low 
overhead, scalability, and user-friendly interfaces (Hassanzadeh-Nazarabadi, 
Kupcu, & Ozkasap, 2021). The proposed protocol for data propagation can 
be applied to both mutable and immutable DHTs, enabling the propagation 
of  large data files while reducing latency and maintaining load balancing 
within the DHT.

2.2 SpiderCast
SpiderCast is a decentralized overlay that operates without reliance on a 
central server. This characteristic equips it with a robust failure-handling 
mechanism during distributed processing (Zhao, Huang, Stribling, Rhea, 
Joseph, & Kubiatowicz, 2004). This section provides insight into how 
SpiderCast maintains connected replicas of  the same file within the network.

2.2.1 Modification of  SpiderCast
Our technique for defining coverage differs from SpiderCast. In SpiderCast, 
the highest number of  peers was k*h, where k was the required coverage, and 
h was the total quantity of  entries (Raj & Rajesh, 2016). This method is 
impractical for DHTs with several values. Our method programs the maximum 
number of  peers based on simulator characteristics. SpiderCast’s availability is 
peers hosting an identical file 100% or partially. Another difference is when the 
overlay stops adding links. After covering K subjects, SpiderCast disconnects 
superfluous links. More neighbors than authorized start the disconnection 
process (Zahid, Abid, Shah, Naqvi, & Mehmood, 2018). 

2.3 Replication
Peer-to-peer systems replicate files across several peers. This technique 
improves performance and availability, especially in dynamic contexts with 
rapid peer additions and removals. Replication improves system performance 
by reducing response times, improving load balancing, and scaling 
(Maymounkov & Mazières, 2002). However, communicating with replicas 
hosting the object takes much work. Replication approaches dominate this 
article. Web servers can route traffic to other copies to assist load balancing 
and system scaling as additional users join. However, fixing file copy 
maintenance is necessary for data replication (Tahir, Abid, & Shah, 2017). 
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2.3.1 Coordinators
Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial 
role in generating new replicas by distributing documents among peers, 
aligning with the system's replication policy. This replication is necessary to 
address churn and preserve data availability, preventing data loss (Stein, 
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing 
propagation load and latency.

 
Figure 1
Coordinators are propagating files to peers in DHTs

2.3.2 Consistency 
In the pursuit of  achieving consistency, various information propagation 
strategies have been proposed and evolved. This section provides a concise 
overview of  different concepts related to information propagation to 
replicas. It is important to note that the choice of  strategy can vary 
depending on the specific system being employed, and these strategies can be 
adapted to ensure the desired level of  consistency (Nguyen, Hoang, Hluchy, 
Vu, & Le, 2017). 
Push Consistency
Push-based consistency techniques are server-based protocols. These 
protocols allow servers to update replicas. This method carefully orders 
updates received from a server, and pushes them to replicas. Push-based 
protocols ensure timely and consistent update distribution in situations that 
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020). 
Pull Consistency
Client-based protocols, or pull-based procedures, entail replicas frequently 

obtaining updates from a server to check changes. Unlike push-based 
protocols, replicas may easily retrieve updates, which might add overhead. As 
shown in Figure 2, replicas frequently seek data from primary replicas to 
obtain updates when most appropriate for their operating environment, even 
if  it requires additional resource use (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 
2020).
One notable drawback of  these techniques is that they exhibit less uniformity 
than pushing mechanisms. This inherent characteristic implies a substantial 
delay between the initiation of  an update and the moment when the updated 
material becomes accessible on replicas (Xie, Wang, & Wang, 2017). 
 

 
Figure 2
Updating process through pulling

3. Problem definition
In this section, we clearly define the problem at hand and outline the 
requirements that must be met to address this problem effectively.

3.1 Problem
 Replication plays a vital role in enhancing data availability within 
peer-to-peer systems. However, replicating files becomes challenging when 
peers leave the system, potentially eliminating file replicas. Distributed Hash 
Tables (DHTs) offer mechanisms to create and distribute new replicas of  
relatively small files. However, there is a critical gap in propagating replicas of  
larger files (exceeding 1MB in size). Coordinators disseminating these more 
giant file replicas to interested peers encounter significant bandwidth 
constraints, resulting in slowed propagation of  large files. Moreover, peers 
with low-bandwidth connections can further impede the coordinator, leading 

to potential performance degradation across the entire DHT system (Gupta, 
Hada, & Sudhir, 2017).
 The primary objective of  this thesis is to develop a propagation scheme 
capable of  accelerating the distribution of  substantial files within DHTs. The 
implementation of  our proposed propagation protocol offers several 
advantages:

1. It enhanced system performance through the efficient utilization of  
      low bandwidth.
2. It efficiently replicates and rapidly propagates large files, particularly 
       when videos or audio become viral in peer-to-peer systems.
3. It is compatible with mutable and immutable data stored within    
      DHTs, enabling the swift propagation of  updated replicas. 

3.2 Requirements
The efficient and effective propagation of  files within DHTs necessitates the 
fulfilment of  both functional and non-functional requirements (Zhou, Dai, 
& Li, 2006):
Functional Requirements:

1. Ensure that each peer remaining within the system receives a file 
      replica.
2. Our proposed protocol should exclusively involve peers interested 
       in a particular file while excluding unrelated peers.

Non-Functional Requirements:
1. Preserve all essential properties offered by a typical DHT.
2. Maintain scalability, even as the number of  files within the DHT 
       increases, by enhancing load balancing through modified SpiderCast 
       overlays and the propagation of  partial replicas to establish 
       connections between peers.
3. Uphold churn resilience without modifying the recovery 
       mechanisms or failure detection processes of  standard DHTs.
4. Reduce update and replica generation time to increase data 
      availability.
5. Improve bandwidth utilization by deploying a modified push-pull 
      protocol that allows peers to communicate efficiently, considering 
      their available bandwidth.
6. Keep overhead to a minimum by monitoring control messages  
      effectively.

4. Proposed solution
We previously discussed a conventional Master-Slave (MS) distribution 
strategy, where a coordinator was responsible for individually transferring file 
content to each peer. However, this approach needed to be revised, 
particularly in common peer-to-peer system scenarios involving low 
bandwidth connections. To overcome these limitations, we have introduce a 
novel protocol, which we will explain comprehensively along with its 
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed 
for rapidly propagating large files.

4.1.1 Algorithm for push 
In this part, we consider that peer p has received the logs from node n, which 
has begun an iterative push. Periodically, push processes are called. The push 
iteration is started by the subsequent function. The state of  peer n is updated 
in the log entries before pushing is initiated. Then local logs are added, and 
neighbours share them. The following function analyses nearby log files and 
distributes logs tailored to neighbors' interests.
Step 1: Start push iteration for nth time
Step 2: store ← logs( )
Step 3: Loop for all n  neighbors 
Step 4: while (n.push)
Step 5: Send push notification to p
Step 6: End while
Step 7: End Loop
Step 8: Stop

4.1.2 Algorithm for pop
We shall detail the pull procedures in this section. This protocol's major goal 
is to use every available slot, or to occupy every slot. A policy directs the 
sending of  pull requests by transfer slots. The following function goes 
through every file hosted and determines which files are missing.
A file that is unfinished is one for which not all of  the components have been 
sent. We iterate through all nearby hosts of  the same file for each unfinished 
file. If  a transfer slot becomes available, we use it to ask the neighbour for a 
piece. The pull processes are being started by peer n in our pseudo-code in 
order to ask peer p for a piece.
Step 1: Initialize the pull iteration for the nth time.

Step 2: Iterate over all files hosted by peer n.
Step 3: If  the file is incomplete, proceed to the next steps.
Step 4: Iterate over all links associated with the file.
Step 5: Search for a free slot to use.
Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If  the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.
Step 9: End the loop for links.
Step 10: End the loop for files.
Step 11: End the pull iteration.
Step 12: Stop the process.

5. Experiment setup
5.1 Simulator
We employed the PeerSim simulator for our experiments due to its efficient 
memory utilization and effectiveness in simulating real-world scenarios 
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to 
implement our proposed protocol, as shown in Figure 3: 

 
Figure 3
A simplified view of  PeerSim components

5.1.1 PeerSim components
5.1.1.1 DHT
We simulated a DHT-lookup by returning pointers to peers using the 
DHT-lookup function. This method accelerated simulations without 
compromising precision. We created a large data transfer among the 
DHT-lookup origin and destination to mimic real-world bandwidth use. This 
optimization enabled more extended simulations that better captured 
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the 
standard master-slave protocol use replication strategies to propagate files 

without DHT lookups. The revised parameters did not influence the amount 
of  DHT lookups, but we changed the number of  neighbors returned to 
account for more replicas.

5.1.1.2 Replication Policy
Our research focuses on developing an efficient file propagation protocol 
independently of  the specific replication policy employed. Hence, our 
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast
The modifications to SpiderCast, as explained in Section 2.2, were 
successfully incorporated into our simulator. SpiderCast's performance will 
be assessed inferentially as part of  our system.

5.1.1.4 Input Files
We categorize input files as Files, Peers, Events, and Parameters. These files 
are vital for the simulator, defining system files, peers, events, and parameter 
values necessary for execution.

5.1.1.5 Output Files
To avoid excessive log generation for uninteresting components, we turned 
off  the logging of  specific components. However, we focused on two 
significant output files:
Delay: The simulator records coordinators' activities, including delays, in log 
files for each file.
Consumption of  Bandwidth: We developed a dedicated monitor to monitor 
the bandwidth usage associated with unique push and pull processes for each 
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics
This study considers two crucial evaluation metrics: propagation time and 
overhead. These metrics allow us to assess our proposed protocol's 
performance compared to the standard master-slave protocol. Propagation 
time refers to the total time taken to disseminate a file from a coordinator to 
all peers within the DHT.
 Control messages, that contribute significantly to overhead, were selected 
for evaluation, as outlined in Table I. Our protocol shares the same DHT, 
failure detection, and SpiderCast with the baseline MS protocol. Thus, the 
overhead associated with these three protocols does not impact the validity of  
our experiment. Table 1 reveals that our proposed protocol generates more pull 

requests than its counterpart, resulting in higher overhead. However, measuring 
pull overhead is not warranted due to the negligible size of  each pull message. 
Our proposed protocol efficiently propagates large files to all participating 
peers during propagation by maintaining necessary state information as 
bitmaps within the push header. Therefore, to measure the total overhead 
contributed by our protocol, we need to consider the size of  the push message.
Table 1
Comparison between existing MS protocol and over proposed protocol

5.3 Dataset
We utilized a Wikipedia trace comprising images and pages to evaluate the 
performance of  extensive file propagation. This dataset encompasses a mix 
of  large and small files obtained by sampling HTTP requests to the server 
over several months (Urdaneta, 2011). The trace consists of  two files: data on 
file types, sizes, and creation dates, and the other detailing updates or new 
creations. Note that the collection contains about 8,400 images that vary in 
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size 
distribution. This section analyzes the crucial parameters in Section 5.5's 
sensitivity. 

 
Figure 4
Distribution of  files size in our dataset

5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Slave (MS)
The conventional master-slave protocol serves as our primary benchmark for 
comparison.

5.4.2 Lower-bound
The lower-bound baseline examines the minimum propagation time, where 
all peers utilize their entire bandwidth to propagate files. This benchmark is 
crucial for assessing collaborative propagation's performance, as it utilizes 
each peer's total bandwidth capacity. The lower-bound time for propagation 
depends on neighbor bandwidth (Taheri-Boshrooyeh, 
Hassanzadeh-Nazarabadi, & Ozkasap, 2020). 

5.5 Important parameters and default values
To streamline our experimentation process and manage the multitude of  
parameters in the system, we assessed several parameters in isolation to study 
their impact on evaluation metrics. Table 2 outlines the most crucial variables 
for our system.

Table 2
Important evaluation criteria and their corresponding default values
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2.3.1 Coordinators
Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial 
role in generating new replicas by distributing documents among peers, 
aligning with the system's replication policy. This replication is necessary to 
address churn and preserve data availability, preventing data loss (Stein, 
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing 
propagation load and latency.
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Coordinators are propagating files to peers in DHTs

2.3.2 Consistency 
In the pursuit of  achieving consistency, various information propagation 
strategies have been proposed and evolved. This section provides a concise 
overview of  different concepts related to information propagation to 
replicas. It is important to note that the choice of  strategy can vary 
depending on the specific system being employed, and these strategies can be 
adapted to ensure the desired level of  consistency (Nguyen, Hoang, Hluchy, 
Vu, & Le, 2017). 
Push Consistency
Push-based consistency techniques are server-based protocols. These 
protocols allow servers to update replicas. This method carefully orders 
updates received from a server, and pushes them to replicas. Push-based 
protocols ensure timely and consistent update distribution in situations that 
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020). 
Pull Consistency
Client-based protocols, or pull-based procedures, entail replicas frequently 

obtaining updates from a server to check changes. Unlike push-based 
protocols, replicas may easily retrieve updates, which might add overhead. As 
shown in Figure 2, replicas frequently seek data from primary replicas to 
obtain updates when most appropriate for their operating environment, even 
if  it requires additional resource use (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 
2020).
One notable drawback of  these techniques is that they exhibit less uniformity 
than pushing mechanisms. This inherent characteristic implies a substantial 
delay between the initiation of  an update and the moment when the updated 
material becomes accessible on replicas (Xie, Wang, & Wang, 2017). 
 

 
Figure 2
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3. Problem definition
In this section, we clearly define the problem at hand and outline the 
requirements that must be met to address this problem effectively.

3.1 Problem
 Replication plays a vital role in enhancing data availability within 
peer-to-peer systems. However, replicating files becomes challenging when 
peers leave the system, potentially eliminating file replicas. Distributed Hash 
Tables (DHTs) offer mechanisms to create and distribute new replicas of  
relatively small files. However, there is a critical gap in propagating replicas of  
larger files (exceeding 1MB in size). Coordinators disseminating these more 
giant file replicas to interested peers encounter significant bandwidth 
constraints, resulting in slowed propagation of  large files. Moreover, peers 
with low-bandwidth connections can further impede the coordinator, leading 

to potential performance degradation across the entire DHT system (Gupta, 
Hada, & Sudhir, 2017).
 The primary objective of  this thesis is to develop a propagation scheme 
capable of  accelerating the distribution of  substantial files within DHTs. The 
implementation of  our proposed propagation protocol offers several 
advantages:

1. It enhanced system performance through the efficient utilization of  
      low bandwidth.
2. It efficiently replicates and rapidly propagates large files, particularly 
       when videos or audio become viral in peer-to-peer systems.
3. It is compatible with mutable and immutable data stored within    
      DHTs, enabling the swift propagation of  updated replicas. 

3.2 Requirements
The efficient and effective propagation of  files within DHTs necessitates the 
fulfilment of  both functional and non-functional requirements (Zhou, Dai, 
& Li, 2006):
Functional Requirements:

1. Ensure that each peer remaining within the system receives a file 
      replica.
2. Our proposed protocol should exclusively involve peers interested 
       in a particular file while excluding unrelated peers.

Non-Functional Requirements:
1. Preserve all essential properties offered by a typical DHT.
2. Maintain scalability, even as the number of  files within the DHT 
       increases, by enhancing load balancing through modified SpiderCast 
       overlays and the propagation of  partial replicas to establish 
       connections between peers.
3. Uphold churn resilience without modifying the recovery 
       mechanisms or failure detection processes of  standard DHTs.
4. Reduce update and replica generation time to increase data 
      availability.
5. Improve bandwidth utilization by deploying a modified push-pull 
      protocol that allows peers to communicate efficiently, considering 
      their available bandwidth.
6. Keep overhead to a minimum by monitoring control messages  
      effectively.

4. Proposed solution
We previously discussed a conventional Master-Slave (MS) distribution 
strategy, where a coordinator was responsible for individually transferring file 
content to each peer. However, this approach needed to be revised, 
particularly in common peer-to-peer system scenarios involving low 
bandwidth connections. To overcome these limitations, we have introduce a 
novel protocol, which we will explain comprehensively along with its 
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed 
for rapidly propagating large files.

4.1.1 Algorithm for push 
In this part, we consider that peer p has received the logs from node n, which 
has begun an iterative push. Periodically, push processes are called. The push 
iteration is started by the subsequent function. The state of  peer n is updated 
in the log entries before pushing is initiated. Then local logs are added, and 
neighbours share them. The following function analyses nearby log files and 
distributes logs tailored to neighbors' interests.
Step 1: Start push iteration for nth time
Step 2: store ← logs( )
Step 3: Loop for all n  neighbors 
Step 4: while (n.push)
Step 5: Send push notification to p
Step 6: End while
Step 7: End Loop
Step 8: Stop

4.1.2 Algorithm for pop
We shall detail the pull procedures in this section. This protocol's major goal 
is to use every available slot, or to occupy every slot. A policy directs the 
sending of  pull requests by transfer slots. The following function goes 
through every file hosted and determines which files are missing.
A file that is unfinished is one for which not all of  the components have been 
sent. We iterate through all nearby hosts of  the same file for each unfinished 
file. If  a transfer slot becomes available, we use it to ask the neighbour for a 
piece. The pull processes are being started by peer n in our pseudo-code in 
order to ask peer p for a piece.
Step 1: Initialize the pull iteration for the nth time.

Step 2: Iterate over all files hosted by peer n.
Step 3: If  the file is incomplete, proceed to the next steps.
Step 4: Iterate over all links associated with the file.
Step 5: Search for a free slot to use.
Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If  the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.
Step 9: End the loop for links.
Step 10: End the loop for files.
Step 11: End the pull iteration.
Step 12: Stop the process.

5. Experiment setup
5.1 Simulator
We employed the PeerSim simulator for our experiments due to its efficient 
memory utilization and effectiveness in simulating real-world scenarios 
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to 
implement our proposed protocol, as shown in Figure 3: 
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A simplified view of  PeerSim components

5.1.1 PeerSim components
5.1.1.1 DHT
We simulated a DHT-lookup by returning pointers to peers using the 
DHT-lookup function. This method accelerated simulations without 
compromising precision. We created a large data transfer among the 
DHT-lookup origin and destination to mimic real-world bandwidth use. This 
optimization enabled more extended simulations that better captured 
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the 
standard master-slave protocol use replication strategies to propagate files 

without DHT lookups. The revised parameters did not influence the amount 
of  DHT lookups, but we changed the number of  neighbors returned to 
account for more replicas.

5.1.1.2 Replication Policy
Our research focuses on developing an efficient file propagation protocol 
independently of  the specific replication policy employed. Hence, our 
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast
The modifications to SpiderCast, as explained in Section 2.2, were 
successfully incorporated into our simulator. SpiderCast's performance will 
be assessed inferentially as part of  our system.

5.1.1.4 Input Files
We categorize input files as Files, Peers, Events, and Parameters. These files 
are vital for the simulator, defining system files, peers, events, and parameter 
values necessary for execution.

5.1.1.5 Output Files
To avoid excessive log generation for uninteresting components, we turned 
off  the logging of  specific components. However, we focused on two 
significant output files:
Delay: The simulator records coordinators' activities, including delays, in log 
files for each file.
Consumption of  Bandwidth: We developed a dedicated monitor to monitor 
the bandwidth usage associated with unique push and pull processes for each 
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics
This study considers two crucial evaluation metrics: propagation time and 
overhead. These metrics allow us to assess our proposed protocol's 
performance compared to the standard master-slave protocol. Propagation 
time refers to the total time taken to disseminate a file from a coordinator to 
all peers within the DHT.
 Control messages, that contribute significantly to overhead, were selected 
for evaluation, as outlined in Table I. Our protocol shares the same DHT, 
failure detection, and SpiderCast with the baseline MS protocol. Thus, the 
overhead associated with these three protocols does not impact the validity of  
our experiment. Table 1 reveals that our proposed protocol generates more pull 

requests than its counterpart, resulting in higher overhead. However, measuring 
pull overhead is not warranted due to the negligible size of  each pull message. 
Our proposed protocol efficiently propagates large files to all participating 
peers during propagation by maintaining necessary state information as 
bitmaps within the push header. Therefore, to measure the total overhead 
contributed by our protocol, we need to consider the size of  the push message.
Table 1
Comparison between existing MS protocol and over proposed protocol

5.3 Dataset
We utilized a Wikipedia trace comprising images and pages to evaluate the 
performance of  extensive file propagation. This dataset encompasses a mix 
of  large and small files obtained by sampling HTTP requests to the server 
over several months (Urdaneta, 2011). The trace consists of  two files: data on 
file types, sizes, and creation dates, and the other detailing updates or new 
creations. Note that the collection contains about 8,400 images that vary in 
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size 
distribution. This section analyzes the crucial parameters in Section 5.5's 
sensitivity. 
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5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Slave (MS)
The conventional master-slave protocol serves as our primary benchmark for 
comparison.

5.4.2 Lower-bound
The lower-bound baseline examines the minimum propagation time, where 
all peers utilize their entire bandwidth to propagate files. This benchmark is 
crucial for assessing collaborative propagation's performance, as it utilizes 
each peer's total bandwidth capacity. The lower-bound time for propagation 
depends on neighbor bandwidth (Taheri-Boshrooyeh, 
Hassanzadeh-Nazarabadi, & Ozkasap, 2020). 

5.5 Important parameters and default values
To streamline our experimentation process and manage the multitude of  
parameters in the system, we assessed several parameters in isolation to study 
their impact on evaluation metrics. Table 2 outlines the most crucial variables 
for our system.

Table 2
Important evaluation criteria and their corresponding default values
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2.3.1 Coordinators
Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial 
role in generating new replicas by distributing documents among peers, 
aligning with the system's replication policy. This replication is necessary to 
address churn and preserve data availability, preventing data loss (Stein, 
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing 
propagation load and latency.

