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Abstract

Distributed Hash Tables (DHTs) are integral components in peet-to-peer systems, providing
storage and lookup services for key-value pairs. While they have proven highly successful in
managing and locating replicas of small files (typically under 1 MB), their efficiency in
handling larger files diminishes. Factors like sluggish data senders and slow receivers further
exacerbate the inefficiencies in peer-to-peer systems, causing delays in the file propagation
process. To address these challenges, peer-to-peer systems require more efficient protocols
and resources to expedite the handling of relatively large data files. This study introduces a
novel, efficient, and effective mechanism to propagate substantial files within DHTSs while
balancing load and minimizing system overhead. To assess the proposed protocol's
effectiveness, we evaluated using the PeerSim simulator. We analyzed two crucial metrics
linked to our proposed system: overhead and propagation time. The outcomes of this research
demonstrate a significant reduction in propagation time while system overhead remains
minimal. Consequently, the proposed protocol can ensure seamless operation in real-world
streaming applications.
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1. Introduction

The advent of digital communication has witnessed significant growth in the
development of peer-to-peer systems. Many applications, including Skype,
WhatsApp, Spotify, Facebook Messenger, and many others, have emerged as
exemplars of the capabilities of peer-to-peer systems (Tran, Nguyen, & Ha,
2016). These systems typically fall into two categories:
unstructured and structured. Unstructured systems, while
versatile, often compromise performance, as they do not
employ  pre-arranged = peer  organization  for
communication  (Rodrigues &  Druschel, 2010).
Conversely, structured peer-to-peer systems utilize
overlays to consolidate their peers, prioritizing

performance enhancements. These purpose-built overlays | Issucfﬁinse“;%i;;
expedite peer lookup and facilitate efficient data retrieval pP- glulélg
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Distributed Hash Tables (DHTS), serving a similar purpose as ovetlays,
employ various topologies to organize their peers (Galuba & Girdzijauskas,
2009). For example, Kademlia employs a binary tree structure, while Chord
arranges peers in a ring formation. Generally, DHTSs excel in storing and
propagating relatively small datasets, typically under 1 MB, operating through
interfaces such as put, get, and remove (Hassanzadeh-Nazarabadi, Kupcu, &
Ozkasap, 2021). DHTSs initiate their operations by dispatching requests (e.g.,
put(value)) into the DHT ring. These requests undergo hashing and are
directed toward a designated peer, the coordinator, whose identifier closely
matches or equals the hashed value. The coordinator replicates the value
among the DHTSs (Franchi & Poggi, 2019). In scenarios where the size and
number of replicas are substantial, and the peer bandwidth is limited or slow,
the coordinator's workload becomes overwhelming, significantly impacting
the overall system's petformance. Consequently, DHTSs are mote suited for
storing relatively small data files (Kaur, Gabrijelcic, & Klobucar, 2022).

The central objective of this thesis is to empower DHTs to efficiently
store and utilize peer bandwidth for relatively large data files. While research
has explored mutable DHTSs and those with transactional consistency, more
attention should be given to developing suitable protocols or solutions for
propagating large data files within DHTs. The load-balancing capabilities of
DHTs experience a sharp decline when handling a substantial increase in the
size and number of stored files. Similarly, file propagation within DHT
becomes time-consuming under low-bandwidth connections with the
coordinator (Nakayama & Asaka, 2017).

This papet's motivation lies in designing a protocol that enables DHTs
to swiftly store and propagate relatively large files while preserving load
balancing and minimizing system overhead. Our proposed approach involves
breaking large files into smaller pieces and facilitating collaborative exchange
among interested peers. To evaluate the effectiveness of our new
propagation protocol, we have implemented a simulation, emulating
real-world events using a partial dataset from Wikipedia. We focus on two
critical metrics during the evaluation: overhead and propagation time.

The remainder of this article is structured as follows: Section 2 provides
an in-depth examination of peer-to-peer systems, Distributed Hash Tables
(DHTS), and SpiderCast within the context of background analysis. Section
3 delineates the problems, emphasizing the formidable challenge of
efficiently propagating large files within DHTSs. Section 4 offers a distinctive
resolution by introducing an innovative propagation protocol. Section 5
elucidates the experimental methodology, detailing the utilization of the
PeerSim simulator alongside a Wikipedia dataset. Section 6 unveils the
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outcomes of our experiments, incorporating lucid figures and
comprehensive analyses. Finally, in Section 7, we conclude our study,
summarizing its primary findings, addressing the challenges and potential
remedies for propagation time and overhead management, and outlining
future research directions and the broader implications of the proposed
protocol.