 
Figure 1
Coordinators are propagating files to peers in DHTs

2.3.2 Consistency 
In the pursuit of  achieving consistency, various information propagation 
strategies have been proposed and evolved. This section provides a concise 
overview of  different concepts related to information propagation to 
replicas. It is important to note that the choice of  strategy can vary 
depending on the specific system being employed, and these strategies can be 
adapted to ensure the desired level of  consistency (Nguyen, Hoang, Hluchy, 
Vu, & Le, 2017). 
Push Consistency
Push-based consistency techniques are server-based protocols. These 
protocols allow servers to update replicas. This method carefully orders 
updates received from a server, and pushes them to replicas. Push-based 
protocols ensure timely and consistent update distribution in situations that 
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020). 
Pull Consistency
Client-based protocols, or pull-based procedures, entail replicas frequently 

obtaining updates from a server to check changes. Unlike push-based 
protocols, replicas may easily retrieve updates, which might add overhead. As 
shown in Figure 2, replicas frequently seek data from primary replicas to 
obtain updates when most appropriate for their operating environment, even 
if  it requires additional resource use (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 
2020).
One notable drawback of  these techniques is that they exhibit less uniformity 
than pushing mechanisms. This inherent characteristic implies a substantial 
delay between the initiation of  an update and the moment when the updated 
material becomes accessible on replicas (Xie, Wang, & Wang, 2017). 
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3. Problem definition
In this section, we clearly define the problem at hand and outline the 
requirements that must be met to address this problem effectively.

3.1 Problem
 Replication plays a vital role in enhancing data availability within 
peer-to-peer systems. However, replicating files becomes challenging when 
peers leave the system, potentially eliminating file replicas. Distributed Hash 
Tables (DHTs) offer mechanisms to create and distribute new replicas of  
relatively small files. However, there is a critical gap in propagating replicas of  
larger files (exceeding 1MB in size). Coordinators disseminating these more 
giant file replicas to interested peers encounter significant bandwidth 
constraints, resulting in slowed propagation of  large files. Moreover, peers 
with low-bandwidth connections can further impede the coordinator, leading 

to potential performance degradation across the entire DHT system (Gupta, 
Hada, & Sudhir, 2017).
 The primary objective of  this thesis is to develop a propagation scheme 
capable of  accelerating the distribution of  substantial files within DHTs. The 
implementation of  our proposed propagation protocol offers several 
advantages:

1. It enhanced system performance through the efficient utilization of  
      low bandwidth.
2. It efficiently replicates and rapidly propagates large files, particularly 
       when videos or audio become viral in peer-to-peer systems.
3. It is compatible with mutable and immutable data stored within    
      DHTs, enabling the swift propagation of  updated replicas. 

3.2 Requirements
The efficient and effective propagation of  files within DHTs necessitates the 
fulfilment of  both functional and non-functional requirements (Zhou, Dai, 
& Li, 2006):
Functional Requirements:

1. Ensure that each peer remaining within the system receives a file 
      replica.
2. Our proposed protocol should exclusively involve peers interested 
       in a particular file while excluding unrelated peers.

Non-Functional Requirements:
1. Preserve all essential properties offered by a typical DHT.
2. Maintain scalability, even as the number of  files within the DHT 
       increases, by enhancing load balancing through modified SpiderCast 
       overlays and the propagation of  partial replicas to establish 
       connections between peers.
3. Uphold churn resilience without modifying the recovery 
       mechanisms or failure detection processes of  standard DHTs.
4. Reduce update and replica generation time to increase data 
      availability.
5. Improve bandwidth utilization by deploying a modified push-pull 
      protocol that allows peers to communicate efficiently, considering 
      their available bandwidth.
6. Keep overhead to a minimum by monitoring control messages  
      effectively.

4. Proposed solution
We previously discussed a conventional Master-Slave (MS) distribution 
strategy, where a coordinator was responsible for individually transferring file 
content to each peer. However, this approach needed to be revised, 
particularly in common peer-to-peer system scenarios involving low 
bandwidth connections. To overcome these limitations, we have introduce a 
novel protocol, which we will explain comprehensively along with its 
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed 
for rapidly propagating large files.

4.1.1 Algorithm for push 
In this part, we consider that peer p has received the logs from node n, which 
has begun an iterative push. Periodically, push processes are called. The push 
iteration is started by the subsequent function. The state of  peer n is updated 
in the log entries before pushing is initiated. Then local logs are added, and 
neighbours share them. The following function analyses nearby log files and 
distributes logs tailored to neighbors' interests.
Step 1: Start push iteration for nth time
Step 2: store ← logs( )
Step 3: Loop for all n  neighbors 
Step 4: while (n.push)
Step 5: Send push notification to p
Step 6: End while
Step 7: End Loop
Step 8: Stop

4.1.2 Algorithm for pop
We shall detail the pull procedures in this section. This protocol's major goal 
is to use every available slot, or to occupy every slot. A policy directs the 
sending of  pull requests by transfer slots. The following function goes 
through every file hosted and determines which files are missing.
A file that is unfinished is one for which not all of  the components have been 
sent. We iterate through all nearby hosts of  the same file for each unfinished 
file. If  a transfer slot becomes available, we use it to ask the neighbour for a 
piece. The pull processes are being started by peer n in our pseudo-code in 
order to ask peer p for a piece.
Step 1: Initialize the pull iteration for the nth time.

Step 2: Iterate over all files hosted by peer n.
Step 3: If  the file is incomplete, proceed to the next steps.
Step 4: Iterate over all links associated with the file.
Step 5: Search for a free slot to use.
Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If  the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.
Step 9: End the loop for links.
Step 10: End the loop for files.
Step 11: End the pull iteration.
Step 12: Stop the process.

5. Experiment setup
5.1 Simulator
We employed the PeerSim simulator for our experiments due to its efficient 
memory utilization and effectiveness in simulating real-world scenarios 
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to 
implement our proposed protocol, as shown in Figure 3: 
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5.1.1 PeerSim components
5.1.1.1 DHT
We simulated a DHT-lookup by returning pointers to peers using the 
DHT-lookup function. This method accelerated simulations without 
compromising precision. We created a large data transfer among the 
DHT-lookup origin and destination to mimic real-world bandwidth use. This 
optimization enabled more extended simulations that better captured 
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the 
standard master-slave protocol use replication strategies to propagate files 

without DHT lookups. The revised parameters did not influence the amount 
of  DHT lookups, but we changed the number of  neighbors returned to 
account for more replicas.

5.1.1.2 Replication Policy
Our research focuses on developing an efficient file propagation protocol 
independently of  the specific replication policy employed. Hence, our 
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast
The modifications to SpiderCast, as explained in Section 2.2, were 
successfully incorporated into our simulator. SpiderCast's performance will 
be assessed inferentially as part of  our system.

5.1.1.4 Input Files
We categorize input files as Files, Peers, Events, and Parameters. These files 
are vital for the simulator, defining system files, peers, events, and parameter 
values necessary for execution.

5.1.1.5 Output Files
To avoid excessive log generation for uninteresting components, we turned 
off  the logging of  specific components. However, we focused on two 
significant output files:
Delay: The simulator records coordinators' activities, including delays, in log 
files for each file.
Consumption of  Bandwidth: We developed a dedicated monitor to monitor 
the bandwidth usage associated with unique push and pull processes for each 
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics
This study considers two crucial evaluation metrics: propagation time and 
overhead. These metrics allow us to assess our proposed protocol's 
performance compared to the standard master-slave protocol. Propagation 
time refers to the total time taken to disseminate a file from a coordinator to 
all peers within the DHT.
 Control messages, that contribute significantly to overhead, were selected 
for evaluation, as outlined in Table I. Our protocol shares the same DHT, 
failure detection, and SpiderCast with the baseline MS protocol. Thus, the 
overhead associated with these three protocols does not impact the validity of  
our experiment. Table 1 reveals that our proposed protocol generates more pull 

requests than its counterpart, resulting in higher overhead. However, measuring 
pull overhead is not warranted due to the negligible size of  each pull message. 
Our proposed protocol efficiently propagates large files to all participating 
peers during propagation by maintaining necessary state information as 
bitmaps within the push header. Therefore, to measure the total overhead 
contributed by our protocol, we need to consider the size of  the push message.
Table 1
Comparison between existing MS protocol and over proposed protocol

5.3 Dataset
We utilized a Wikipedia trace comprising images and pages to evaluate the 
performance of  extensive file propagation. This dataset encompasses a mix 
of  large and small files obtained by sampling HTTP requests to the server 
over several months (Urdaneta, 2011). The trace consists of  two files: data on 
file types, sizes, and creation dates, and the other detailing updates or new 
creations. Note that the collection contains about 8,400 images that vary in 
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size 
distribution. This section analyzes the crucial parameters in Section 5.5's 
sensitivity. 
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5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Slave (MS)
The conventional master-slave protocol serves as our primary benchmark for 
comparison.

5.4.2 Lower-bound
The lower-bound baseline examines the minimum propagation time, where 
all peers utilize their entire bandwidth to propagate files. This benchmark is 
crucial for assessing collaborative propagation's performance, as it utilizes 
each peer's total bandwidth capacity. The lower-bound time for propagation 
depends on neighbor bandwidth (Taheri-Boshrooyeh, 
Hassanzadeh-Nazarabadi, & Ozkasap, 2020). 

5.5 Important parameters and default values
To streamline our experimentation process and manage the multitude of  
parameters in the system, we assessed several parameters in isolation to study 
their impact on evaluation metrics. Table 2 outlines the most crucial variables 
for our system.

Table 2
Important evaluation criteria and their corresponding default values
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2.3.1 Coordinators
Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial 
role in generating new replicas by distributing documents among peers, 
aligning with the system's replication policy. This replication is necessary to 
address churn and preserve data availability, preventing data loss (Stein, 
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing 
propagation load and latency.

 
Figure 1
Coordinators are propagating files to peers in DHTs

2.3.2 Consistency 
In the pursuit of  achieving consistency, various information propagation 
strategies have been proposed and evolved. This section provides a concise 
overview of  different concepts related to information propagation to 
replicas. It is important to note that the choice of  strategy can vary 
depending on the specific system being employed, and these strategies can be 
adapted to ensure the desired level of  consistency (Nguyen, Hoang, Hluchy, 
Vu, & Le, 2017). 
Push Consistency
Push-based consistency techniques are server-based protocols. These 
protocols allow servers to update replicas. This method carefully orders 
updates received from a server, and pushes them to replicas. Push-based 
protocols ensure timely and consistent update distribution in situations that 
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020). 
Pull Consistency
Client-based protocols, or pull-based procedures, entail replicas frequently 

obtaining updates from a server to check changes. Unlike push-based 
protocols, replicas may easily retrieve updates, which might add overhead. As 
shown in Figure 2, replicas frequently seek data from primary replicas to 
obtain updates when most appropriate for their operating environment, even 
if  it requires additional resource use (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 
2020).
One notable drawback of  these techniques is that they exhibit less uniformity 
than pushing mechanisms. This inherent characteristic implies a substantial 
delay between the initiation of  an update and the moment when the updated 
material becomes accessible on replicas (Xie, Wang, & Wang, 2017). 
 

 
Figure 2
Updating process through pulling

3. Problem definition
In this section, we clearly define the problem at hand and outline the 
requirements that must be met to address this problem effectively.

3.1 Problem
 Replication plays a vital role in enhancing data availability within 
peer-to-peer systems. However, replicating files becomes challenging when 
peers leave the system, potentially eliminating file replicas. Distributed Hash 
Tables (DHTs) offer mechanisms to create and distribute new replicas of  
relatively small files. However, there is a critical gap in propagating replicas of  
larger files (exceeding 1MB in size). Coordinators disseminating these more 
giant file replicas to interested peers encounter significant bandwidth 
constraints, resulting in slowed propagation of  large files. Moreover, peers 
with low-bandwidth connections can further impede the coordinator, leading 

to potential performance degradation across the entire DHT system (Gupta, 
Hada, & Sudhir, 2017).
 The primary objective of  this thesis is to develop a propagation scheme 
capable of  accelerating the distribution of  substantial files within DHTs. The 
implementation of  our proposed propagation protocol offers several 
advantages:

1. It enhanced system performance through the efficient utilization of  
      low bandwidth.
2. It efficiently replicates and rapidly propagates large files, particularly 
       when videos or audio become viral in peer-to-peer systems.
3. It is compatible with mutable and immutable data stored within    
      DHTs, enabling the swift propagation of  updated replicas. 

3.2 Requirements
The efficient and effective propagation of  files within DHTs necessitates the 
fulfilment of  both functional and non-functional requirements (Zhou, Dai, 
& Li, 2006):
Functional Requirements:

1. Ensure that each peer remaining within the system receives a file 
      replica.
2. Our proposed protocol should exclusively involve peers interested 
       in a particular file while excluding unrelated peers.

Non-Functional Requirements:
1. Preserve all essential properties offered by a typical DHT.
2. Maintain scalability, even as the number of  files within the DHT 
       increases, by enhancing load balancing through modified SpiderCast 
       overlays and the propagation of  partial replicas to establish 
       connections between peers.
3. Uphold churn resilience without modifying the recovery 
       mechanisms or failure detection processes of  standard DHTs.
4. Reduce update and replica generation time to increase data 
      availability.
5. Improve bandwidth utilization by deploying a modified push-pull 
      protocol that allows peers to communicate efficiently, considering 
      their available bandwidth.
6. Keep overhead to a minimum by monitoring control messages  
      effectively.

4. Proposed solution
We previously discussed a conventional Master-Slave (MS) distribution 
strategy, where a coordinator was responsible for individually transferring file 
content to each peer. However, this approach needed to be revised, 
particularly in common peer-to-peer system scenarios involving low 
bandwidth connections. To overcome these limitations, we have introduce a 
novel protocol, which we will explain comprehensively along with its 
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed 
for rapidly propagating large files.

4.1.1 Algorithm for push 
In this part, we consider that peer p has received the logs from node n, which 
has begun an iterative push. Periodically, push processes are called. The push 
iteration is started by the subsequent function. The state of  peer n is updated 
in the log entries before pushing is initiated. Then local logs are added, and 
neighbours share them. The following function analyses nearby log files and 
distributes logs tailored to neighbors' interests.
Step 1: Start push iteration for nth time
Step 2: store ← logs( )
Step 3: Loop for all n  neighbors 
Step 4: while (n.push)
Step 5: Send push notification to p
Step 6: End while
Step 7: End Loop
Step 8: Stop

4.1.2 Algorithm for pop
We shall detail the pull procedures in this section. This protocol's major goal 
is to use every available slot, or to occupy every slot. A policy directs the 
sending of  pull requests by transfer slots. The following function goes 
through every file hosted and determines which files are missing.
A file that is unfinished is one for which not all of  the components have been 
sent. We iterate through all nearby hosts of  the same file for each unfinished 
file. If  a transfer slot becomes available, we use it to ask the neighbour for a 
piece. The pull processes are being started by peer n in our pseudo-code in 
order to ask peer p for a piece.
Step 1: Initialize the pull iteration for the nth time.

Step 2: Iterate over all files hosted by peer n.
Step 3: If  the file is incomplete, proceed to the next steps.
Step 4: Iterate over all links associated with the file.
Step 5: Search for a free slot to use.
Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If  the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.
Step 9: End the loop for links.
Step 10: End the loop for files.
Step 11: End the pull iteration.
Step 12: Stop the process.

5. Experiment setup
5.1 Simulator
We employed the PeerSim simulator for our experiments due to its efficient 
memory utilization and effectiveness in simulating real-world scenarios 
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to 
implement our proposed protocol, as shown in Figure 3: 

 
Figure 3
A simplified view of  PeerSim components

5.1.1 PeerSim components
5.1.1.1 DHT
We simulated a DHT-lookup by returning pointers to peers using the 
DHT-lookup function. This method accelerated simulations without 
compromising precision. We created a large data transfer among the 
DHT-lookup origin and destination to mimic real-world bandwidth use. This 
optimization enabled more extended simulations that better captured 
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the 
standard master-slave protocol use replication strategies to propagate files 

without DHT lookups. The revised parameters did not influence the amount 
of  DHT lookups, but we changed the number of  neighbors returned to 
account for more replicas.

5.1.1.2 Replication Policy
Our research focuses on developing an efficient file propagation protocol 
independently of  the specific replication policy employed. Hence, our 
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast
The modifications to SpiderCast, as explained in Section 2.2, were 
successfully incorporated into our simulator. SpiderCast's performance will 
be assessed inferentially as part of  our system.

5.1.1.4 Input Files
We categorize input files as Files, Peers, Events, and Parameters. These files 
are vital for the simulator, defining system files, peers, events, and parameter 
values necessary for execution.

5.1.1.5 Output Files
To avoid excessive log generation for uninteresting components, we turned 
off  the logging of  specific components. However, we focused on two 
significant output files:
Delay: The simulator records coordinators' activities, including delays, in log 
files for each file.
Consumption of  Bandwidth: We developed a dedicated monitor to monitor 
the bandwidth usage associated with unique push and pull processes for each 
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics
This study considers two crucial evaluation metrics: propagation time and 
overhead. These metrics allow us to assess our proposed protocol's 
performance compared to the standard master-slave protocol. Propagation 
time refers to the total time taken to disseminate a file from a coordinator to 
all peers within the DHT.
 Control messages, that contribute significantly to overhead, were selected 
for evaluation, as outlined in Table I. Our protocol shares the same DHT, 
failure detection, and SpiderCast with the baseline MS protocol. Thus, the 
overhead associated with these three protocols does not impact the validity of  
our experiment. Table 1 reveals that our proposed protocol generates more pull 

requests than its counterpart, resulting in higher overhead. However, measuring 
pull overhead is not warranted due to the negligible size of  each pull message. 
Our proposed protocol efficiently propagates large files to all participating 
peers during propagation by maintaining necessary state information as 
bitmaps within the push header. Therefore, to measure the total overhead 
contributed by our protocol, we need to consider the size of  the push message.
Table 1
Comparison between existing MS protocol and over proposed protocol

5.3 Dataset
We utilized a Wikipedia trace comprising images and pages to evaluate the 
performance of  extensive file propagation. This dataset encompasses a mix 
of  large and small files obtained by sampling HTTP requests to the server 
over several months (Urdaneta, 2011). The trace consists of  two files: data on 
file types, sizes, and creation dates, and the other detailing updates or new 
creations. Note that the collection contains about 8,400 images that vary in 
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size 
distribution. This section analyzes the crucial parameters in Section 5.5's 
sensitivity. 
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5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Slave (MS)
The conventional master-slave protocol serves as our primary benchmark for 
comparison.

5.4.2 Lower-bound
The lower-bound baseline examines the minimum propagation time, where 
all peers utilize their entire bandwidth to propagate files. This benchmark is 
crucial for assessing collaborative propagation's performance, as it utilizes 
each peer's total bandwidth capacity. The lower-bound time for propagation 
depends on neighbor bandwidth (Taheri-Boshrooyeh, 
Hassanzadeh-Nazarabadi, & Ozkasap, 2020). 

5.5 Important parameters and default values
To streamline our experimentation process and manage the multitude of  
parameters in the system, we assessed several parameters in isolation to study 
their impact on evaluation metrics. Table 2 outlines the most crucial variables 
for our system.

Table 2
Important evaluation criteria and their corresponding default values
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2.3.1 Coordinators
Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial 
role in generating new replicas by distributing documents among peers, 
aligning with the system's replication policy. This replication is necessary to 
address churn and preserve data availability, preventing data loss (Stein, 
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing 
propagation load and latency.
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2.3.2 Consistency 
In the pursuit of  achieving consistency, various information propagation 
strategies have been proposed and evolved. This section provides a concise 
overview of  different concepts related to information propagation to 
replicas. It is important to note that the choice of  strategy can vary 
depending on the specific system being employed, and these strategies can be 
adapted to ensure the desired level of  consistency (Nguyen, Hoang, Hluchy, 
Vu, & Le, 2017). 
Push Consistency
Push-based consistency techniques are server-based protocols. These 
protocols allow servers to update replicas. This method carefully orders 
updates received from a server, and pushes them to replicas. Push-based 
protocols ensure timely and consistent update distribution in situations that 
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020). 
Pull Consistency
Client-based protocols, or pull-based procedures, entail replicas frequently 

obtaining updates from a server to check changes. Unlike push-based 
protocols, replicas may easily retrieve updates, which might add overhead. As 
shown in Figure 2, replicas frequently seek data from primary replicas to 
obtain updates when most appropriate for their operating environment, even 
if  it requires additional resource use (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 
2020).
One notable drawback of  these techniques is that they exhibit less uniformity 
than pushing mechanisms. This inherent characteristic implies a substantial 
delay between the initiation of  an update and the moment when the updated 
material becomes accessible on replicas (Xie, Wang, & Wang, 2017). 
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3. Problem definition
In this section, we clearly define the problem at hand and outline the 
requirements that must be met to address this problem effectively.

3.1 Problem
 Replication plays a vital role in enhancing data availability within 
peer-to-peer systems. However, replicating files becomes challenging when 
peers leave the system, potentially eliminating file replicas. Distributed Hash 
Tables (DHTs) offer mechanisms to create and distribute new replicas of  
relatively small files. However, there is a critical gap in propagating replicas of  
larger files (exceeding 1MB in size). Coordinators disseminating these more 
giant file replicas to interested peers encounter significant bandwidth 
constraints, resulting in slowed propagation of  large files. Moreover, peers 
with low-bandwidth connections can further impede the coordinator, leading 

to potential performance degradation across the entire DHT system (Gupta, 
Hada, & Sudhir, 2017).
 The primary objective of  this thesis is to develop a propagation scheme 
capable of  accelerating the distribution of  substantial files within DHTs. The 
implementation of  our proposed propagation protocol offers several 
advantages:

1. It enhanced system performance through the efficient utilization of  
      low bandwidth.
2. It efficiently replicates and rapidly propagates large files, particularly 
       when videos or audio become viral in peer-to-peer systems.
3. It is compatible with mutable and immutable data stored within    
      DHTs, enabling the swift propagation of  updated replicas. 

3.2 Requirements
The efficient and effective propagation of  files within DHTs necessitates the 
fulfilment of  both functional and non-functional requirements (Zhou, Dai, 
& Li, 2006):
Functional Requirements:

1. Ensure that each peer remaining within the system receives a file 
      replica.
2. Our proposed protocol should exclusively involve peers interested 
       in a particular file while excluding unrelated peers.

Non-Functional Requirements:
1. Preserve all essential properties offered by a typical DHT.
2. Maintain scalability, even as the number of  files within the DHT 
       increases, by enhancing load balancing through modified SpiderCast 
       overlays and the propagation of  partial replicas to establish 
       connections between peers.
3. Uphold churn resilience without modifying the recovery 
       mechanisms or failure detection processes of  standard DHTs.
4. Reduce update and replica generation time to increase data 
      availability.
5. Improve bandwidth utilization by deploying a modified push-pull 
      protocol that allows peers to communicate efficiently, considering 
      their available bandwidth.
6. Keep overhead to a minimum by monitoring control messages  
      effectively.

4. Proposed solution
We previously discussed a conventional Master-Slave (MS) distribution 
strategy, where a coordinator was responsible for individually transferring file 
content to each peer. However, this approach needed to be revised, 
particularly in common peer-to-peer system scenarios involving low 
bandwidth connections. To overcome these limitations, we have introduce a 
novel protocol, which we will explain comprehensively along with its 
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed 
for rapidly propagating large files.

4.1.1 Algorithm for push 
In this part, we consider that peer p has received the logs from node n, which 
has begun an iterative push. Periodically, push processes are called. The push 
iteration is started by the subsequent function. The state of  peer n is updated 
in the log entries before pushing is initiated. Then local logs are added, and 
neighbours share them. The following function analyses nearby log files and 
distributes logs tailored to neighbors' interests.
Step 1: Start push iteration for nth time
Step 2: store ← logs( )
Step 3: Loop for all n  neighbors 
Step 4: while (n.push)
Step 5: Send push notification to p
Step 6: End while
Step 7: End Loop
Step 8: Stop

4.1.2 Algorithm for pop
We shall detail the pull procedures in this section. This protocol's major goal 
is to use every available slot, or to occupy every slot. A policy directs the 
sending of  pull requests by transfer slots. The following function goes 
through every file hosted and determines which files are missing.
A file that is unfinished is one for which not all of  the components have been 
sent. We iterate through all nearby hosts of  the same file for each unfinished 
file. If  a transfer slot becomes available, we use it to ask the neighbour for a 
piece. The pull processes are being started by peer n in our pseudo-code in 
order to ask peer p for a piece.
Step 1: Initialize the pull iteration for the nth time.

Step 2: Iterate over all files hosted by peer n.
Step 3: If  the file is incomplete, proceed to the next steps.
Step 4: Iterate over all links associated with the file.
Step 5: Search for a free slot to use.
Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If  the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.
Step 9: End the loop for links.
Step 10: End the loop for files.
Step 11: End the pull iteration.
Step 12: Stop the process.

5. Experiment setup
5.1 Simulator
We employed the PeerSim simulator for our experiments due to its efficient 
memory utilization and effectiveness in simulating real-world scenarios 
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to 
implement our proposed protocol, as shown in Figure 3: 
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5.1.1 PeerSim components
5.1.1.1 DHT
We simulated a DHT-lookup by returning pointers to peers using the 
DHT-lookup function. This method accelerated simulations without 
compromising precision. We created a large data transfer among the 
DHT-lookup origin and destination to mimic real-world bandwidth use. This 
optimization enabled more extended simulations that better captured 
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the 
standard master-slave protocol use replication strategies to propagate files 

without DHT lookups. The revised parameters did not influence the amount 
of  DHT lookups, but we changed the number of  neighbors returned to 
account for more replicas.

5.1.1.2 Replication Policy
Our research focuses on developing an efficient file propagation protocol 
independently of  the specific replication policy employed. Hence, our 
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast
The modifications to SpiderCast, as explained in Section 2.2, were 
successfully incorporated into our simulator. SpiderCast's performance will 
be assessed inferentially as part of  our system.

5.1.1.4 Input Files
We categorize input files as Files, Peers, Events, and Parameters. These files 
are vital for the simulator, defining system files, peers, events, and parameter 
values necessary for execution.

5.1.1.5 Output Files
To avoid excessive log generation for uninteresting components, we turned 
off  the logging of  specific components. However, we focused on two 
significant output files:
Delay: The simulator records coordinators' activities, including delays, in log 
files for each file.
Consumption of  Bandwidth: We developed a dedicated monitor to monitor 
the bandwidth usage associated with unique push and pull processes for each 
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics
This study considers two crucial evaluation metrics: propagation time and 
overhead. These metrics allow us to assess our proposed protocol's 
performance compared to the standard master-slave protocol. Propagation 
time refers to the total time taken to disseminate a file from a coordinator to 
all peers within the DHT.
 Control messages, that contribute significantly to overhead, were selected 
for evaluation, as outlined in Table I. Our protocol shares the same DHT, 
failure detection, and SpiderCast with the baseline MS protocol. Thus, the 
overhead associated with these three protocols does not impact the validity of  
our experiment. Table 1 reveals that our proposed protocol generates more pull 

requests than its counterpart, resulting in higher overhead. However, measuring 
pull overhead is not warranted due to the negligible size of  each pull message. 
Our proposed protocol efficiently propagates large files to all participating 
peers during propagation by maintaining necessary state information as 
bitmaps within the push header. Therefore, to measure the total overhead 
contributed by our protocol, we need to consider the size of  the push message.
Table 1
Comparison between existing MS protocol and over proposed protocol

5.3 Dataset
We utilized a Wikipedia trace comprising images and pages to evaluate the 
performance of  extensive file propagation. This dataset encompasses a mix 
of  large and small files obtained by sampling HTTP requests to the server 
over several months (Urdaneta, 2011). The trace consists of  two files: data on 
file types, sizes, and creation dates, and the other detailing updates or new 
creations. Note that the collection contains about 8,400 images that vary in 
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size 
distribution. This section analyzes the crucial parameters in Section 5.5's 
sensitivity. 
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5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Slave (MS)
The conventional master-slave protocol serves as our primary benchmark for 
comparison.

5.4.2 Lower-bound
The lower-bound baseline examines the minimum propagation time, where 
all peers utilize their entire bandwidth to propagate files. This benchmark is 
crucial for assessing collaborative propagation's performance, as it utilizes 
each peer's total bandwidth capacity. The lower-bound time for propagation 
depends on neighbor bandwidth (Taheri-Boshrooyeh, 
Hassanzadeh-Nazarabadi, & Ozkasap, 2020). 

5.5 Important parameters and default values
To streamline our experimentation process and manage the multitude of  
parameters in the system, we assessed several parameters in isolation to study 
their impact on evaluation metrics. Table 2 outlines the most crucial variables 
for our system.
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2.3.1 Coordinators
Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial 
role in generating new replicas by distributing documents among peers, 
aligning with the system's replication policy. This replication is necessary to 
address churn and preserve data availability, preventing data loss (Stein, 
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing 
propagation load and latency.
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2.3.2 Consistency 
In the pursuit of  achieving consistency, various information propagation 
strategies have been proposed and evolved. This section provides a concise 
overview of  different concepts related to information propagation to 
replicas. It is important to note that the choice of  strategy can vary 
depending on the specific system being employed, and these strategies can be 
adapted to ensure the desired level of  consistency (Nguyen, Hoang, Hluchy, 
Vu, & Le, 2017). 
Push Consistency
Push-based consistency techniques are server-based protocols. These 
protocols allow servers to update replicas. This method carefully orders 
updates received from a server, and pushes them to replicas. Push-based 
protocols ensure timely and consistent update distribution in situations that 
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020). 
Pull Consistency
Client-based protocols, or pull-based procedures, entail replicas frequently 

obtaining updates from a server to check changes. Unlike push-based 
protocols, replicas may easily retrieve updates, which might add overhead. As 
shown in Figure 2, replicas frequently seek data from primary replicas to 
obtain updates when most appropriate for their operating environment, even 
if  it requires additional resource use (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 
2020).
One notable drawback of  these techniques is that they exhibit less uniformity 
than pushing mechanisms. This inherent characteristic implies a substantial 
delay between the initiation of  an update and the moment when the updated 
material becomes accessible on replicas (Xie, Wang, & Wang, 2017). 
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3. Problem definition
In this section, we clearly define the problem at hand and outline the 
requirements that must be met to address this problem effectively.

3.1 Problem
 Replication plays a vital role in enhancing data availability within 
peer-to-peer systems. However, replicating files becomes challenging when 
peers leave the system, potentially eliminating file replicas. Distributed Hash 
Tables (DHTs) offer mechanisms to create and distribute new replicas of  
relatively small files. However, there is a critical gap in propagating replicas of  
larger files (exceeding 1MB in size). Coordinators disseminating these more 
giant file replicas to interested peers encounter significant bandwidth 
constraints, resulting in slowed propagation of  large files. Moreover, peers 
with low-bandwidth connections can further impede the coordinator, leading 

to potential performance degradation across the entire DHT system (Gupta, 
Hada, & Sudhir, 2017).
 The primary objective of  this thesis is to develop a propagation scheme 
capable of  accelerating the distribution of  substantial files within DHTs. The 
implementation of  our proposed propagation protocol offers several 
advantages:

1. It enhanced system performance through the efficient utilization of  
      low bandwidth.
2. It efficiently replicates and rapidly propagates large files, particularly 
       when videos or audio become viral in peer-to-peer systems.
3. It is compatible with mutable and immutable data stored within    
      DHTs, enabling the swift propagation of  updated replicas. 

3.2 Requirements
The efficient and effective propagation of  files within DHTs necessitates the 
fulfilment of  both functional and non-functional requirements (Zhou, Dai, 
& Li, 2006):
Functional Requirements:

1. Ensure that each peer remaining within the system receives a file 
      replica.
2. Our proposed protocol should exclusively involve peers interested 
       in a particular file while excluding unrelated peers.

Non-Functional Requirements:
1. Preserve all essential properties offered by a typical DHT.
2. Maintain scalability, even as the number of  files within the DHT 
       increases, by enhancing load balancing through modified SpiderCast 
       overlays and the propagation of  partial replicas to establish 
       connections between peers.
3. Uphold churn resilience without modifying the recovery 
       mechanisms or failure detection processes of  standard DHTs.
4. Reduce update and replica generation time to increase data 
      availability.
5. Improve bandwidth utilization by deploying a modified push-pull 
      protocol that allows peers to communicate efficiently, considering 
      their available bandwidth.
6. Keep overhead to a minimum by monitoring control messages  
      effectively.

4. Proposed solution
We previously discussed a conventional Master-Slave (MS) distribution 
strategy, where a coordinator was responsible for individually transferring file 
content to each peer. However, this approach needed to be revised, 
particularly in common peer-to-peer system scenarios involving low 
bandwidth connections. To overcome these limitations, we have introduce a 
novel protocol, which we will explain comprehensively along with its 
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed 
for rapidly propagating large files.

4.1.1 Algorithm for push 
In this part, we consider that peer p has received the logs from node n, which 
has begun an iterative push. Periodically, push processes are called. The push 
iteration is started by the subsequent function. The state of  peer n is updated 
in the log entries before pushing is initiated. Then local logs are added, and 
neighbours share them. The following function analyses nearby log files and 
distributes logs tailored to neighbors' interests.
Step 1: Start push iteration for nth time
Step 2: store ← logs( )
Step 3: Loop for all n  neighbors 
Step 4: while (n.push)
Step 5: Send push notification to p
Step 6: End while
Step 7: End Loop
Step 8: Stop

4.1.2 Algorithm for pop
We shall detail the pull procedures in this section. This protocol's major goal 
is to use every available slot, or to occupy every slot. A policy directs the 
sending of  pull requests by transfer slots. The following function goes 
through every file hosted and determines which files are missing.
A file that is unfinished is one for which not all of  the components have been 
sent. We iterate through all nearby hosts of  the same file for each unfinished 
file. If  a transfer slot becomes available, we use it to ask the neighbour for a 
piece. The pull processes are being started by peer n in our pseudo-code in 
order to ask peer p for a piece.
Step 1: Initialize the pull iteration for the nth time.

Step 2: Iterate over all files hosted by peer n.
Step 3: If  the file is incomplete, proceed to the next steps.
Step 4: Iterate over all links associated with the file.
Step 5: Search for a free slot to use.
Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If  the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.
Step 9: End the loop for links.
Step 10: End the loop for files.
Step 11: End the pull iteration.
Step 12: Stop the process.

5. Experiment setup
5.1 Simulator
We employed the PeerSim simulator for our experiments due to its efficient 
memory utilization and effectiveness in simulating real-world scenarios 
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to 
implement our proposed protocol, as shown in Figure 3: 

 
Figure 3
A simplified view of  PeerSim components

5.1.1 PeerSim components
5.1.1.1 DHT
We simulated a DHT-lookup by returning pointers to peers using the 
DHT-lookup function. This method accelerated simulations without 
compromising precision. We created a large data transfer among the 
DHT-lookup origin and destination to mimic real-world bandwidth use. This 
optimization enabled more extended simulations that better captured 
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the 
standard master-slave protocol use replication strategies to propagate files 

without DHT lookups. The revised parameters did not influence the amount 
of  DHT lookups, but we changed the number of  neighbors returned to 
account for more replicas.

5.1.1.2 Replication Policy
Our research focuses on developing an efficient file propagation protocol 
independently of  the specific replication policy employed. Hence, our 
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast
The modifications to SpiderCast, as explained in Section 2.2, were 
successfully incorporated into our simulator. SpiderCast's performance will 
be assessed inferentially as part of  our system.

5.1.1.4 Input Files
We categorize input files as Files, Peers, Events, and Parameters. These files 
are vital for the simulator, defining system files, peers, events, and parameter 
values necessary for execution.

5.1.1.5 Output Files
To avoid excessive log generation for uninteresting components, we turned 
off  the logging of  specific components. However, we focused on two 
significant output files:
Delay: The simulator records coordinators' activities, including delays, in log 
files for each file.
Consumption of  Bandwidth: We developed a dedicated monitor to monitor 
the bandwidth usage associated with unique push and pull processes for each 
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics
This study considers two crucial evaluation metrics: propagation time and 
overhead. These metrics allow us to assess our proposed protocol's 
performance compared to the standard master-slave protocol. Propagation 
time refers to the total time taken to disseminate a file from a coordinator to 
all peers within the DHT.
 Control messages, that contribute significantly to overhead, were selected 
for evaluation, as outlined in Table I. Our protocol shares the same DHT, 
failure detection, and SpiderCast with the baseline MS protocol. Thus, the 
overhead associated with these three protocols does not impact the validity of  
our experiment. Table 1 reveals that our proposed protocol generates more pull 

requests than its counterpart, resulting in higher overhead. However, measuring 
pull overhead is not warranted due to the negligible size of  each pull message. 
Our proposed protocol efficiently propagates large files to all participating 
peers during propagation by maintaining necessary state information as 
bitmaps within the push header. Therefore, to measure the total overhead 
contributed by our protocol, we need to consider the size of  the push message.
Table 1
Comparison between existing MS protocol and over proposed protocol

5.3 Dataset
We utilized a Wikipedia trace comprising images and pages to evaluate the 
performance of  extensive file propagation. This dataset encompasses a mix 
of  large and small files obtained by sampling HTTP requests to the server 
over several months (Urdaneta, 2011). The trace consists of  two files: data on 
file types, sizes, and creation dates, and the other detailing updates or new 
creations. Note that the collection contains about 8,400 images that vary in 
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size 
distribution. This section analyzes the crucial parameters in Section 5.5's 
sensitivity. 

 
Figure 4
Distribution of  files size in our dataset

5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Slave (MS)
The conventional master-slave protocol serves as our primary benchmark for 
comparison.

5.4.2 Lower-bound
The lower-bound baseline examines the minimum propagation time, where 
all peers utilize their entire bandwidth to propagate files. This benchmark is 
crucial for assessing collaborative propagation's performance, as it utilizes 
each peer's total bandwidth capacity. The lower-bound time for propagation 
depends on neighbor bandwidth (Taheri-Boshrooyeh, 
Hassanzadeh-Nazarabadi, & Ozkasap, 2020). 

5.5 Important parameters and default values
To streamline our experimentation process and manage the multitude of  
parameters in the system, we assessed several parameters in isolation to study 
their impact on evaluation metrics. Table 2 outlines the most crucial variables 
for our system.

Table 2
Important evaluation criteria and their corresponding default values
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2.3.1 Coordinators
Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial 
role in generating new replicas by distributing documents among peers, 
aligning with the system's replication policy. This replication is necessary to 
address churn and preserve data availability, preventing data loss (Stein, 
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing 
propagation load and latency.

 
Figure 1
Coordinators are propagating files to peers in DHTs

2.3.2 Consistency 
In the pursuit of  achieving consistency, various information propagation 
strategies have been proposed and evolved. This section provides a concise 
overview of  different concepts related to information propagation to 
replicas. It is important to note that the choice of  strategy can vary 
depending on the specific system being employed, and these strategies can be 
adapted to ensure the desired level of  consistency (Nguyen, Hoang, Hluchy, 
Vu, & Le, 2017). 
Push Consistency
Push-based consistency techniques are server-based protocols. These 
protocols allow servers to update replicas. This method carefully orders 
updates received from a server, and pushes them to replicas. Push-based 
protocols ensure timely and consistent update distribution in situations that 
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020). 
Pull Consistency
Client-based protocols, or pull-based procedures, entail replicas frequently 

obtaining updates from a server to check changes. Unlike push-based 
protocols, replicas may easily retrieve updates, which might add overhead. As 
shown in Figure 2, replicas frequently seek data from primary replicas to 
obtain updates when most appropriate for their operating environment, even 
if  it requires additional resource use (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 
2020).
One notable drawback of  these techniques is that they exhibit less uniformity 
than pushing mechanisms. This inherent characteristic implies a substantial 
delay between the initiation of  an update and the moment when the updated 
material becomes accessible on replicas (Xie, Wang, & Wang, 2017). 
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3. Problem definition
In this section, we clearly define the problem at hand and outline the 
requirements that must be met to address this problem effectively.

3.1 Problem
 Replication plays a vital role in enhancing data availability within 
peer-to-peer systems. However, replicating files becomes challenging when 
peers leave the system, potentially eliminating file replicas. Distributed Hash 
Tables (DHTs) offer mechanisms to create and distribute new replicas of  
relatively small files. However, there is a critical gap in propagating replicas of  
larger files (exceeding 1MB in size). Coordinators disseminating these more 
giant file replicas to interested peers encounter significant bandwidth 
constraints, resulting in slowed propagation of  large files. Moreover, peers 
with low-bandwidth connections can further impede the coordinator, leading 

to potential performance degradation across the entire DHT system (Gupta, 
Hada, & Sudhir, 2017).
 The primary objective of  this thesis is to develop a propagation scheme 
capable of  accelerating the distribution of  substantial files within DHTs. The 
implementation of  our proposed propagation protocol offers several 
advantages:

1. It enhanced system performance through the efficient utilization of  
      low bandwidth.
2. It efficiently replicates and rapidly propagates large files, particularly 
       when videos or audio become viral in peer-to-peer systems.
3. It is compatible with mutable and immutable data stored within    
      DHTs, enabling the swift propagation of  updated replicas. 

3.2 Requirements
The efficient and effective propagation of  files within DHTs necessitates the 
fulfilment of  both functional and non-functional requirements (Zhou, Dai, 
& Li, 2006):
Functional Requirements:

1. Ensure that each peer remaining within the system receives a file 
      replica.
2. Our proposed protocol should exclusively involve peers interested 
       in a particular file while excluding unrelated peers.

Non-Functional Requirements:
1. Preserve all essential properties offered by a typical DHT.
2. Maintain scalability, even as the number of  files within the DHT 
       increases, by enhancing load balancing through modified SpiderCast 
       overlays and the propagation of  partial replicas to establish 
       connections between peers.
3. Uphold churn resilience without modifying the recovery 
       mechanisms or failure detection processes of  standard DHTs.
4. Reduce update and replica generation time to increase data 
      availability.
5. Improve bandwidth utilization by deploying a modified push-pull 
      protocol that allows peers to communicate efficiently, considering 
      their available bandwidth.
6. Keep overhead to a minimum by monitoring control messages  
      effectively.

4. Proposed solution
We previously discussed a conventional Master-Slave (MS) distribution 
strategy, where a coordinator was responsible for individually transferring file 
content to each peer. However, this approach needed to be revised, 
particularly in common peer-to-peer system scenarios involving low 
bandwidth connections. To overcome these limitations, we have introduce a 
novel protocol, which we will explain comprehensively along with its 
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed 
for rapidly propagating large files.

4.1.1 Algorithm for push 
In this part, we consider that peer p has received the logs from node n, which 
has begun an iterative push. Periodically, push processes are called. The push 
iteration is started by the subsequent function. The state of  peer n is updated 
in the log entries before pushing is initiated. Then local logs are added, and 
neighbours share them. The following function analyses nearby log files and 
distributes logs tailored to neighbors' interests.
Step 1: Start push iteration for nth time
Step 2: store ← logs( )
Step 3: Loop for all n  neighbors 
Step 4: while (n.push)
Step 5: Send push notification to p
Step 6: End while
Step 7: End Loop
Step 8: Stop

4.1.2 Algorithm for pop
We shall detail the pull procedures in this section. This protocol's major goal 
is to use every available slot, or to occupy every slot. A policy directs the 
sending of  pull requests by transfer slots. The following function goes 
through every file hosted and determines which files are missing.
A file that is unfinished is one for which not all of  the components have been 
sent. We iterate through all nearby hosts of  the same file for each unfinished 
file. If  a transfer slot becomes available, we use it to ask the neighbour for a 
piece. The pull processes are being started by peer n in our pseudo-code in 
order to ask peer p for a piece.
Step 1: Initialize the pull iteration for the nth time.

Step 2: Iterate over all files hosted by peer n.
Step 3: If  the file is incomplete, proceed to the next steps.
Step 4: Iterate over all links associated with the file.
Step 5: Search for a free slot to use.
Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If  the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.
Step 9: End the loop for links.
Step 10: End the loop for files.
Step 11: End the pull iteration.
Step 12: Stop the process.

5. Experiment setup
5.1 Simulator
We employed the PeerSim simulator for our experiments due to its efficient 
memory utilization and effectiveness in simulating real-world scenarios 
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to 
implement our proposed protocol, as shown in Figure 3: 
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5.1.1 PeerSim components
5.1.1.1 DHT
We simulated a DHT-lookup by returning pointers to peers using the 
DHT-lookup function. This method accelerated simulations without 
compromising precision. We created a large data transfer among the 
DHT-lookup origin and destination to mimic real-world bandwidth use. This 
optimization enabled more extended simulations that better captured 
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the 
standard master-slave protocol use replication strategies to propagate files 

without DHT lookups. The revised parameters did not influence the amount 
of  DHT lookups, but we changed the number of  neighbors returned to 
account for more replicas.

5.1.1.2 Replication Policy
Our research focuses on developing an efficient file propagation protocol 
independently of  the specific replication policy employed. Hence, our 
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast
The modifications to SpiderCast, as explained in Section 2.2, were 
successfully incorporated into our simulator. SpiderCast's performance will 
be assessed inferentially as part of  our system.

5.1.1.4 Input Files
We categorize input files as Files, Peers, Events, and Parameters. These files 
are vital for the simulator, defining system files, peers, events, and parameter 
values necessary for execution.

5.1.1.5 Output Files
To avoid excessive log generation for uninteresting components, we turned 
off  the logging of  specific components. However, we focused on two 
significant output files:
Delay: The simulator records coordinators' activities, including delays, in log 
files for each file.
Consumption of  Bandwidth: We developed a dedicated monitor to monitor 
the bandwidth usage associated with unique push and pull processes for each 
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics
This study considers two crucial evaluation metrics: propagation time and 
overhead. These metrics allow us to assess our proposed protocol's 
performance compared to the standard master-slave protocol. Propagation 
time refers to the total time taken to disseminate a file from a coordinator to 
all peers within the DHT.
 Control messages, that contribute significantly to overhead, were selected 
for evaluation, as outlined in Table I. Our protocol shares the same DHT, 
failure detection, and SpiderCast with the baseline MS protocol. Thus, the 
overhead associated with these three protocols does not impact the validity of  
our experiment. Table 1 reveals that our proposed protocol generates more pull 

requests than its counterpart, resulting in higher overhead. However, measuring 
pull overhead is not warranted due to the negligible size of  each pull message. 
Our proposed protocol efficiently propagates large files to all participating 
peers during propagation by maintaining necessary state information as 
bitmaps within the push header. Therefore, to measure the total overhead 
contributed by our protocol, we need to consider the size of  the push message.
Table 1
Comparison between existing MS protocol and over proposed protocol

5.3 Dataset
We utilized a Wikipedia trace comprising images and pages to evaluate the 
performance of  extensive file propagation. This dataset encompasses a mix 
of  large and small files obtained by sampling HTTP requests to the server 
over several months (Urdaneta, 2011). The trace consists of  two files: data on 
file types, sizes, and creation dates, and the other detailing updates or new 
creations. Note that the collection contains about 8,400 images that vary in 
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size 
distribution. This section analyzes the crucial parameters in Section 5.5's 
sensitivity. 
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5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Slave (MS)
The conventional master-slave protocol serves as our primary benchmark for 
comparison.

5.4.2 Lower-bound
The lower-bound baseline examines the minimum propagation time, where 
all peers utilize their entire bandwidth to propagate files. This benchmark is 
crucial for assessing collaborative propagation's performance, as it utilizes 
each peer's total bandwidth capacity. The lower-bound time for propagation 
depends on neighbor bandwidth (Taheri-Boshrooyeh, 
Hassanzadeh-Nazarabadi, & Ozkasap, 2020). 

5.5 Important parameters and default values
To streamline our experimentation process and manage the multitude of  
parameters in the system, we assessed several parameters in isolation to study 
their impact on evaluation metrics. Table 2 outlines the most crucial variables 
for our system.

Table 2
Important evaluation criteria and their corresponding default values

Overhead Standard MS protocol Our proposed protocol
Push Control message exclusive of  maps Control message inclusive of  maps
Pull One large message Single message for each piece
DHT Unchanged Unchanged
Failure Detection Unchanged Unchanged
SpiderCast Unchanged Unchanged
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2.3.1 Coordinators
Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial 
role in generating new replicas by distributing documents among peers, 
aligning with the system's replication policy. This replication is necessary to 
address churn and preserve data availability, preventing data loss (Stein, 
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing 
propagation load and latency.
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2.3.2 Consistency 
In the pursuit of  achieving consistency, various information propagation 
strategies have been proposed and evolved. This section provides a concise 
overview of  different concepts related to information propagation to 
replicas. It is important to note that the choice of  strategy can vary 
depending on the specific system being employed, and these strategies can be 
adapted to ensure the desired level of  consistency (Nguyen, Hoang, Hluchy, 
Vu, & Le, 2017). 
Push Consistency
Push-based consistency techniques are server-based protocols. These 
protocols allow servers to update replicas. This method carefully orders 
updates received from a server, and pushes them to replicas. Push-based 
protocols ensure timely and consistent update distribution in situations that 
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020). 
Pull Consistency
Client-based protocols, or pull-based procedures, entail replicas frequently 

obtaining updates from a server to check changes. Unlike push-based 
protocols, replicas may easily retrieve updates, which might add overhead. As 
shown in Figure 2, replicas frequently seek data from primary replicas to 
obtain updates when most appropriate for their operating environment, even 
if  it requires additional resource use (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 
2020).
One notable drawback of  these techniques is that they exhibit less uniformity 
than pushing mechanisms. This inherent characteristic implies a substantial 
delay between the initiation of  an update and the moment when the updated 
material becomes accessible on replicas (Xie, Wang, & Wang, 2017). 
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3. Problem definition
In this section, we clearly define the problem at hand and outline the 
requirements that must be met to address this problem effectively.

3.1 Problem
 Replication plays a vital role in enhancing data availability within 
peer-to-peer systems. However, replicating files becomes challenging when 
peers leave the system, potentially eliminating file replicas. Distributed Hash 
Tables (DHTs) offer mechanisms to create and distribute new replicas of  
relatively small files. However, there is a critical gap in propagating replicas of  
larger files (exceeding 1MB in size). Coordinators disseminating these more 
giant file replicas to interested peers encounter significant bandwidth 
constraints, resulting in slowed propagation of  large files. Moreover, peers 
with low-bandwidth connections can further impede the coordinator, leading 

to potential performance degradation across the entire DHT system (Gupta, 
Hada, & Sudhir, 2017).
 The primary objective of  this thesis is to develop a propagation scheme 
capable of  accelerating the distribution of  substantial files within DHTs. The 
implementation of  our proposed propagation protocol offers several 
advantages:

1. It enhanced system performance through the efficient utilization of  
      low bandwidth.
2. It efficiently replicates and rapidly propagates large files, particularly 
       when videos or audio become viral in peer-to-peer systems.
3. It is compatible with mutable and immutable data stored within    
      DHTs, enabling the swift propagation of  updated replicas. 

3.2 Requirements
The efficient and effective propagation of  files within DHTs necessitates the 
fulfilment of  both functional and non-functional requirements (Zhou, Dai, 
& Li, 2006):
Functional Requirements:

1. Ensure that each peer remaining within the system receives a file 
      replica.
2. Our proposed protocol should exclusively involve peers interested 
       in a particular file while excluding unrelated peers.

Non-Functional Requirements:
1. Preserve all essential properties offered by a typical DHT.
2. Maintain scalability, even as the number of  files within the DHT 
       increases, by enhancing load balancing through modified SpiderCast 
       overlays and the propagation of  partial replicas to establish 
       connections between peers.
3. Uphold churn resilience without modifying the recovery 
       mechanisms or failure detection processes of  standard DHTs.
4. Reduce update and replica generation time to increase data 
      availability.
5. Improve bandwidth utilization by deploying a modified push-pull 
      protocol that allows peers to communicate efficiently, considering 
      their available bandwidth.
6. Keep overhead to a minimum by monitoring control messages  
      effectively.

4. Proposed solution
We previously discussed a conventional Master-Slave (MS) distribution 
strategy, where a coordinator was responsible for individually transferring file 
content to each peer. However, this approach needed to be revised, 
particularly in common peer-to-peer system scenarios involving low 
bandwidth connections. To overcome these limitations, we have introduce a 
novel protocol, which we will explain comprehensively along with its 
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed 
for rapidly propagating large files.

4.1.1 Algorithm for push 
In this part, we consider that peer p has received the logs from node n, which 
has begun an iterative push. Periodically, push processes are called. The push 
iteration is started by the subsequent function. The state of  peer n is updated 
in the log entries before pushing is initiated. Then local logs are added, and 
neighbours share them. The following function analyses nearby log files and 
distributes logs tailored to neighbors' interests.
Step 1: Start push iteration for nth time
Step 2: store ← logs( )
Step 3: Loop for all n  neighbors 
Step 4: while (n.push)
Step 5: Send push notification to p
Step 6: End while
Step 7: End Loop
Step 8: Stop

4.1.2 Algorithm for pop
We shall detail the pull procedures in this section. This protocol's major goal 
is to use every available slot, or to occupy every slot. A policy directs the 
sending of  pull requests by transfer slots. The following function goes 
through every file hosted and determines which files are missing.
A file that is unfinished is one for which not all of  the components have been 
sent. We iterate through all nearby hosts of  the same file for each unfinished 
file. If  a transfer slot becomes available, we use it to ask the neighbour for a 
piece. The pull processes are being started by peer n in our pseudo-code in 
order to ask peer p for a piece.
Step 1: Initialize the pull iteration for the nth time.

Step 2: Iterate over all files hosted by peer n.
Step 3: If  the file is incomplete, proceed to the next steps.
Step 4: Iterate over all links associated with the file.
Step 5: Search for a free slot to use.
Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If  the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.
Step 9: End the loop for links.
Step 10: End the loop for files.
Step 11: End the pull iteration.
Step 12: Stop the process.

5. Experiment setup
5.1 Simulator
We employed the PeerSim simulator for our experiments due to its efficient 
memory utilization and effectiveness in simulating real-world scenarios 
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to 
implement our proposed protocol, as shown in Figure 3: 
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5.1.1 PeerSim components
5.1.1.1 DHT
We simulated a DHT-lookup by returning pointers to peers using the 
DHT-lookup function. This method accelerated simulations without 
compromising precision. We created a large data transfer among the 
DHT-lookup origin and destination to mimic real-world bandwidth use. This 
optimization enabled more extended simulations that better captured 
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the 
standard master-slave protocol use replication strategies to propagate files 

without DHT lookups. The revised parameters did not influence the amount 
of  DHT lookups, but we changed the number of  neighbors returned to 
account for more replicas.

5.1.1.2 Replication Policy
Our research focuses on developing an efficient file propagation protocol 
independently of  the specific replication policy employed. Hence, our 
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast
The modifications to SpiderCast, as explained in Section 2.2, were 
successfully incorporated into our simulator. SpiderCast's performance will 
be assessed inferentially as part of  our system.

5.1.1.4 Input Files
We categorize input files as Files, Peers, Events, and Parameters. These files 
are vital for the simulator, defining system files, peers, events, and parameter 
values necessary for execution.

5.1.1.5 Output Files
To avoid excessive log generation for uninteresting components, we turned 
off  the logging of  specific components. However, we focused on two 
significant output files:
Delay: The simulator records coordinators' activities, including delays, in log 
files for each file.
Consumption of  Bandwidth: We developed a dedicated monitor to monitor 
the bandwidth usage associated with unique push and pull processes for each 
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics
This study considers two crucial evaluation metrics: propagation time and 
overhead. These metrics allow us to assess our proposed protocol's 
performance compared to the standard master-slave protocol. Propagation 
time refers to the total time taken to disseminate a file from a coordinator to 
all peers within the DHT.
 Control messages, that contribute significantly to overhead, were selected 
for evaluation, as outlined in Table I. Our protocol shares the same DHT, 
failure detection, and SpiderCast with the baseline MS protocol. Thus, the 
overhead associated with these three protocols does not impact the validity of  
our experiment. Table 1 reveals that our proposed protocol generates more pull 

requests than its counterpart, resulting in higher overhead. However, measuring 
pull overhead is not warranted due to the negligible size of  each pull message. 
Our proposed protocol efficiently propagates large files to all participating 
peers during propagation by maintaining necessary state information as 
bitmaps within the push header. Therefore, to measure the total overhead 
contributed by our protocol, we need to consider the size of  the push message.
Table 1
Comparison between existing MS protocol and over proposed protocol

5.3 Dataset
We utilized a Wikipedia trace comprising images and pages to evaluate the 
performance of  extensive file propagation. This dataset encompasses a mix 
of  large and small files obtained by sampling HTTP requests to the server 
over several months (Urdaneta, 2011). The trace consists of  two files: data on 
file types, sizes, and creation dates, and the other detailing updates or new 
creations. Note that the collection contains about 8,400 images that vary in 
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size 
distribution. This section analyzes the crucial parameters in Section 5.5's 
sensitivity. 

 
Figure 4
Distribution of  files size in our dataset

5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Slave (MS)
The conventional master-slave protocol serves as our primary benchmark for 
comparison.

5.4.2 Lower-bound
The lower-bound baseline examines the minimum propagation time, where 
all peers utilize their entire bandwidth to propagate files. This benchmark is 
crucial for assessing collaborative propagation's performance, as it utilizes 
each peer's total bandwidth capacity. The lower-bound time for propagation 
depends on neighbor bandwidth (Taheri-Boshrooyeh, 
Hassanzadeh-Nazarabadi, & Ozkasap, 2020). 

5.5 Important parameters and default values
To streamline our experimentation process and manage the multitude of  
parameters in the system, we assessed several parameters in isolation to study 
their impact on evaluation metrics. Table 2 outlines the most crucial variables 
for our system.

Table 2
Important evaluation criteria and their corresponding default values
System parameters Default values
Number of  active peers 10000
Peer-to-peer uniformity of  bandwidth Yes
Reversing a successful piece reception Yes
Retort following piece reception failure Yes
Iterative reactive pull after push Yes
Timeout nodes 50s

Peer parameters Default values
Peer bandwidth 30 KB/s
Number of  transfer slots for peers 2
Transfer slot request policies Random
Size of  pieces in the system 3 KB
Frequency of  push procedures 30s
Frequency of  pull procedures 100s
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Figure 11
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Figure 12 depicts the consumption of  overhead for increasing number of  
participated peers. It can be seen from the figure that overhead consumption 
is proportional to the increasing number of  replicas. For instance, highest 
amount of  overhead was consumed for propagating 10 replicas where as 
negligible amount of  overhead consumed for propagating 5 replicas within 
DHT. Overall, the consumption of  overhead is slightly over 0.1% by our 
proposed protocol that is very negligible.

 
Figure 12
Overhead for the P2PPP protocol's growing participant population

6. Results and analysis
The primary objective of  this study is to assess the speed at which large files 
propagate within DHTs using our proposed protocol compared to the 
existing master-slave protocol designed for the same purpose. Additionally, 
this experiment aims to quantify the reduction in overhead achieved by our 
proposed protocol. This section analyzes the crucial parameters in Section 
5.5's sensitivity.  

6.1 Default values
Our initial and critical evaluation metric focuses on the propagation delay 
introduced by our novel protocol within the DHT. Figure 5 presents the 
results obtained from ten iterations involving different seed sizes. The graph 
illustrates the mean propagation time based on default parameters across 
numerous experiments. The error bars within the graph represent the 
minimum and maximum delays observed when propagating seven copies of  
the same file within the DHT.
The propagation delay increases as file sizes grow. However, particular spikes 
are noticeable due to the inherent system for distributing events in the 
Master-Slave (MS) procedure. These spikes occur because files are 
introduced into the DHT with uneven timing, leading to irregular 
propagation patterns in the graph. An event trace was conducted randomly 
to mitigate this issue, introducing the duplicate files into the DHT 
randomized. Consequently, these spikes were eliminated from our dataset 
sourced from Wikipedia.

Figure 5 underscores the stability of  our novel protocol concerning 
propagation delays. This stability can be attributed to the randomized 
selection of  coordinators, which significantly alleviates the propagation delay 
by distributing a substantial portion of  the load away from the coordinator.  
 

Figure 5
The propagation time for proposed default values

Our proposed protocol's evaluation of  overhead introduced to the 
Distributed Hash Table (DHT) represents the second crucial metric in this 
research endeavor. Figure 6 comprehensively illustrates the bandwidth 
consumption attributed to our innovative protocol. During the propagation 
of  a substantial file exceeding 18 MB, the most efficient utilization of  push 
bandwidth recorded was slightly below 250 KB. Consequently, the overhead 
incurred during the propagation of  the most extensive file via our protocol 
does not exceed 0.2%.
 Notably, the graph exhibits some minor spikes, primarily attributable to 
increases in propagation time. An escalation in propagation delay necessitates 
transmitting a more significant number of  push messages, which, in turn, 
contributes to the observed overhead.

 

Figure 6
Push bandwidth consumed by our protocol

6.2 Transfer slots
Increasing the number of  transfer slots during propagation boosts our 
protocol's parallelism. In this scenario, interested peers can concurrently 
execute multiple requests from their neighboring peers, reducing propagation 
time. Figure 7 visually represents the propagation time observed when 
propagating seven identical file copies, considering various available 
neighboring transfer slots, including 1, 2, 4, 6, and 8.

 

Figure 7
Transfer slots' impact on propagation time

The insights gleaned from Figure 7 reveal that a noticeable reduction in 
propagation time is achieved with an increasing number of  available transfer 
slots. However, it is crucial to note that this enhanced parallelism does result 
in increased overhead attributed to the higher volume of  request copies 
originating from a single neighbor. Intriguingly, the optimal balance between 
propagation time and overhead is struck when precisely six transfer slots are 
available from neighboring peers. Surprisingly, a significant reduction in 
propagation time is evident when each neighbor possesses only a single 
transfer slot.
 In summary, our dataset demonstrates that the most efficient 
propagation time is achieved when six transfer slots are available, despite 
marginal disparities between 8 and 4 slots.
 Figure 8 further elucidates the impact of  different transfer slots on 
overhead. It becomes apparent that overhead diminishes as the number of  
transfer slots increases. This phenomenon can be attributed to the expedited 
propagation process, resulting in fewer push messages sent by participant 
nodes. Notably, the overhead consumption is minimized when six transfer 
slots are available in the dataset compared to other alternatives.
 These outcomes are consistent with those observed in Figure 7, as 
propagation time and protocol overhead are closely intertwined. The highest 
level of  overhead consumption, which remains below 350 KB, is recorded 
when a neighbor possesses only a single transfer slot. Overall, it is 
noteworthy that the overhead consumption does not exceed 0.3% in any 
scenario.
  

 
Figure 8
Effect of  transfer slots on protocol overhead

6.3 Piece size
Here, we are going to examine how the alteration of  component sizes affects 
propagation time and overhead usage. To do that default values will be used 
apart from changing the parameter of  piece size. From figure 9, it can be seen 
that propagation time increased with the decrement of  piece size. It is noted 
that negligible propagation time observed for over 100 KB piece size but 
highest propagation delay occured for 10 KB piece size.

 
Figure 9
Propagation delay for different piece sizes

Following figure 10 illustrates consumption of  overhead due to the push 
message of  different piece sizes. The overhead is drastically increased to 
approximately 180 KB when having 30 KB piece size while less than 20 KB 
overhead has been consumed with the piece size of  150 KB. In relation to 
the volume of  data propagated, less than 1.1% overhead has been consumed.

 

Figure 10
Median push bandwidth usage according to item size

6.4 Amount of  replicas
Here, we only modify the number of  created replicas and leave rest of  the 
parameters remain unchanged. Following table 3 shows the values used for 
replication policy.

Table 3
Values the replication policy takes into account while selecting coordinators and replicas

It can be seen from the figure 11 that surprisingly, propagation time enlarges 
gradually with the increasing number of  participants during propagation. For 
instance, 10 copies of  file propagation have more spikes than propagating 5 
copies.  Figure 11 illustrates that in all 3 experiments with different replicas 
(5, 7 and 10), our proposed protocol performs well in term of  holding lower 
propagation time than its counterpart MS protocol. The reason behind 
performing worse by MS protocol is that an entire file has to propagate to all 
the participating peers which lead to increasing propagation delay. 

6.5 Bandwidth
In order to get best possible result of  propagation time and overhead caused 
by peer bandwidth, number of  transfer slots and piece sizes should be 
modified from the default value mentioned in section 5.5. Table 4 shows the 
modified values of  transfer slots and piece sizes during sensitivity analysis of  
peer bandwidth. Those parameters were chosen according to the amount of  
contributed bandwidth.
Table 4
Modified transfer slots and piece size

Following figure 13 shows the propagation time during the consumption of  
contributed bandwidth of  peers. The graph shows that our proposed 
protocol perform less propagation delay than it master-slave counterpart.

 

Figure 13
Propagation speed changes with peer bandwidth contribution

Figure 14 depicts the consumption of  overhead due to the propagation of  
push messages during sensitivity analysis. It can be seen from the graph that 
there is a reciprocal relationship between overhead consumption and 
utilization of  bandwidth. For instance, the consumption of  overhead is 
highest when there is a lower utilization of  peer bandwidth.

Replication parameters Default values
Peers returned via DHT-lookup 10
Number of  replicas to create 7

SpiderCast parameters Default values
Frequency of  maintenance procedure 3 mins
Method of  selecting neighbours Greedy
Neighbour preference for each file 3
Maximum number of  consecutive executions 15

Churn parameters Default values
Availability skewness None
Maximum peer availability None
Mean offline time None



154 IIUC Studies, Vol.-20, Issue-1, June 2023

 
Figure 11
Propagation lag when 5, 7, and 10 clones are created

Figure 12 depicts the consumption of  overhead for increasing number of  
participated peers. It can be seen from the figure that overhead consumption 
is proportional to the increasing number of  replicas. For instance, highest 
amount of  overhead was consumed for propagating 10 replicas where as 
negligible amount of  overhead consumed for propagating 5 replicas within 
DHT. Overall, the consumption of  overhead is slightly over 0.1% by our 
proposed protocol that is very negligible.
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6. Results and analysis
The primary objective of  this study is to assess the speed at which large files 
propagate within DHTs using our proposed protocol compared to the 
existing master-slave protocol designed for the same purpose. Additionally, 
this experiment aims to quantify the reduction in overhead achieved by our 
proposed protocol. This section analyzes the crucial parameters in Section 
5.5's sensitivity.  

6.1 Default values
Our initial and critical evaluation metric focuses on the propagation delay 
introduced by our novel protocol within the DHT. Figure 5 presents the 
results obtained from ten iterations involving different seed sizes. The graph 
illustrates the mean propagation time based on default parameters across 
numerous experiments. The error bars within the graph represent the 
minimum and maximum delays observed when propagating seven copies of  
the same file within the DHT.
The propagation delay increases as file sizes grow. However, particular spikes 
are noticeable due to the inherent system for distributing events in the 
Master-Slave (MS) procedure. These spikes occur because files are 
introduced into the DHT with uneven timing, leading to irregular 
propagation patterns in the graph. An event trace was conducted randomly 
to mitigate this issue, introducing the duplicate files into the DHT 
randomized. Consequently, these spikes were eliminated from our dataset 
sourced from Wikipedia.

Figure 5 underscores the stability of  our novel protocol concerning 
propagation delays. This stability can be attributed to the randomized 
selection of  coordinators, which significantly alleviates the propagation delay 
by distributing a substantial portion of  the load away from the coordinator.  
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Our proposed protocol's evaluation of  overhead introduced to the 
Distributed Hash Table (DHT) represents the second crucial metric in this 
research endeavor. Figure 6 comprehensively illustrates the bandwidth 
consumption attributed to our innovative protocol. During the propagation 
of  a substantial file exceeding 18 MB, the most efficient utilization of  push 
bandwidth recorded was slightly below 250 KB. Consequently, the overhead 
incurred during the propagation of  the most extensive file via our protocol 
does not exceed 0.2%.
 Notably, the graph exhibits some minor spikes, primarily attributable to 
increases in propagation time. An escalation in propagation delay necessitates 
transmitting a more significant number of  push messages, which, in turn, 
contributes to the observed overhead.

 

Figure 6
Push bandwidth consumed by our protocol

6.2 Transfer slots
Increasing the number of  transfer slots during propagation boosts our 
protocol's parallelism. In this scenario, interested peers can concurrently 
execute multiple requests from their neighboring peers, reducing propagation 
time. Figure 7 visually represents the propagation time observed when 
propagating seven identical file copies, considering various available 
neighboring transfer slots, including 1, 2, 4, 6, and 8.

 

Figure 7
Transfer slots' impact on propagation time

The insights gleaned from Figure 7 reveal that a noticeable reduction in 
propagation time is achieved with an increasing number of  available transfer 
slots. However, it is crucial to note that this enhanced parallelism does result 
in increased overhead attributed to the higher volume of  request copies 
originating from a single neighbor. Intriguingly, the optimal balance between 
propagation time and overhead is struck when precisely six transfer slots are 
available from neighboring peers. Surprisingly, a significant reduction in 
propagation time is evident when each neighbor possesses only a single 
transfer slot.
 In summary, our dataset demonstrates that the most efficient 
propagation time is achieved when six transfer slots are available, despite 
marginal disparities between 8 and 4 slots.
 Figure 8 further elucidates the impact of  different transfer slots on 
overhead. It becomes apparent that overhead diminishes as the number of  
transfer slots increases. This phenomenon can be attributed to the expedited 
propagation process, resulting in fewer push messages sent by participant 
nodes. Notably, the overhead consumption is minimized when six transfer 
slots are available in the dataset compared to other alternatives.
 These outcomes are consistent with those observed in Figure 7, as 
propagation time and protocol overhead are closely intertwined. The highest 
level of  overhead consumption, which remains below 350 KB, is recorded 
when a neighbor possesses only a single transfer slot. Overall, it is 
noteworthy that the overhead consumption does not exceed 0.3% in any 
scenario.
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6.3 Piece size
Here, we are going to examine how the alteration of  component sizes affects 
propagation time and overhead usage. To do that default values will be used 
apart from changing the parameter of  piece size. From figure 9, it can be seen 
that propagation time increased with the decrement of  piece size. It is noted 
that negligible propagation time observed for over 100 KB piece size but 
highest propagation delay occured for 10 KB piece size.

 
Figure 9
Propagation delay for different piece sizes

Following figure 10 illustrates consumption of  overhead due to the push 
message of  different piece sizes. The overhead is drastically increased to 
approximately 180 KB when having 30 KB piece size while less than 20 KB 
overhead has been consumed with the piece size of  150 KB. In relation to 
the volume of  data propagated, less than 1.1% overhead has been consumed.

 

Figure 10
Median push bandwidth usage according to item size

6.4 Amount of  replicas
Here, we only modify the number of  created replicas and leave rest of  the 
parameters remain unchanged. Following table 3 shows the values used for 
replication policy.

Table 3
Values the replication policy takes into account while selecting coordinators and replicas

It can be seen from the figure 11 that surprisingly, propagation time enlarges 
gradually with the increasing number of  participants during propagation. For 
instance, 10 copies of  file propagation have more spikes than propagating 5 
copies.  Figure 11 illustrates that in all 3 experiments with different replicas 
(5, 7 and 10), our proposed protocol performs well in term of  holding lower 
propagation time than its counterpart MS protocol. The reason behind 
performing worse by MS protocol is that an entire file has to propagate to all 
the participating peers which lead to increasing propagation delay. 

6.5 Bandwidth
In order to get best possible result of  propagation time and overhead caused 
by peer bandwidth, number of  transfer slots and piece sizes should be 
modified from the default value mentioned in section 5.5. Table 4 shows the 
modified values of  transfer slots and piece sizes during sensitivity analysis of  
peer bandwidth. Those parameters were chosen according to the amount of  
contributed bandwidth.
Table 4
Modified transfer slots and piece size

Following figure 13 shows the propagation time during the consumption of  
contributed bandwidth of  peers. The graph shows that our proposed 
protocol perform less propagation delay than it master-slave counterpart.

 

Figure 13
Propagation speed changes with peer bandwidth contribution

Figure 14 depicts the consumption of  overhead due to the propagation of  
push messages during sensitivity analysis. It can be seen from the graph that 
there is a reciprocal relationship between overhead consumption and 
utilization of  bandwidth. For instance, the consumption of  overhead is 
highest when there is a lower utilization of  peer bandwidth.
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Figure 12 depicts the consumption of  overhead for increasing number of  
participated peers. It can be seen from the figure that overhead consumption 
is proportional to the increasing number of  replicas. For instance, highest 
amount of  overhead was consumed for propagating 10 replicas where as 
negligible amount of  overhead consumed for propagating 5 replicas within 
DHT. Overall, the consumption of  overhead is slightly over 0.1% by our 
proposed protocol that is very negligible.

 
Figure 12
Overhead for the P2PPP protocol's growing participant population

6. Results and analysis
The primary objective of  this study is to assess the speed at which large files 
propagate within DHTs using our proposed protocol compared to the 
existing master-slave protocol designed for the same purpose. Additionally, 
this experiment aims to quantify the reduction in overhead achieved by our 
proposed protocol. This section analyzes the crucial parameters in Section 
5.5's sensitivity.  

6.1 Default values
Our initial and critical evaluation metric focuses on the propagation delay 
introduced by our novel protocol within the DHT. Figure 5 presents the 
results obtained from ten iterations involving different seed sizes. The graph 
illustrates the mean propagation time based on default parameters across 
numerous experiments. The error bars within the graph represent the 
minimum and maximum delays observed when propagating seven copies of  
the same file within the DHT.
The propagation delay increases as file sizes grow. However, particular spikes 
are noticeable due to the inherent system for distributing events in the 
Master-Slave (MS) procedure. These spikes occur because files are 
introduced into the DHT with uneven timing, leading to irregular 
propagation patterns in the graph. An event trace was conducted randomly 
to mitigate this issue, introducing the duplicate files into the DHT 
randomized. Consequently, these spikes were eliminated from our dataset 
sourced from Wikipedia.

Figure 5 underscores the stability of  our novel protocol concerning 
propagation delays. This stability can be attributed to the randomized 
selection of  coordinators, which significantly alleviates the propagation delay 
by distributing a substantial portion of  the load away from the coordinator.  
 

Figure 5
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Our proposed protocol's evaluation of  overhead introduced to the 
Distributed Hash Table (DHT) represents the second crucial metric in this 
research endeavor. Figure 6 comprehensively illustrates the bandwidth 
consumption attributed to our innovative protocol. During the propagation 
of  a substantial file exceeding 18 MB, the most efficient utilization of  push 
bandwidth recorded was slightly below 250 KB. Consequently, the overhead 
incurred during the propagation of  the most extensive file via our protocol 
does not exceed 0.2%.
 Notably, the graph exhibits some minor spikes, primarily attributable to 
increases in propagation time. An escalation in propagation delay necessitates 
transmitting a more significant number of  push messages, which, in turn, 
contributes to the observed overhead.

 

Figure 6
Push bandwidth consumed by our protocol

6.2 Transfer slots
Increasing the number of  transfer slots during propagation boosts our 
protocol's parallelism. In this scenario, interested peers can concurrently 
execute multiple requests from their neighboring peers, reducing propagation 
time. Figure 7 visually represents the propagation time observed when 
propagating seven identical file copies, considering various available 
neighboring transfer slots, including 1, 2, 4, 6, and 8.

 

Figure 7
Transfer slots' impact on propagation time

The insights gleaned from Figure 7 reveal that a noticeable reduction in 
propagation time is achieved with an increasing number of  available transfer 
slots. However, it is crucial to note that this enhanced parallelism does result 
in increased overhead attributed to the higher volume of  request copies 
originating from a single neighbor. Intriguingly, the optimal balance between 
propagation time and overhead is struck when precisely six transfer slots are 
available from neighboring peers. Surprisingly, a significant reduction in 
propagation time is evident when each neighbor possesses only a single 
transfer slot.
 In summary, our dataset demonstrates that the most efficient 
propagation time is achieved when six transfer slots are available, despite 
marginal disparities between 8 and 4 slots.
 Figure 8 further elucidates the impact of  different transfer slots on 
overhead. It becomes apparent that overhead diminishes as the number of  
transfer slots increases. This phenomenon can be attributed to the expedited 
propagation process, resulting in fewer push messages sent by participant 
nodes. Notably, the overhead consumption is minimized when six transfer 
slots are available in the dataset compared to other alternatives.
 These outcomes are consistent with those observed in Figure 7, as 
propagation time and protocol overhead are closely intertwined. The highest 
level of  overhead consumption, which remains below 350 KB, is recorded 
when a neighbor possesses only a single transfer slot. Overall, it is 
noteworthy that the overhead consumption does not exceed 0.3% in any 
scenario.
  

 
Figure 8
Effect of  transfer slots on protocol overhead

6.3 Piece size
Here, we are going to examine how the alteration of  component sizes affects 
propagation time and overhead usage. To do that default values will be used 
apart from changing the parameter of  piece size. From figure 9, it can be seen 
that propagation time increased with the decrement of  piece size. It is noted 
that negligible propagation time observed for over 100 KB piece size but 
highest propagation delay occured for 10 KB piece size.

 
Figure 9
Propagation delay for different piece sizes

Following figure 10 illustrates consumption of  overhead due to the push 
message of  different piece sizes. The overhead is drastically increased to 
approximately 180 KB when having 30 KB piece size while less than 20 KB 
overhead has been consumed with the piece size of  150 KB. In relation to 
the volume of  data propagated, less than 1.1% overhead has been consumed.

 

Figure 10
Median push bandwidth usage according to item size

6.4 Amount of  replicas
Here, we only modify the number of  created replicas and leave rest of  the 
parameters remain unchanged. Following table 3 shows the values used for 
replication policy.

Table 3
Values the replication policy takes into account while selecting coordinators and replicas

It can be seen from the figure 11 that surprisingly, propagation time enlarges 
gradually with the increasing number of  participants during propagation. For 
instance, 10 copies of  file propagation have more spikes than propagating 5 
copies.  Figure 11 illustrates that in all 3 experiments with different replicas 
(5, 7 and 10), our proposed protocol performs well in term of  holding lower 
propagation time than its counterpart MS protocol. The reason behind 
performing worse by MS protocol is that an entire file has to propagate to all 
the participating peers which lead to increasing propagation delay. 

6.5 Bandwidth
In order to get best possible result of  propagation time and overhead caused 
by peer bandwidth, number of  transfer slots and piece sizes should be 
modified from the default value mentioned in section 5.5. Table 4 shows the 
modified values of  transfer slots and piece sizes during sensitivity analysis of  
peer bandwidth. Those parameters were chosen according to the amount of  
contributed bandwidth.
Table 4
Modified transfer slots and piece size

Following figure 13 shows the propagation time during the consumption of  
contributed bandwidth of  peers. The graph shows that our proposed 
protocol perform less propagation delay than it master-slave counterpart.

 

Figure 13
Propagation speed changes with peer bandwidth contribution

Figure 14 depicts the consumption of  overhead due to the propagation of  
push messages during sensitivity analysis. It can be seen from the graph that 
there is a reciprocal relationship between overhead consumption and 
utilization of  bandwidth. For instance, the consumption of  overhead is 
highest when there is a lower utilization of  peer bandwidth.
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amount of  overhead was consumed for propagating 10 replicas where as 
negligible amount of  overhead consumed for propagating 5 replicas within 
DHT. Overall, the consumption of  overhead is slightly over 0.1% by our 
proposed protocol that is very negligible.

 
Figure 12
Overhead for the P2PPP protocol's growing participant population

6. Results and analysis
The primary objective of  this study is to assess the speed at which large files 
propagate within DHTs using our proposed protocol compared to the 
existing master-slave protocol designed for the same purpose. Additionally, 
this experiment aims to quantify the reduction in overhead achieved by our 
proposed protocol. This section analyzes the crucial parameters in Section 
5.5's sensitivity.  

6.1 Default values
Our initial and critical evaluation metric focuses on the propagation delay 
introduced by our novel protocol within the DHT. Figure 5 presents the 
results obtained from ten iterations involving different seed sizes. The graph 
illustrates the mean propagation time based on default parameters across 
numerous experiments. The error bars within the graph represent the 
minimum and maximum delays observed when propagating seven copies of  
the same file within the DHT.
The propagation delay increases as file sizes grow. However, particular spikes 
are noticeable due to the inherent system for distributing events in the 
Master-Slave (MS) procedure. These spikes occur because files are 
introduced into the DHT with uneven timing, leading to irregular 
propagation patterns in the graph. An event trace was conducted randomly 
to mitigate this issue, introducing the duplicate files into the DHT 
randomized. Consequently, these spikes were eliminated from our dataset 
sourced from Wikipedia.

Figure 5 underscores the stability of  our novel protocol concerning 
propagation delays. This stability can be attributed to the randomized 
selection of  coordinators, which significantly alleviates the propagation delay 
by distributing a substantial portion of  the load away from the coordinator.  
 

Figure 5
The propagation time for proposed default values

Our proposed protocol's evaluation of  overhead introduced to the 
Distributed Hash Table (DHT) represents the second crucial metric in this 
research endeavor. Figure 6 comprehensively illustrates the bandwidth 
consumption attributed to our innovative protocol. During the propagation 
of  a substantial file exceeding 18 MB, the most efficient utilization of  push 
bandwidth recorded was slightly below 250 KB. Consequently, the overhead 
incurred during the propagation of  the most extensive file via our protocol 
does not exceed 0.2%.
 Notably, the graph exhibits some minor spikes, primarily attributable to 
increases in propagation time. An escalation in propagation delay necessitates 
transmitting a more significant number of  push messages, which, in turn, 
contributes to the observed overhead.
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Push bandwidth consumed by our protocol

6.2 Transfer slots
Increasing the number of  transfer slots during propagation boosts our 
protocol's parallelism. In this scenario, interested peers can concurrently 
execute multiple requests from their neighboring peers, reducing propagation 
time. Figure 7 visually represents the propagation time observed when 
propagating seven identical file copies, considering various available 
neighboring transfer slots, including 1, 2, 4, 6, and 8.

 

Figure 7
Transfer slots' impact on propagation time

The insights gleaned from Figure 7 reveal that a noticeable reduction in 
propagation time is achieved with an increasing number of  available transfer 
slots. However, it is crucial to note that this enhanced parallelism does result 
in increased overhead attributed to the higher volume of  request copies 
originating from a single neighbor. Intriguingly, the optimal balance between 
propagation time and overhead is struck when precisely six transfer slots are 
available from neighboring peers. Surprisingly, a significant reduction in 
propagation time is evident when each neighbor possesses only a single 
transfer slot.
 In summary, our dataset demonstrates that the most efficient 
propagation time is achieved when six transfer slots are available, despite 
marginal disparities between 8 and 4 slots.
 Figure 8 further elucidates the impact of  different transfer slots on 
overhead. It becomes apparent that overhead diminishes as the number of  
transfer slots increases. This phenomenon can be attributed to the expedited 
propagation process, resulting in fewer push messages sent by participant 
nodes. Notably, the overhead consumption is minimized when six transfer 
slots are available in the dataset compared to other alternatives.
 These outcomes are consistent with those observed in Figure 7, as 
propagation time and protocol overhead are closely intertwined. The highest 
level of  overhead consumption, which remains below 350 KB, is recorded 
when a neighbor possesses only a single transfer slot. Overall, it is 
noteworthy that the overhead consumption does not exceed 0.3% in any 
scenario.
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6.3 Piece size
Here, we are going to examine how the alteration of  component sizes affects 
propagation time and overhead usage. To do that default values will be used 
apart from changing the parameter of  piece size. From figure 9, it can be seen 
that propagation time increased with the decrement of  piece size. It is noted 
that negligible propagation time observed for over 100 KB piece size but 
highest propagation delay occured for 10 KB piece size.
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Following figure 10 illustrates consumption of  overhead due to the push 
message of  different piece sizes. The overhead is drastically increased to 
approximately 180 KB when having 30 KB piece size while less than 20 KB 
overhead has been consumed with the piece size of  150 KB. In relation to 
the volume of  data propagated, less than 1.1% overhead has been consumed.
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6.4 Amount of  replicas
Here, we only modify the number of  created replicas and leave rest of  the 
parameters remain unchanged. Following table 3 shows the values used for 
replication policy.

Table 3
Values the replication policy takes into account while selecting coordinators and replicas

It can be seen from the figure 11 that surprisingly, propagation time enlarges 
gradually with the increasing number of  participants during propagation. For 
instance, 10 copies of  file propagation have more spikes than propagating 5 
copies.  Figure 11 illustrates that in all 3 experiments with different replicas 
(5, 7 and 10), our proposed protocol performs well in term of  holding lower 
propagation time than its counterpart MS protocol. The reason behind 
performing worse by MS protocol is that an entire file has to propagate to all 
the participating peers which lead to increasing propagation delay. 

6.5 Bandwidth
In order to get best possible result of  propagation time and overhead caused 
by peer bandwidth, number of  transfer slots and piece sizes should be 
modified from the default value mentioned in section 5.5. Table 4 shows the 
modified values of  transfer slots and piece sizes during sensitivity analysis of  
peer bandwidth. Those parameters were chosen according to the amount of  
contributed bandwidth.
Table 4
Modified transfer slots and piece size

Following figure 13 shows the propagation time during the consumption of  
contributed bandwidth of  peers. The graph shows that our proposed 
protocol perform less propagation delay than it master-slave counterpart.
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Figure 14 depicts the consumption of  overhead due to the propagation of  
push messages during sensitivity analysis. It can be seen from the graph that 
there is a reciprocal relationship between overhead consumption and 
utilization of  bandwidth. For instance, the consumption of  overhead is 
highest when there is a lower utilization of  peer bandwidth.
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Figure 12 depicts the consumption of  overhead for increasing number of  
participated peers. It can be seen from the figure that overhead consumption 
is proportional to the increasing number of  replicas. For instance, highest 
amount of  overhead was consumed for propagating 10 replicas where as 
negligible amount of  overhead consumed for propagating 5 replicas within 
DHT. Overall, the consumption of  overhead is slightly over 0.1% by our 
proposed protocol that is very negligible.
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6. Results and analysis
The primary objective of  this study is to assess the speed at which large files 
propagate within DHTs using our proposed protocol compared to the 
existing master-slave protocol designed for the same purpose. Additionally, 
this experiment aims to quantify the reduction in overhead achieved by our 
proposed protocol. This section analyzes the crucial parameters in Section 
5.5's sensitivity.  

6.1 Default values
Our initial and critical evaluation metric focuses on the propagation delay 
introduced by our novel protocol within the DHT. Figure 5 presents the 
results obtained from ten iterations involving different seed sizes. The graph 
illustrates the mean propagation time based on default parameters across 
numerous experiments. The error bars within the graph represent the 
minimum and maximum delays observed when propagating seven copies of  
the same file within the DHT.
The propagation delay increases as file sizes grow. However, particular spikes 
are noticeable due to the inherent system for distributing events in the 
Master-Slave (MS) procedure. These spikes occur because files are 
introduced into the DHT with uneven timing, leading to irregular 
propagation patterns in the graph. An event trace was conducted randomly 
to mitigate this issue, introducing the duplicate files into the DHT 
randomized. Consequently, these spikes were eliminated from our dataset 
sourced from Wikipedia.

Figure 5 underscores the stability of  our novel protocol concerning 
propagation delays. This stability can be attributed to the randomized 
selection of  coordinators, which significantly alleviates the propagation delay 
by distributing a substantial portion of  the load away from the coordinator.  
 

Figure 5
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Our proposed protocol's evaluation of  overhead introduced to the 
Distributed Hash Table (DHT) represents the second crucial metric in this 
research endeavor. Figure 6 comprehensively illustrates the bandwidth 
consumption attributed to our innovative protocol. During the propagation 
of  a substantial file exceeding 18 MB, the most efficient utilization of  push 
bandwidth recorded was slightly below 250 KB. Consequently, the overhead 
incurred during the propagation of  the most extensive file via our protocol 
does not exceed 0.2%.
 Notably, the graph exhibits some minor spikes, primarily attributable to 
increases in propagation time. An escalation in propagation delay necessitates 
transmitting a more significant number of  push messages, which, in turn, 
contributes to the observed overhead.
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6.2 Transfer slots
Increasing the number of  transfer slots during propagation boosts our 
protocol's parallelism. In this scenario, interested peers can concurrently 
execute multiple requests from their neighboring peers, reducing propagation 
time. Figure 7 visually represents the propagation time observed when 
propagating seven identical file copies, considering various available 
neighboring transfer slots, including 1, 2, 4, 6, and 8.

 

Figure 7
Transfer slots' impact on propagation time

The insights gleaned from Figure 7 reveal that a noticeable reduction in 
propagation time is achieved with an increasing number of  available transfer 
slots. However, it is crucial to note that this enhanced parallelism does result 
in increased overhead attributed to the higher volume of  request copies 
originating from a single neighbor. Intriguingly, the optimal balance between 
propagation time and overhead is struck when precisely six transfer slots are 
available from neighboring peers. Surprisingly, a significant reduction in 
propagation time is evident when each neighbor possesses only a single 
transfer slot.
 In summary, our dataset demonstrates that the most efficient 
propagation time is achieved when six transfer slots are available, despite 
marginal disparities between 8 and 4 slots.
 Figure 8 further elucidates the impact of  different transfer slots on 
overhead. It becomes apparent that overhead diminishes as the number of  
transfer slots increases. This phenomenon can be attributed to the expedited 
propagation process, resulting in fewer push messages sent by participant 
nodes. Notably, the overhead consumption is minimized when six transfer 
slots are available in the dataset compared to other alternatives.
 These outcomes are consistent with those observed in Figure 7, as 
propagation time and protocol overhead are closely intertwined. The highest 
level of  overhead consumption, which remains below 350 KB, is recorded 
when a neighbor possesses only a single transfer slot. Overall, it is 
noteworthy that the overhead consumption does not exceed 0.3% in any 
scenario.
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6.3 Piece size
Here, we are going to examine how the alteration of  component sizes affects 
propagation time and overhead usage. To do that default values will be used 
apart from changing the parameter of  piece size. From figure 9, it can be seen 
that propagation time increased with the decrement of  piece size. It is noted 
that negligible propagation time observed for over 100 KB piece size but 
highest propagation delay occured for 10 KB piece size.

 
Figure 9
Propagation delay for different piece sizes

Following figure 10 illustrates consumption of  overhead due to the push 
message of  different piece sizes. The overhead is drastically increased to 
approximately 180 KB when having 30 KB piece size while less than 20 KB 
overhead has been consumed with the piece size of  150 KB. In relation to 
the volume of  data propagated, less than 1.1% overhead has been consumed.

 

Figure 10
Median push bandwidth usage according to item size

6.4 Amount of  replicas
Here, we only modify the number of  created replicas and leave rest of  the 
parameters remain unchanged. Following table 3 shows the values used for 
replication policy.

Table 3
Values the replication policy takes into account while selecting coordinators and replicas

It can be seen from the figure 11 that surprisingly, propagation time enlarges 
gradually with the increasing number of  participants during propagation. For 
instance, 10 copies of  file propagation have more spikes than propagating 5 
copies.  Figure 11 illustrates that in all 3 experiments with different replicas 
(5, 7 and 10), our proposed protocol performs well in term of  holding lower 
propagation time than its counterpart MS protocol. The reason behind 
performing worse by MS protocol is that an entire file has to propagate to all 
the participating peers which lead to increasing propagation delay. 

6.5 Bandwidth
In order to get best possible result of  propagation time and overhead caused 
by peer bandwidth, number of  transfer slots and piece sizes should be 
modified from the default value mentioned in section 5.5. Table 4 shows the 
modified values of  transfer slots and piece sizes during sensitivity analysis of  
peer bandwidth. Those parameters were chosen according to the amount of  
contributed bandwidth.
Table 4
Modified transfer slots and piece size

Following figure 13 shows the propagation time during the consumption of  
contributed bandwidth of  peers. The graph shows that our proposed 
protocol perform less propagation delay than it master-slave counterpart.

 

Figure 13
Propagation speed changes with peer bandwidth contribution

Figure 14 depicts the consumption of  overhead due to the propagation of  
push messages during sensitivity analysis. It can be seen from the graph that 
there is a reciprocal relationship between overhead consumption and 
utilization of  bandwidth. For instance, the consumption of  overhead is 
highest when there is a lower utilization of  peer bandwidth.
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6. Results and analysis
The primary objective of  this study is to assess the speed at which large files 
propagate within DHTs using our proposed protocol compared to the 
existing master-slave protocol designed for the same purpose. Additionally, 
this experiment aims to quantify the reduction in overhead achieved by our 
proposed protocol. This section analyzes the crucial parameters in Section 
5.5's sensitivity.  

6.1 Default values
Our initial and critical evaluation metric focuses on the propagation delay 
introduced by our novel protocol within the DHT. Figure 5 presents the 
results obtained from ten iterations involving different seed sizes. The graph 
illustrates the mean propagation time based on default parameters across 
numerous experiments. The error bars within the graph represent the 
minimum and maximum delays observed when propagating seven copies of  
the same file within the DHT.
The propagation delay increases as file sizes grow. However, particular spikes 
are noticeable due to the inherent system for distributing events in the 
Master-Slave (MS) procedure. These spikes occur because files are 
introduced into the DHT with uneven timing, leading to irregular 
propagation patterns in the graph. An event trace was conducted randomly 
to mitigate this issue, introducing the duplicate files into the DHT 
randomized. Consequently, these spikes were eliminated from our dataset 
sourced from Wikipedia.

Figure 5 underscores the stability of  our novel protocol concerning 
propagation delays. This stability can be attributed to the randomized 
selection of  coordinators, which significantly alleviates the propagation delay 
by distributing a substantial portion of  the load away from the coordinator.  
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Our proposed protocol's evaluation of  overhead introduced to the 
Distributed Hash Table (DHT) represents the second crucial metric in this 
research endeavor. Figure 6 comprehensively illustrates the bandwidth 
consumption attributed to our innovative protocol. During the propagation 
of  a substantial file exceeding 18 MB, the most efficient utilization of  push 
bandwidth recorded was slightly below 250 KB. Consequently, the overhead 
incurred during the propagation of  the most extensive file via our protocol 
does not exceed 0.2%.
 Notably, the graph exhibits some minor spikes, primarily attributable to 
increases in propagation time. An escalation in propagation delay necessitates 
transmitting a more significant number of  push messages, which, in turn, 
contributes to the observed overhead.
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6.2 Transfer slots
Increasing the number of  transfer slots during propagation boosts our 
protocol's parallelism. In this scenario, interested peers can concurrently 
execute multiple requests from their neighboring peers, reducing propagation 
time. Figure 7 visually represents the propagation time observed when 
propagating seven identical file copies, considering various available 
neighboring transfer slots, including 1, 2, 4, 6, and 8.
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The insights gleaned from Figure 7 reveal that a noticeable reduction in 
propagation time is achieved with an increasing number of  available transfer 
slots. However, it is crucial to note that this enhanced parallelism does result 
in increased overhead attributed to the higher volume of  request copies 
originating from a single neighbor. Intriguingly, the optimal balance between 
propagation time and overhead is struck when precisely six transfer slots are 
available from neighboring peers. Surprisingly, a significant reduction in 
propagation time is evident when each neighbor possesses only a single 
transfer slot.
 In summary, our dataset demonstrates that the most efficient 
propagation time is achieved when six transfer slots are available, despite 
marginal disparities between 8 and 4 slots.
 Figure 8 further elucidates the impact of  different transfer slots on 
overhead. It becomes apparent that overhead diminishes as the number of  
transfer slots increases. This phenomenon can be attributed to the expedited 
propagation process, resulting in fewer push messages sent by participant 
nodes. Notably, the overhead consumption is minimized when six transfer 
slots are available in the dataset compared to other alternatives.
 These outcomes are consistent with those observed in Figure 7, as 
propagation time and protocol overhead are closely intertwined. The highest 
level of  overhead consumption, which remains below 350 KB, is recorded 
when a neighbor possesses only a single transfer slot. Overall, it is 
noteworthy that the overhead consumption does not exceed 0.3% in any 
scenario.
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6.3 Piece size
Here, we are going to examine how the alteration of  component sizes affects 
propagation time and overhead usage. To do that default values will be used 
apart from changing the parameter of  piece size. From figure 9, it can be seen 
that propagation time increased with the decrement of  piece size. It is noted 
that negligible propagation time observed for over 100 KB piece size but 
highest propagation delay occured for 10 KB piece size.
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Following figure 10 illustrates consumption of  overhead due to the push 
message of  different piece sizes. The overhead is drastically increased to 
approximately 180 KB when having 30 KB piece size while less than 20 KB 
overhead has been consumed with the piece size of  150 KB. In relation to 
the volume of  data propagated, less than 1.1% overhead has been consumed.
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6.4 Amount of  replicas
Here, we only modify the number of  created replicas and leave rest of  the 
parameters remain unchanged. Following table 3 shows the values used for 
replication policy.

Table 3
Values the replication policy takes into account while selecting coordinators and replicas

It can be seen from the figure 11 that surprisingly, propagation time enlarges 
gradually with the increasing number of  participants during propagation. For 
instance, 10 copies of  file propagation have more spikes than propagating 5 
copies.  Figure 11 illustrates that in all 3 experiments with different replicas 
(5, 7 and 10), our proposed protocol performs well in term of  holding lower 
propagation time than its counterpart MS protocol. The reason behind 
performing worse by MS protocol is that an entire file has to propagate to all 
the participating peers which lead to increasing propagation delay. 

6.5 Bandwidth
In order to get best possible result of  propagation time and overhead caused 
by peer bandwidth, number of  transfer slots and piece sizes should be 
modified from the default value mentioned in section 5.5. Table 4 shows the 
modified values of  transfer slots and piece sizes during sensitivity analysis of  
peer bandwidth. Those parameters were chosen according to the amount of  
contributed bandwidth.
Table 4
Modified transfer slots and piece size

Following figure 13 shows the propagation time during the consumption of  
contributed bandwidth of  peers. The graph shows that our proposed 
protocol perform less propagation delay than it master-slave counterpart.
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Propagation speed changes with peer bandwidth contribution

Figure 14 depicts the consumption of  overhead due to the propagation of  
push messages during sensitivity analysis. It can be seen from the graph that 
there is a reciprocal relationship between overhead consumption and 
utilization of  bandwidth. For instance, the consumption of  overhead is 
highest when there is a lower utilization of  peer bandwidth.

Experiment No. DHT Lookup Size Replicas
1 7 5
2 10 7
3 13 10
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amount of  overhead was consumed for propagating 10 replicas where as 
negligible amount of  overhead consumed for propagating 5 replicas within 
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6. Results and analysis
The primary objective of  this study is to assess the speed at which large files 
propagate within DHTs using our proposed protocol compared to the 
existing master-slave protocol designed for the same purpose. Additionally, 
this experiment aims to quantify the reduction in overhead achieved by our 
proposed protocol. This section analyzes the crucial parameters in Section 
5.5's sensitivity.  

6.1 Default values
Our initial and critical evaluation metric focuses on the propagation delay 
introduced by our novel protocol within the DHT. Figure 5 presents the 
results obtained from ten iterations involving different seed sizes. The graph 
illustrates the mean propagation time based on default parameters across 
numerous experiments. The error bars within the graph represent the 
minimum and maximum delays observed when propagating seven copies of  
the same file within the DHT.
The propagation delay increases as file sizes grow. However, particular spikes 
are noticeable due to the inherent system for distributing events in the 
Master-Slave (MS) procedure. These spikes occur because files are 
introduced into the DHT with uneven timing, leading to irregular 
propagation patterns in the graph. An event trace was conducted randomly 
to mitigate this issue, introducing the duplicate files into the DHT 
randomized. Consequently, these spikes were eliminated from our dataset 
sourced from Wikipedia.

Figure 5 underscores the stability of  our novel protocol concerning 
propagation delays. This stability can be attributed to the randomized 
selection of  coordinators, which significantly alleviates the propagation delay 
by distributing a substantial portion of  the load away from the coordinator.  
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Our proposed protocol's evaluation of  overhead introduced to the 
Distributed Hash Table (DHT) represents the second crucial metric in this 
research endeavor. Figure 6 comprehensively illustrates the bandwidth 
consumption attributed to our innovative protocol. During the propagation 
of  a substantial file exceeding 18 MB, the most efficient utilization of  push 
bandwidth recorded was slightly below 250 KB. Consequently, the overhead 
incurred during the propagation of  the most extensive file via our protocol 
does not exceed 0.2%.
 Notably, the graph exhibits some minor spikes, primarily attributable to 
increases in propagation time. An escalation in propagation delay necessitates 
transmitting a more significant number of  push messages, which, in turn, 
contributes to the observed overhead.
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6.2 Transfer slots
Increasing the number of  transfer slots during propagation boosts our 
protocol's parallelism. In this scenario, interested peers can concurrently 
execute multiple requests from their neighboring peers, reducing propagation 
time. Figure 7 visually represents the propagation time observed when 
propagating seven identical file copies, considering various available 
neighboring transfer slots, including 1, 2, 4, 6, and 8.
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The insights gleaned from Figure 7 reveal that a noticeable reduction in 
propagation time is achieved with an increasing number of  available transfer 
slots. However, it is crucial to note that this enhanced parallelism does result 
in increased overhead attributed to the higher volume of  request copies 
originating from a single neighbor. Intriguingly, the optimal balance between 
propagation time and overhead is struck when precisely six transfer slots are 
available from neighboring peers. Surprisingly, a significant reduction in 
propagation time is evident when each neighbor possesses only a single 
transfer slot.
 In summary, our dataset demonstrates that the most efficient 
propagation time is achieved when six transfer slots are available, despite 
marginal disparities between 8 and 4 slots.
 Figure 8 further elucidates the impact of  different transfer slots on 
overhead. It becomes apparent that overhead diminishes as the number of  
transfer slots increases. This phenomenon can be attributed to the expedited 
propagation process, resulting in fewer push messages sent by participant 
nodes. Notably, the overhead consumption is minimized when six transfer 
slots are available in the dataset compared to other alternatives.
 These outcomes are consistent with those observed in Figure 7, as 
propagation time and protocol overhead are closely intertwined. The highest 
level of  overhead consumption, which remains below 350 KB, is recorded 
when a neighbor possesses only a single transfer slot. Overall, it is 
noteworthy that the overhead consumption does not exceed 0.3% in any 
scenario.
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6.3 Piece size
Here, we are going to examine how the alteration of  component sizes affects 
propagation time and overhead usage. To do that default values will be used 
apart from changing the parameter of  piece size. From figure 9, it can be seen 
that propagation time increased with the decrement of  piece size. It is noted 
that negligible propagation time observed for over 100 KB piece size but 
highest propagation delay occured for 10 KB piece size.

 
Figure 9
Propagation delay for different piece sizes

Following figure 10 illustrates consumption of  overhead due to the push 
message of  different piece sizes. The overhead is drastically increased to 
approximately 180 KB when having 30 KB piece size while less than 20 KB 
overhead has been consumed with the piece size of  150 KB. In relation to 
the volume of  data propagated, less than 1.1% overhead has been consumed.

 

Figure 10
Median push bandwidth usage according to item size

6.4 Amount of  replicas
Here, we only modify the number of  created replicas and leave rest of  the 
parameters remain unchanged. Following table 3 shows the values used for 
replication policy.

Table 3
Values the replication policy takes into account while selecting coordinators and replicas

It can be seen from the figure 11 that surprisingly, propagation time enlarges 
gradually with the increasing number of  participants during propagation. For 
instance, 10 copies of  file propagation have more spikes than propagating 5 
copies.  Figure 11 illustrates that in all 3 experiments with different replicas 
(5, 7 and 10), our proposed protocol performs well in term of  holding lower 
propagation time than its counterpart MS protocol. The reason behind 
performing worse by MS protocol is that an entire file has to propagate to all 
the participating peers which lead to increasing propagation delay. 

6.5 Bandwidth
In order to get best possible result of  propagation time and overhead caused 
by peer bandwidth, number of  transfer slots and piece sizes should be 
modified from the default value mentioned in section 5.5. Table 4 shows the 
modified values of  transfer slots and piece sizes during sensitivity analysis of  
peer bandwidth. Those parameters were chosen according to the amount of  
contributed bandwidth.
Table 4
Modified transfer slots and piece size

Following figure 13 shows the propagation time during the consumption of  
contributed bandwidth of  peers. The graph shows that our proposed 
protocol perform less propagation delay than it master-slave counterpart.

 

Figure 13
Propagation speed changes with peer bandwidth contribution

Figure 14 depicts the consumption of  overhead due to the propagation of  
push messages during sensitivity analysis. It can be seen from the graph that 
there is a reciprocal relationship between overhead consumption and 
utilization of  bandwidth. For instance, the consumption of  overhead is 
highest when there is a lower utilization of  peer bandwidth.
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6. Results and analysis
The primary objective of  this study is to assess the speed at which large files 
propagate within DHTs using our proposed protocol compared to the 
existing master-slave protocol designed for the same purpose. Additionally, 
this experiment aims to quantify the reduction in overhead achieved by our 
proposed protocol. This section analyzes the crucial parameters in Section 
5.5's sensitivity.  

6.1 Default values
Our initial and critical evaluation metric focuses on the propagation delay 
introduced by our novel protocol within the DHT. Figure 5 presents the 
results obtained from ten iterations involving different seed sizes. The graph 
illustrates the mean propagation time based on default parameters across 
numerous experiments. The error bars within the graph represent the 
minimum and maximum delays observed when propagating seven copies of  
the same file within the DHT.
The propagation delay increases as file sizes grow. However, particular spikes 
are noticeable due to the inherent system for distributing events in the 
Master-Slave (MS) procedure. These spikes occur because files are 
introduced into the DHT with uneven timing, leading to irregular 
propagation patterns in the graph. An event trace was conducted randomly 
to mitigate this issue, introducing the duplicate files into the DHT 
randomized. Consequently, these spikes were eliminated from our dataset 
sourced from Wikipedia.

Figure 5 underscores the stability of  our novel protocol concerning 
propagation delays. This stability can be attributed to the randomized 
selection of  coordinators, which significantly alleviates the propagation delay 
by distributing a substantial portion of  the load away from the coordinator.  
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Our proposed protocol's evaluation of  overhead introduced to the 
Distributed Hash Table (DHT) represents the second crucial metric in this 
research endeavor. Figure 6 comprehensively illustrates the bandwidth 
consumption attributed to our innovative protocol. During the propagation 
of  a substantial file exceeding 18 MB, the most efficient utilization of  push 
bandwidth recorded was slightly below 250 KB. Consequently, the overhead 
incurred during the propagation of  the most extensive file via our protocol 
does not exceed 0.2%.
 Notably, the graph exhibits some minor spikes, primarily attributable to 
increases in propagation time. An escalation in propagation delay necessitates 
transmitting a more significant number of  push messages, which, in turn, 
contributes to the observed overhead.
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6.2 Transfer slots
Increasing the number of  transfer slots during propagation boosts our 
protocol's parallelism. In this scenario, interested peers can concurrently 
execute multiple requests from their neighboring peers, reducing propagation 
time. Figure 7 visually represents the propagation time observed when 
propagating seven identical file copies, considering various available 
neighboring transfer slots, including 1, 2, 4, 6, and 8.
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The insights gleaned from Figure 7 reveal that a noticeable reduction in 
propagation time is achieved with an increasing number of  available transfer 
slots. However, it is crucial to note that this enhanced parallelism does result 
in increased overhead attributed to the higher volume of  request copies 
originating from a single neighbor. Intriguingly, the optimal balance between 
propagation time and overhead is struck when precisely six transfer slots are 
available from neighboring peers. Surprisingly, a significant reduction in 
propagation time is evident when each neighbor possesses only a single 
transfer slot.
 In summary, our dataset demonstrates that the most efficient 
propagation time is achieved when six transfer slots are available, despite 
marginal disparities between 8 and 4 slots.
 Figure 8 further elucidates the impact of  different transfer slots on 
overhead. It becomes apparent that overhead diminishes as the number of  
transfer slots increases. This phenomenon can be attributed to the expedited 
propagation process, resulting in fewer push messages sent by participant 
nodes. Notably, the overhead consumption is minimized when six transfer 
slots are available in the dataset compared to other alternatives.
 These outcomes are consistent with those observed in Figure 7, as 
propagation time and protocol overhead are closely intertwined. The highest 
level of  overhead consumption, which remains below 350 KB, is recorded 
when a neighbor possesses only a single transfer slot. Overall, it is 
noteworthy that the overhead consumption does not exceed 0.3% in any 
scenario.
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6.3 Piece size
Here, we are going to examine how the alteration of  component sizes affects 
propagation time and overhead usage. To do that default values will be used 
apart from changing the parameter of  piece size. From figure 9, it can be seen 
that propagation time increased with the decrement of  piece size. It is noted 
that negligible propagation time observed for over 100 KB piece size but 
highest propagation delay occured for 10 KB piece size.
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Following figure 10 illustrates consumption of  overhead due to the push 
message of  different piece sizes. The overhead is drastically increased to 
approximately 180 KB when having 30 KB piece size while less than 20 KB 
overhead has been consumed with the piece size of  150 KB. In relation to 
the volume of  data propagated, less than 1.1% overhead has been consumed.
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6.4 Amount of  replicas
Here, we only modify the number of  created replicas and leave rest of  the 
parameters remain unchanged. Following table 3 shows the values used for 
replication policy.

Table 3
Values the replication policy takes into account while selecting coordinators and replicas

It can be seen from the figure 11 that surprisingly, propagation time enlarges 
gradually with the increasing number of  participants during propagation. For 
instance, 10 copies of  file propagation have more spikes than propagating 5 
copies.  Figure 11 illustrates that in all 3 experiments with different replicas 
(5, 7 and 10), our proposed protocol performs well in term of  holding lower 
propagation time than its counterpart MS protocol. The reason behind 
performing worse by MS protocol is that an entire file has to propagate to all 
the participating peers which lead to increasing propagation delay. 

6.5 Bandwidth
In order to get best possible result of  propagation time and overhead caused 
by peer bandwidth, number of  transfer slots and piece sizes should be 
modified from the default value mentioned in section 5.5. Table 4 shows the 
modified values of  transfer slots and piece sizes during sensitivity analysis of  
peer bandwidth. Those parameters were chosen according to the amount of  
contributed bandwidth.
Table 4
Modified transfer slots and piece size

Following figure 13 shows the propagation time during the consumption of  
contributed bandwidth of  peers. The graph shows that our proposed 
protocol perform less propagation delay than it master-slave counterpart.
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Figure 14 depicts the consumption of  overhead due to the propagation of  
push messages during sensitivity analysis. It can be seen from the graph that 
there is a reciprocal relationship between overhead consumption and 
utilization of  bandwidth. For instance, the consumption of  overhead is 
highest when there is a lower utilization of  peer bandwidth.

Experiment Piece Size Transfer Slots
1  30 KB 2
2  30 KB (default) 2 (default)
3  50 KB 4
4  150 KB 4
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Figure 14
Effect of  bandwidth contribution on overhead.

7. Conclusion
This section summarizes our study and discusses propagation time and 
overhead management challenges.

7.1 Propagation time
During the evaluation of  our dataset, specific instances of  elevated 
propagation time were identified. It is possible to employ various strategies 
to mitigate these spikes in propagation delay. One approach is mapping 
different items to different peers, thereby reducing the likelihood of  
propagation delays. Another potential solution is to modify the piece-pulling 
policy of  peers, favoring faster peers for piece retrieval during propagation. 
Additionally, an alternative to the existing DHT lookup-based replication 
policy could involve implementing a more structured, non-random 
placement of  replicas. Furthermore, considerations may include optimizing 
transfer slots and ensuring an appropriate piece size to minimize propagation 
delay. However, these optimizations must be made about peer bandwidth, 
aligning transfer slots and piece size with the available download bandwidth.

7.2 Overhead
Our evaluation has revealed that both bitmap size and propagation time are 
responsible for overhead consumption. Specifically, bandwidth utilization, 

piece sizes, and push frequency are key factors contributing to overhead. For 
instance, it is unwise to fragment a 2 GB file into 5 KB pieces due to the 
extensive mapping required for file representation. Reducing the size of  push 
messages is pivotal in limiting overhead consumption; hence, the number of  
maps within a push message should be restrained. Moreover, optimizing 
push frequency may be necessary to minimize overhead.

7.3 Future directions
The proposed protocol exhibits significant potential for efficiently 
propagating multimedia applications. In future research, improvements in 
piece and specific file selection policies could be explored to enhance the 
seamless delivery of  user applications. For instance, a linear piece policy 
could be implemented for streaming services, ensuring file pieces' sequential 
ordering or retrieval. Furthermore, researchers in this field can utilize this 
article as a valuable reference for further exploration and study.
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1. Introduction
In recent years, as a general introduction of  Covid-19, the highly contagious 
viral illness over the worldwide caused by severe acute respiratory syndrome 
corona virus 2 (SARS-CoV-2) (Ahmed, Rahman, & Hoque, 2020). This 
Covid-19 outbreak was declared by the World Health 
Organization as a public health emergency. In order to 
identify and isolate the contagious elements, diagnosis of  
COVID-19 is important (Ahmed, Rahman, & Hoque, 
2020). The COVID-19 virus primarily spreads through 
the air when an infected person releases droplets from 
their mouth or nose while speaking, coughing, or 
sneezing. The transmission occurs when a healthy 
individual is close to the contaminated droplets (Ahmed, 
Rahman, & Hoque, 2020). The respiratory spreads vary 

vastly with individual factors age, gender, observations of  fever, and travel 
history. Like normal fever, COVID-19 people also become affected with 
fever, fatigue and dry cough. Some patients may have sore throat, diarrhea, 
headache and nasal congestion myalgia, gastrointestinal symptoms, and 
Ansonia (Amoiralis, Tsili, Kladas, & Souflaris, 2012). The affected person 
shows early-stage symptoms and affected by the major symptoms within 
2-14 days (Ahmed, Rahman, & Hoque, 2020; Amoiralis, Tsili, Kladas, & 
Souflaris, 2012). The increasing numbers of  managing COVID-19 cases is a 
tremendous challenge for health care facilities in worldwide; though, there is 
not sufficient information about the virus. The severity of  cases in this 
outbreak, and the survival rate from the infection, are putting great pressure 
on physicians and medical services, leading to a shortage of  intensive care 
resources and electronic health facilities.  The sudden pervasiveness of  
severe acute respiratory syndrome has been leading each country into a 
prominent crisis worldwide (Hakim, Uddin, & Hoque, 2020). People have 
been infected by the predominant virus vastly, resulting in various measures 
being enforced including country lockdowns, curfews and travel restrictions 
has been given by the Govt. for the people safety. Only 7 types of  corona 
viruses can infect humans. The fast among them was discovered by scientists 
in 1965 (Hakim, Uddin, & Hoque, 2020). Although, almost 30% of  this virus 
was only limited to the Middle East it was much deadlier than the SARS virus 
with a mortality rate (Hoque, Ahmed, Uddin, & Faisal, 2020). However, the 
comparison between SARS and MERS, the SARS-COV-2 virus is 
responsible for Covid-19 is a different beast altogether. In Bangladesh, the 
first corona virus case was reported on 8th March, 2020 (Hoque, Kabir, & 
Hossain, 2018). The COVID-19 virus has had a significant impact globally, 
infecting many individuals. The government is aware of  the critical factors 
involved in the transmission of  the virus, which include respiratory droplets 
from coughing or sneezing. The growing importance of  healthcare 
epidemiology and demographic analysis has led to an expansion of  
electronic health data (Hoque, Ahmed, Uddin, & Faisal, 2020). The 
availability of  electronic health system and data is increasing day by day. 
Corresponding weight has given by the measurement to the feature and the 
same input data can be used for training machine learning algorithms to 
improve its decision-making and reliability in terms of  predicting Covid-19 
symptoms at early stage (Josue, Arifianto, Saers, Rosenlind, & Hilber, 2020).
 In data measurement, specific indicators that reflect symptoms are used 
to determine the progress of  the Covid-19 situation. Predictive modelling 
may be applied, but the accuracy of  the data depends on the relationship 
between previously collected data and various mathematical formulas. If  this 
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Figure 14
Effect of  bandwidth contribution on overhead.

7. Conclusion
This section summarizes our study and discusses propagation time and 
overhead management challenges.

7.1 Propagation time
During the evaluation of  our dataset, specific instances of  elevated 
propagation time were identified. It is possible to employ various strategies 
to mitigate these spikes in propagation delay. One approach is mapping 
different items to different peers, thereby reducing the likelihood of  
propagation delays. Another potential solution is to modify the piece-pulling 
policy of  peers, favoring faster peers for piece retrieval during propagation. 
Additionally, an alternative to the existing DHT lookup-based replication 
policy could involve implementing a more structured, non-random 
placement of  replicas. Furthermore, considerations may include optimizing 
transfer slots and ensuring an appropriate piece size to minimize propagation 
delay. However, these optimizations must be made about peer bandwidth, 
aligning transfer slots and piece size with the available download bandwidth.

7.2 Overhead
Our evaluation has revealed that both bitmap size and propagation time are 
responsible for overhead consumption. Specifically, bandwidth utilization, 

piece sizes, and push frequency are key factors contributing to overhead. For 
instance, it is unwise to fragment a 2 GB file into 5 KB pieces due to the 
extensive mapping required for file representation. Reducing the size of  push 
messages is pivotal in limiting overhead consumption; hence, the number of  
maps within a push message should be restrained. Moreover, optimizing 
push frequency may be necessary to minimize overhead.

7.3 Future directions
The proposed protocol exhibits significant potential for efficiently 
propagating multimedia applications. In future research, improvements in 
piece and specific file selection policies could be explored to enhance the 
seamless delivery of  user applications. For instance, a linear piece policy 
could be implemented for streaming services, ensuring file pieces' sequential 
ordering or retrieval. Furthermore, researchers in this field can utilize this 
article as a valuable reference for further exploration and study.
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1. Introduction
In recent years, as a general introduction of  Covid-19, the highly contagious 
viral illness over the worldwide caused by severe acute respiratory syndrome 
corona virus 2 (SARS-CoV-2) (Ahmed, Rahman, & Hoque, 2020). This 
Covid-19 outbreak was declared by the World Health 
Organization as a public health emergency. In order to 
identify and isolate the contagious elements, diagnosis of  
COVID-19 is important (Ahmed, Rahman, & Hoque, 
2020). The COVID-19 virus primarily spreads through 
the air when an infected person releases droplets from 
their mouth or nose while speaking, coughing, or 
sneezing. The transmission occurs when a healthy 
individual is close to the contaminated droplets (Ahmed, 
Rahman, & Hoque, 2020). The respiratory spreads vary 

vastly with individual factors age, gender, observations of  fever, and travel 
history. Like normal fever, COVID-19 people also become affected with 
fever, fatigue and dry cough. Some patients may have sore throat, diarrhea, 
headache and nasal congestion myalgia, gastrointestinal symptoms, and 
Ansonia (Amoiralis, Tsili, Kladas, & Souflaris, 2012). The affected person 
shows early-stage symptoms and affected by the major symptoms within 
2-14 days (Ahmed, Rahman, & Hoque, 2020; Amoiralis, Tsili, Kladas, & 
Souflaris, 2012). The increasing numbers of  managing COVID-19 cases is a 
tremendous challenge for health care facilities in worldwide; though, there is 
not sufficient information about the virus. The severity of  cases in this 
outbreak, and the survival rate from the infection, are putting great pressure 
on physicians and medical services, leading to a shortage of  intensive care 
resources and electronic health facilities.  The sudden pervasiveness of  
severe acute respiratory syndrome has been leading each country into a 
prominent crisis worldwide (Hakim, Uddin, & Hoque, 2020). People have 
been infected by the predominant virus vastly, resulting in various measures 
being enforced including country lockdowns, curfews and travel restrictions 
has been given by the Govt. for the people safety. Only 7 types of  corona 
viruses can infect humans. The fast among them was discovered by scientists 
in 1965 (Hakim, Uddin, & Hoque, 2020). Although, almost 30% of  this virus 
was only limited to the Middle East it was much deadlier than the SARS virus 
with a mortality rate (Hoque, Ahmed, Uddin, & Faisal, 2020). However, the 
comparison between SARS and MERS, the SARS-COV-2 virus is 
responsible for Covid-19 is a different beast altogether. In Bangladesh, the 
first corona virus case was reported on 8th March, 2020 (Hoque, Kabir, & 
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availability of  electronic health system and data is increasing day by day. 
Corresponding weight has given by the measurement to the feature and the 
same input data can be used for training machine learning algorithms to 
improve its decision-making and reliability in terms of  predicting Covid-19 
symptoms at early stage (Josue, Arifianto, Saers, Rosenlind, & Hilber, 2020).
 In data measurement, specific indicators that reflect symptoms are used 
to determine the progress of  the Covid-19 situation. Predictive modelling 
may be applied, but the accuracy of  the data depends on the relationship 
between previously collected data and various mathematical formulas. If  this 
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7. Conclusion
This section summarizes our study and discusses propagation time and 
overhead management challenges.

7.1 Propagation time
During the evaluation of  our dataset, specific instances of  elevated 
propagation time were identified. It is possible to employ various strategies 
to mitigate these spikes in propagation delay. One approach is mapping 
different items to different peers, thereby reducing the likelihood of  
propagation delays. Another potential solution is to modify the piece-pulling 
policy of  peers, favoring faster peers for piece retrieval during propagation. 
Additionally, an alternative to the existing DHT lookup-based replication 
policy could involve implementing a more structured, non-random 
placement of  replicas. Furthermore, considerations may include optimizing 
transfer slots and ensuring an appropriate piece size to minimize propagation 
delay. However, these optimizations must be made about peer bandwidth, 
aligning transfer slots and piece size with the available download bandwidth.

7.2 Overhead
Our evaluation has revealed that both bitmap size and propagation time are 
responsible for overhead consumption. Specifically, bandwidth utilization, 

piece sizes, and push frequency are key factors contributing to overhead. For 
instance, it is unwise to fragment a 2 GB file into 5 KB pieces due to the 
extensive mapping required for file representation. Reducing the size of  push 
messages is pivotal in limiting overhead consumption; hence, the number of  
maps within a push message should be restrained. Moreover, optimizing 
push frequency may be necessary to minimize overhead.

7.3 Future directions
The proposed protocol exhibits significant potential for efficiently 
propagating multimedia applications. In future research, improvements in 
piece and specific file selection policies could be explored to enhance the 
seamless delivery of  user applications. For instance, a linear piece policy 
could be implemented for streaming services, ensuring file pieces' sequential 
ordering or retrieval. Furthermore, researchers in this field can utilize this 
article as a valuable reference for further exploration and study.
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1. Introduction
In recent years, as a general introduction of  Covid-19, the highly contagious 
viral illness over the worldwide caused by severe acute respiratory syndrome 
corona virus 2 (SARS-CoV-2) (Ahmed, Rahman, & Hoque, 2020). This 
Covid-19 outbreak was declared by the World Health 
Organization as a public health emergency. In order to 
identify and isolate the contagious elements, diagnosis of  
COVID-19 is important (Ahmed, Rahman, & Hoque, 
2020). The COVID-19 virus primarily spreads through 
the air when an infected person releases droplets from 
their mouth or nose while speaking, coughing, or 
sneezing. The transmission occurs when a healthy 
individual is close to the contaminated droplets (Ahmed, 
Rahman, & Hoque, 2020). The respiratory spreads vary 

vastly with individual factors age, gender, observations of  fever, and travel 
history. Like normal fever, COVID-19 people also become affected with 
fever, fatigue and dry cough. Some patients may have sore throat, diarrhea, 
headache and nasal congestion myalgia, gastrointestinal symptoms, and 
Ansonia (Amoiralis, Tsili, Kladas, & Souflaris, 2012). The affected person 
shows early-stage symptoms and affected by the major symptoms within 
2-14 days (Ahmed, Rahman, & Hoque, 2020; Amoiralis, Tsili, Kladas, & 
Souflaris, 2012). The increasing numbers of  managing COVID-19 cases is a 
tremendous challenge for health care facilities in worldwide; though, there is 
not sufficient information about the virus. The severity of  cases in this 
outbreak, and the survival rate from the infection, are putting great pressure 
on physicians and medical services, leading to a shortage of  intensive care 
resources and electronic health facilities.  The sudden pervasiveness of  
severe acute respiratory syndrome has been leading each country into a 
prominent crisis worldwide (Hakim, Uddin, & Hoque, 2020). People have 
been infected by the predominant virus vastly, resulting in various measures 
being enforced including country lockdowns, curfews and travel restrictions 
has been given by the Govt. for the people safety. Only 7 types of  corona 
viruses can infect humans. The fast among them was discovered by scientists 
in 1965 (Hakim, Uddin, & Hoque, 2020). Although, almost 30% of  this virus 
was only limited to the Middle East it was much deadlier than the SARS virus 
with a mortality rate (Hoque, Ahmed, Uddin, & Faisal, 2020). However, the 
comparison between SARS and MERS, the SARS-COV-2 virus is 
responsible for Covid-19 is a different beast altogether. In Bangladesh, the 
first corona virus case was reported on 8th March, 2020 (Hoque, Kabir, & 
Hossain, 2018). The COVID-19 virus has had a significant impact globally, 
infecting many individuals. The government is aware of  the critical factors 
involved in the transmission of  the virus, which include respiratory droplets 
from coughing or sneezing. The growing importance of  healthcare 
epidemiology and demographic analysis has led to an expansion of  
electronic health data (Hoque, Ahmed, Uddin, & Faisal, 2020). The 
availability of  electronic health system and data is increasing day by day. 
Corresponding weight has given by the measurement to the feature and the 
same input data can be used for training machine learning algorithms to 
improve its decision-making and reliability in terms of  predicting Covid-19 
symptoms at early stage (Josue, Arifianto, Saers, Rosenlind, & Hilber, 2020).
 In data measurement, specific indicators that reflect symptoms are used 
to determine the progress of  the Covid-19 situation. Predictive modelling 
may be applied, but the accuracy of  the data depends on the relationship 
between previously collected data and various mathematical formulas. If  this 
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Figure 14
Effect of  bandwidth contribution on overhead.

7. Conclusion
This section summarizes our study and discusses propagation time and 
overhead management challenges.

7.1 Propagation time
During the evaluation of  our dataset, specific instances of  elevated 
propagation time were identified. It is possible to employ various strategies 
to mitigate these spikes in propagation delay. One approach is mapping 
different items to different peers, thereby reducing the likelihood of  
propagation delays. Another potential solution is to modify the piece-pulling 
policy of  peers, favoring faster peers for piece retrieval during propagation. 
Additionally, an alternative to the existing DHT lookup-based replication 
policy could involve implementing a more structured, non-random 
placement of  replicas. Furthermore, considerations may include optimizing 
transfer slots and ensuring an appropriate piece size to minimize propagation 
delay. However, these optimizations must be made about peer bandwidth, 
aligning transfer slots and piece size with the available download bandwidth.

7.2 Overhead
Our evaluation has revealed that both bitmap size and propagation time are 
responsible for overhead consumption. Specifically, bandwidth utilization, 

piece sizes, and push frequency are key factors contributing to overhead. For 
instance, it is unwise to fragment a 2 GB file into 5 KB pieces due to the 
extensive mapping required for file representation. Reducing the size of  push 
messages is pivotal in limiting overhead consumption; hence, the number of  
maps within a push message should be restrained. Moreover, optimizing 
push frequency may be necessary to minimize overhead.

7.3 Future directions
The proposed protocol exhibits significant potential for efficiently 
propagating multimedia applications. In future research, improvements in 
piece and specific file selection policies could be explored to enhance the 
seamless delivery of  user applications. For instance, a linear piece policy 
could be implemented for streaming services, ensuring file pieces' sequential 
ordering or retrieval. Furthermore, researchers in this field can utilize this 
article as a valuable reference for further exploration and study.
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In recent years, as a general introduction of  Covid-19, the highly contagious 
viral illness over the worldwide caused by severe acute respiratory syndrome 
corona virus 2 (SARS-CoV-2) (Ahmed, Rahman, & Hoque, 2020). This 
Covid-19 outbreak was declared by the World Health 
Organization as a public health emergency. In order to 
identify and isolate the contagious elements, diagnosis of  
COVID-19 is important (Ahmed, Rahman, & Hoque, 
2020). The COVID-19 virus primarily spreads through 
the air when an infected person releases droplets from 
their mouth or nose while speaking, coughing, or 
sneezing. The transmission occurs when a healthy 
individual is close to the contaminated droplets (Ahmed, 
Rahman, & Hoque, 2020). The respiratory spreads vary 

vastly with individual factors age, gender, observations of  fever, and travel 
history. Like normal fever, COVID-19 people also become affected with 
fever, fatigue and dry cough. Some patients may have sore throat, diarrhea, 
headache and nasal congestion myalgia, gastrointestinal symptoms, and 
Ansonia (Amoiralis, Tsili, Kladas, & Souflaris, 2012). The affected person 
shows early-stage symptoms and affected by the major symptoms within 
2-14 days (Ahmed, Rahman, & Hoque, 2020; Amoiralis, Tsili, Kladas, & 
Souflaris, 2012). The increasing numbers of  managing COVID-19 cases is a 
tremendous challenge for health care facilities in worldwide; though, there is 
not sufficient information about the virus. The severity of  cases in this 
outbreak, and the survival rate from the infection, are putting great pressure 
on physicians and medical services, leading to a shortage of  intensive care 
resources and electronic health facilities.  The sudden pervasiveness of  
severe acute respiratory syndrome has been leading each country into a 
prominent crisis worldwide (Hakim, Uddin, & Hoque, 2020). People have 
been infected by the predominant virus vastly, resulting in various measures 
being enforced including country lockdowns, curfews and travel restrictions 
has been given by the Govt. for the people safety. Only 7 types of  corona 
viruses can infect humans. The fast among them was discovered by scientists 
in 1965 (Hakim, Uddin, & Hoque, 2020). Although, almost 30% of  this virus 
was only limited to the Middle East it was much deadlier than the SARS virus 
with a mortality rate (Hoque, Ahmed, Uddin, & Faisal, 2020). However, the 
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symptoms at early stage (Josue, Arifianto, Saers, Rosenlind, & Hilber, 2020).
 In data measurement, specific indicators that reflect symptoms are used 
to determine the progress of  the Covid-19 situation. Predictive modelling 
may be applied, but the accuracy of  the data depends on the relationship 
between previously collected data and various mathematical formulas. If  this 
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7. Conclusion
This section summarizes our study and discusses propagation time and 
overhead management challenges.

7.1 Propagation time
During the evaluation of  our dataset, specific instances of  elevated 
propagation time were identified. It is possible to employ various strategies 
to mitigate these spikes in propagation delay. One approach is mapping 
different items to different peers, thereby reducing the likelihood of  
propagation delays. Another potential solution is to modify the piece-pulling 
policy of  peers, favoring faster peers for piece retrieval during propagation. 
Additionally, an alternative to the existing DHT lookup-based replication 
policy could involve implementing a more structured, non-random 
placement of  replicas. Furthermore, considerations may include optimizing 
transfer slots and ensuring an appropriate piece size to minimize propagation 
delay. However, these optimizations must be made about peer bandwidth, 
aligning transfer slots and piece size with the available download bandwidth.

7.2 Overhead
Our evaluation has revealed that both bitmap size and propagation time are 
responsible for overhead consumption. Specifically, bandwidth utilization, 

piece sizes, and push frequency are key factors contributing to overhead. For 
instance, it is unwise to fragment a 2 GB file into 5 KB pieces due to the 
extensive mapping required for file representation. Reducing the size of  push 
messages is pivotal in limiting overhead consumption; hence, the number of  
maps within a push message should be restrained. Moreover, optimizing 
push frequency may be necessary to minimize overhead.

7.3 Future directions
The proposed protocol exhibits significant potential for efficiently 
propagating multimedia applications. In future research, improvements in 
piece and specific file selection policies could be explored to enhance the 
seamless delivery of  user applications. For instance, a linear piece policy 
could be implemented for streaming services, ensuring file pieces' sequential 
ordering or retrieval. Furthermore, researchers in this field can utilize this 
article as a valuable reference for further exploration and study.
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1. Introduction
In recent years, as a general introduction of  Covid-19, the highly contagious 
viral illness over the worldwide caused by severe acute respiratory syndrome 
corona virus 2 (SARS-CoV-2) (Ahmed, Rahman, & Hoque, 2020). This 
Covid-19 outbreak was declared by the World Health 
Organization as a public health emergency. In order to 
identify and isolate the contagious elements, diagnosis of  
COVID-19 is important (Ahmed, Rahman, & Hoque, 
2020). The COVID-19 virus primarily spreads through 
the air when an infected person releases droplets from 
their mouth or nose while speaking, coughing, or 
sneezing. The transmission occurs when a healthy 
individual is close to the contaminated droplets (Ahmed, 
Rahman, & Hoque, 2020). The respiratory spreads vary 

vastly with individual factors age, gender, observations of  fever, and travel 
history. Like normal fever, COVID-19 people also become affected with 
fever, fatigue and dry cough. Some patients may have sore throat, diarrhea, 
headache and nasal congestion myalgia, gastrointestinal symptoms, and 
Ansonia (Amoiralis, Tsili, Kladas, & Souflaris, 2012). The affected person 
shows early-stage symptoms and affected by the major symptoms within 
2-14 days (Ahmed, Rahman, & Hoque, 2020; Amoiralis, Tsili, Kladas, & 
Souflaris, 2012). The increasing numbers of  managing COVID-19 cases is a 
tremendous challenge for health care facilities in worldwide; though, there is 
not sufficient information about the virus. The severity of  cases in this 
outbreak, and the survival rate from the infection, are putting great pressure 
on physicians and medical services, leading to a shortage of  intensive care 
resources and electronic health facilities.  The sudden pervasiveness of  
severe acute respiratory syndrome has been leading each country into a 
prominent crisis worldwide (Hakim, Uddin, & Hoque, 2020). People have 
been infected by the predominant virus vastly, resulting in various measures 
being enforced including country lockdowns, curfews and travel restrictions 
has been given by the Govt. for the people safety. Only 7 types of  corona 
viruses can infect humans. The fast among them was discovered by scientists 
in 1965 (Hakim, Uddin, & Hoque, 2020). Although, almost 30% of  this virus 
was only limited to the Middle East it was much deadlier than the SARS virus 
with a mortality rate (Hoque, Ahmed, Uddin, & Faisal, 2020). However, the 
comparison between SARS and MERS, the SARS-COV-2 virus is 
responsible for Covid-19 is a different beast altogether. In Bangladesh, the 
first corona virus case was reported on 8th March, 2020 (Hoque, Kabir, & 
Hossain, 2018). The COVID-19 virus has had a significant impact globally, 
infecting many individuals. The government is aware of  the critical factors 
involved in the transmission of  the virus, which include respiratory droplets 
from coughing or sneezing. The growing importance of  healthcare 
epidemiology and demographic analysis has led to an expansion of  
electronic health data (Hoque, Ahmed, Uddin, & Faisal, 2020). The 
availability of  electronic health system and data is increasing day by day. 
Corresponding weight has given by the measurement to the feature and the 
same input data can be used for training machine learning algorithms to 
improve its decision-making and reliability in terms of  predicting Covid-19 
symptoms at early stage (Josue, Arifianto, Saers, Rosenlind, & Hilber, 2020).
 In data measurement, specific indicators that reflect symptoms are used 
to determine the progress of  the Covid-19 situation. Predictive modelling 
may be applied, but the accuracy of  the data depends on the relationship 
between previously collected data and various mathematical formulas. If  this 
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Figure 14
Effect of  bandwidth contribution on overhead.

7. Conclusion
This section summarizes our study and discusses propagation time and 
overhead management challenges.

7.1 Propagation time
During the evaluation of  our dataset, specific instances of  elevated 
propagation time were identified. It is possible to employ various strategies 
to mitigate these spikes in propagation delay. One approach is mapping 
different items to different peers, thereby reducing the likelihood of  
propagation delays. Another potential solution is to modify the piece-pulling 
policy of  peers, favoring faster peers for piece retrieval during propagation. 
Additionally, an alternative to the existing DHT lookup-based replication 
policy could involve implementing a more structured, non-random 
placement of  replicas. Furthermore, considerations may include optimizing 
transfer slots and ensuring an appropriate piece size to minimize propagation 
delay. However, these optimizations must be made about peer bandwidth, 
aligning transfer slots and piece size with the available download bandwidth.

7.2 Overhead
Our evaluation has revealed that both bitmap size and propagation time are 
responsible for overhead consumption. Specifically, bandwidth utilization, 

piece sizes, and push frequency are key factors contributing to overhead. For 
instance, it is unwise to fragment a 2 GB file into 5 KB pieces due to the 
extensive mapping required for file representation. Reducing the size of  push 
messages is pivotal in limiting overhead consumption; hence, the number of  
maps within a push message should be restrained. Moreover, optimizing 
push frequency may be necessary to minimize overhead.

7.3 Future directions
The proposed protocol exhibits significant potential for efficiently 
propagating multimedia applications. In future research, improvements in 
piece and specific file selection policies could be explored to enhance the 
seamless delivery of  user applications. For instance, a linear piece policy 
could be implemented for streaming services, ensuring file pieces' sequential 
ordering or retrieval. Furthermore, researchers in this field can utilize this 
article as a valuable reference for further exploration and study.

References
Franchi, E., & Poggi, A. (2019). Blogracy: A peer-to-peer social network. In 

Censorship, surveillance, and privacy: concepts, methodologies, tools, and applications 
(pp. 675-696). IGI global. doi: 10.4018/978-1-5225-7113-1.ch063.

Galuba, W., & Girdzijauskas, S. (2009). Peer-to-Peer System. In: LIU, L., 
ÖZSU, M.T. (eds) Encyclopaedia of  Database Systems. Boston, MA; 
Springer. https://doi.org/10.1007/978-0-387-39940-9_1230.

Gupta, R. K., Hada, R., & Sudhir, S. (2017). 2-tiered cloud-based content delivery 
network architecture: An efficient load balancing approach for video streaming. 
Paper presented at the 2017 International Conference on Signal 
Processing and Communication (ICSPC), (pp. 431-435). doi: 
10.1109/CSPC.2017.8305885.

Hassanzadeh-Nazarabadi, Y., Kupcu, A., & Ozkasap, O. (2020). Interlaced: 
Fully decentralized churn stabilization for skip graph-based DHTs. 
Journal of  Parallel and Distributed Computing, 149, 13–28. 
https://doi.org/10.1016/j.jpdc.2020.10.008.

Hassanzadeh-Nazarabadi, Y., Kupcu, A., & Ozkasap, O. (2021). Lightchain: 
Scalable DHT-based blockchain. IEEE Transactions on Parallel and 
Distributed Systems, 32(10), 2582-2593. doi: 10.1109/TPDS.2021.3071176.

Hentschel, A., Hassanzadeh-Nazarabadi, Y., Seraj, R., Shirley, D., & Lafrance, 
L. (2020). Flow: Separating consensus and compute–block formation 
and execution. arXiv preprint arXiv:2002.07403, 1 -41, 
https://doi.org/10.48550/arXiv.2002.07403.

Kaur, R., Gabrijelcic, D., & Klobucar, T. (2022). Churn handling strategies to 
support dependable and survivable structured overlay networks. IETE 
Technical Review, 39(1), 179-195, doi: 10.1080/02564602.2020.1830001.

Kwon, G., & Ryu, K. D. (2004). BYPASS: Topology-aware lookup overlay for 
DHT-based P2P file locating services. Proceedings of  the Tenth International 
Conference on Parallel and Distributed Systems, ICPADS 2004, (pp. 
297-304). doi: 10.1109/ICPADS.2004.1316108.

Lamport, L. (2019). Time, clocks, and the ordering of  events in a distributed 
system. In Concurrency: The Works of  Leslie Lamport (pp. 179-196). 
doi:10.1145/3335772.3335934.

Maymounkov, P., & Mazières, D. (2002). Kademlia: A Peer-to-Peer 
information system based on the XOR metric. In: Druschel, P., 
Kaashoek, F., Rowstron, A. (eds) Peer-to-Peer Systems. IPTPS 2002. Lecture 
Notes in Computer Science (pp. 2429). Berlin, Heidelberg: Springer. 
https://doi.org/10.1007/3-540-45748-8_5.

Nakayama, T., & Asaka, T. (2017). Peer-to-peer bidirectional streaming using mobile 
edge computing. Paper presented at the 2017 Fifth International 
Symposium on Computing and Networking (pp. 263-266), IEEE. doi: 
10.1109/CANDAR.2017.38.

Nasir, M., Muhammad, K., Bellavista, P., Lee, M. Y., & Sajjad, M. (2020). 
Prioritization and alert fusion in distributed IoT sensors using Kademlia 
based distributed hash tables. IEEE Access, 8, 175194-175204, doi: 
10.1109/ACCESS.2020.3017009.

Nguyen, B. M., Hoang, H. N. Q., Hluchy, L., Vu, T. T., & Le, H. (2017). 
Multiple peer chord rings approach for device discovery in IoT 
environment. Procedia Computer Science, 110, 125-134. 
https://doi.org/10.1016/j.procs.2017.06.133.

PeerSim P2P Simulator. (2009). Retrieved from 
http://peersim.sourceforge.net/

Raj, S., & Rajesh, R. (2016). Descriptive analysis of  hash table-based intrusion 
detection systems. Paper presented at the 2016 International Conference on 
Data Mining and Advanced Computing (pp. 233-240), IEEE.  doi: 
10.1109/SAPIENCE.2016.7684112.

Rodrigues, R., & Druschel, P. (2010). Peer-to-Peer Systems. Communications of  
the ACM, 53(10), 72-82. doi:10.1145/1831407.1831427.

Sonbol, K., Ozkasap, O., Al-Oqily, I., & Aloqaily, M. (2020). EdgeKV: 
Decentralized, scalable, and consistent storage for the edge. Journal of  
Parallel and Distributed Computing, 144, 28 – 40, 
https://doi.org/10.1016/j.jpdc.2020.05.009.

Stein, C. A., Tucker, M. J., & Seltzer, M. I. (2002). Building a reliable mutable file 
system on peer-to-peer storage. Paper presented at the 21st IEEE Symposium 
on Reliable Distributed Systems (pp. 324-329). doi: 
10.1109/RELDIS.2002.1180204.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., & Balakrishnan, H. 
(2003). Chord: A scalable peer-to-peer lookup protocol for Internet 
applications. IEEE/ACM Transactions on Networking, 11(1), 17-32. 
https://doi.org/10.1109/TNET.2002.808407.

Taheri-Boshrooyeh, S., Hassanzadeh-Nazarabadi, Y., & Ozkasap, O. (2020). 
A proof-of-concept implementation of  guard ¨ secure routing protocol. Paper 
presented at the 2020 International Symposium on Reliable Distributed 
Systems (SRDS) (pp. 332-334). doi: 10.1109/SRDS51746.2020.00041.

Tahir, A., Abid, S. A., & Shah, N. (2017). Logical clusters in a DHT paradigm 
for scalable routing in MANETs. Computer Networks, 128, 142-153. 
https://doi.org/10.1016/j.comnet.2017.05.033.

Tran, M. H., Nguyen, V.S., & Ha, S.V.U. (2016). Decentralized online social 
network using peer-to-peer technology. REV Journal on Electronics and 
Communications, 5(1-2). doi: http://dx.doi.org/10.21553/rev-jec.95.

Ucar, S., Higuchi, T., & Altintas, O. (2019). Collaborative data storage by a 
vehicular micro cloud. Paper presented at the 2019 IEEE Vehicular 
Networking Conference (VNC) (pp. 1-2). doi: 
10.1109/VNC48660.2019.9062818.

Urdaneta, G. A. (2011). Collaborative wikipedia hosting. Published PhD 
thesis: Vrije Universiteit, Amsterdam. doi: 
https://research.vu.nl/en/publications/collaborative-wikipedia-hostin.

Xie, X.-L., Wang, Q., & Wang, P. (2017). Design of  smart container cloud based on 
DHT. Paper presented at the 2017 13th International Conference on 
Natural Computation, Fuzzy Systems and Knowledge Discovery 
(ICNCFSKD) (pp. 2971-2975). doi: 10.1109/FSKD.2017.8393255.

Zahid, S., Abid, S. A., Shah, N., Naqvi, S. H. A., & Mehmood, W. (2018). 
Distributed partition detection with dynamic replication management in 
a DHT-based MANET. IEEE Access, 6, 18731-18746. doi: 
10.1109/ACCESS.2018.2814017.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., & Kubiatowicz, 
J. D. (2004). Tapestry: A resilient global-scale overlay for service 
deployment. IEEE Journal on Selected Areas in Communications, 22(1), 41-53. 
doi: 10.1109/JSAC.2003.818784.

Zhou, M., Dai, Y., & Li, X. (2006). A measurement study of  the structured overlay 
network in P2P file-sharing applications. Paper presented at the Eighth IEEE 
International Symposium on Multimedia (ISM'06) (pp. 621-628). doi: 
10.1109/ISM.2006.5.

Corresponding author
MD Jiabul Hoque can be contacted at: jiabul.hoque@iiuc.ac.bd

A comparative study on machine learning 
algorithms for improved prediction measures 

for COVID-19

Md. Ziaur Rahman
Department of  Computer Science and Engineering

International Islamic University Chittagong (IIUC), Bangladesh

Abstract
The Corona-virus (COVID-19) is an emerging disease responsible for infecting millions of  
people since the first notification until nowadays. Corona virus causes respiratory ailment like 
influenza with symptoms for example, cold, coughs, fatigue, fever and gradually increases the 
breathing problem. The disease and symptoms are changing frequently thus due to time 
constraints it is literally impossible to test. Analysis of  Covid-19 data using machine learning 
paradigm is becoming a major interest of  the researchers in this situation. The aim of  this 
study is to develop a better predicting model for Covid-19 patients. Patients feature can be 
assessed statistically and traditionally. But with this day and age of  advanced machine learning 
approaches Covid-19 can be predicted using machine learning techniques with better accuracy. 
In this work four well known machine learning approaches was used for better prediction in 
Covid-19. However, this study focuses on optimizing machine learning approaches. Two 
optimization approaches employed for Grid Search and Random Search are used for fine tune 
in prediction.  

Keywords COVID-19, Machine Learning, Optimization, Prediction.

Paper type Research paper

1. Introduction
In recent years, as a general introduction of  Covid-19, the highly contagious 
viral illness over the worldwide caused by severe acute respiratory syndrome 
corona virus 2 (SARS-CoV-2) (Ahmed, Rahman, & Hoque, 2020). This 
Covid-19 outbreak was declared by the World Health 
Organization as a public health emergency. In order to 
identify and isolate the contagious elements, diagnosis of  
COVID-19 is important (Ahmed, Rahman, & Hoque, 
2020). The COVID-19 virus primarily spreads through 
the air when an infected person releases droplets from 
their mouth or nose while speaking, coughing, or 
sneezing. The transmission occurs when a healthy 
individual is close to the contaminated droplets (Ahmed, 
Rahman, & Hoque, 2020). The respiratory spreads vary 

vastly with individual factors age, gender, observations of  fever, and travel 
history. Like normal fever, COVID-19 people also become affected with 
fever, fatigue and dry cough. Some patients may have sore throat, diarrhea, 
headache and nasal congestion myalgia, gastrointestinal symptoms, and 
Ansonia (Amoiralis, Tsili, Kladas, & Souflaris, 2012). The affected person 
shows early-stage symptoms and affected by the major symptoms within 
2-14 days (Ahmed, Rahman, & Hoque, 2020; Amoiralis, Tsili, Kladas, & 
Souflaris, 2012). The increasing numbers of  managing COVID-19 cases is a 
tremendous challenge for health care facilities in worldwide; though, there is 
not sufficient information about the virus. The severity of  cases in this 
outbreak, and the survival rate from the infection, are putting great pressure 
on physicians and medical services, leading to a shortage of  intensive care 
resources and electronic health facilities.  The sudden pervasiveness of  
severe acute respiratory syndrome has been leading each country into a 
prominent crisis worldwide (Hakim, Uddin, & Hoque, 2020). People have 
been infected by the predominant virus vastly, resulting in various measures 
being enforced including country lockdowns, curfews and travel restrictions 
has been given by the Govt. for the people safety. Only 7 types of  corona 
viruses can infect humans. The fast among them was discovered by scientists 
in 1965 (Hakim, Uddin, & Hoque, 2020). Although, almost 30% of  this virus 
was only limited to the Middle East it was much deadlier than the SARS virus 
with a mortality rate (Hoque, Ahmed, Uddin, & Faisal, 2020). However, the 
comparison between SARS and MERS, the SARS-COV-2 virus is 
responsible for Covid-19 is a different beast altogether. In Bangladesh, the 
first corona virus case was reported on 8th March, 2020 (Hoque, Kabir, & 
Hossain, 2018). The COVID-19 virus has had a significant impact globally, 
infecting many individuals. The government is aware of  the critical factors 
involved in the transmission of  the virus, which include respiratory droplets 
from coughing or sneezing. The growing importance of  healthcare 
epidemiology and demographic analysis has led to an expansion of  
electronic health data (Hoque, Ahmed, Uddin, & Faisal, 2020). The 
availability of  electronic health system and data is increasing day by day. 
Corresponding weight has given by the measurement to the feature and the 
same input data can be used for training machine learning algorithms to 
improve its decision-making and reliability in terms of  predicting Covid-19 
symptoms at early stage (Josue, Arifianto, Saers, Rosenlind, & Hilber, 2020).
 In data measurement, specific indicators that reflect symptoms are used 
to determine the progress of  the Covid-19 situation. Predictive modelling 
may be applied, but the accuracy of  the data depends on the relationship 
between previously collected data and various mathematical formulas. If  this 
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