2. Background
2.1 Peer-to-peer (P2P) systems
Peer-to-peer (P2P) systems have emerged as significant contributors to
digital communication. These systems exhibit uniform functionality across
all participating peers, encompassing routing, storage, processing, and more
(Lamport, 2019). However, the relative architectural simplicity of P2P
systems can pose a challenge for application developers seeking to construct
complex applications, such as online video games, multimedia streaming
services, and robust storage solutions (Stoica, Morris, Liben-Nowell, Karger,
& Balakrishnan, 2003).
P2P systems offer several advantages, as outlined below (Hentschel,
Hassanzadeh-Nazarabadi, Seraj, Shitley, & Lafrance, 2020):
*  Minimal infrastructure requirements for operation.
e Independence from central servers, ensuring robustness.
*  High scalability due to an equitable distribution of workloads among
peers.
*  Exceptional robustness, capable of handling churn and failures
effectively.
*  Accurate load balancing across all peers.
»  Efficient mechanisms for handling failures, preventing disruptions
in the event of Byzantine or computer crashes.

2.1.1 Dypes of P2P systems

P2P mechanisms encompass two primary variants: structured and
unstructured peer-to-peer systems.

Structured P2P Systems: Within structured P2P systems, peers are organized
systematically, avoiding the random allocation of values to peers. Such
structured systems effectively utilize peer bandwidth, expedite data retrieval
from peers, and eliminate unnecessary broadcast requests. Prominent
overlays, such as Chord, Pastry, and Kademlia, arrange peers in structured
P2P systems (Kwon & Ryu, 2004).

Unstructured P2P Systems: Conversely, unstructured P2P systems involve
peers needing knowledge of overlays before or during network entry. This
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paper does not delve into unstructured P2P systems (Kwon & Ryu, 2004).

2.1.2 DHTs

Distributed Hash Tables (DHTS) offer storage and lookup services for values
and their associated keys. DHTSs are widely adopted in distributed systems
due to their demonstrated efficiency in load balancing, availability, low
overhead, scalability, and user-friendly interfaces (Hassanzadeh-Nazarabadi,
Kupcu, & Ozkasap, 2021). The proposed protocol for data propagation can
be applied to both mutable and immutable DHTs, enabling the propagation
of large data files while reducing latency and maintaining load balancing
within the DHT.

2.2 SpiderCast

SpiderCast is a decentralized overlay that operates without reliance on a
central server. This characteristic equips it with a robust failure-handling
mechanism during distributed processing (Zhao, Huang, Stribling, Rhea,
Joseph, & Kubiatowicz, 2004). This section provides insight into how
SpiderCast maintains connected replicas of the same file within the network.

2.2.1 Modification of SpiderCast

Our technique for defining coverage differs from SpiderCast. In SpiderCast,
the highest number of peers was k*h, where k was the required coverage, and
h was the total quantity of entries (Raj & Rajesh, 2016). This method is
impractical for DHTSs with several values. Our method programs the maximum
number of peers based on simulator characteristics. SpiderCast’s availability is
peers hosting an identical file 100% or partially. Another difference is when the
overlay stops adding links. After covering K subjects, SpiderCast disconnects
superfluous links. More neighbors than authorized start the disconnection
process (Zahid, Abid, Shah, Naqvi, & Mehmood, 2018).

2.3 Replication

Peer-to-peer systems replicate files across several peers. This technique
improves performance and availability, especially in dynamic contexts with
rapid peer additions and removals. Replication improves system performance
by reducing response times, improving load balancing, and scaling
(Maymounkov & Mazieres, 2002). However, communicating with replicas
hosting the object takes much work. Replication approaches dominate this
article. Web servers can route traffic to other copies to assist load balancing
and system scaling as additional users join. However, fixing file copy
maintenance is necessary for data replication (Tahir, Abid, & Shah, 2017).
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2.3.1 Coordinators

Within a Chord ring, as illustrated in Figure 1, the coordinator plays a crucial
role in generating new replicas by distributing documents among peers,
aligning with the system's replication policy. This replication is necessary to
address churn and preserve data availability, preventing data loss (Stein,
Tucker, & Seltzer, 2002). Our solution benefits coordinators by reducing
propagation load and latency.
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2.3.2 Consistency

In the pursuit of achieving consistency, various information propagation
strategies have been proposed and evolved. This section provides a concise
overview of different concepts related to information propagation to
replicas. It is important to note that the choice of strategy can vary
depending on the specific system being employed, and these strategies can be
adapted to ensure the desired level of consistency (Nguyen, Hoang, Hluchy,
Vu, & Le, 2017).

Push Consistency

Push-based consistency techniques are server-based protocols. These
protocols allow servers to update replicas. This method carefully orders
updates received from a server, and pushes them to replicas. Push-based
protocols ensure timely and consistent update distribution in situations that
require high consistency (Sonbol, Ozkasap, Al-Oqily, & Aloqaily, 2020).

Pull Consistency

Client-based protocols, or pull-based procedures, entail replicas frequently
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obtaining updates from a server to check changes. Unlike push-based
protocols, replicas may easily retrieve updates, which might add overhead. As
shown in Figure 2, replicas frequently seck data from primary replicas to
obtain updates when most appropriate for their operating environment, even
if it requires additional resource use (Sonbol, Ozkasap, Al-Ogqily, & Aloqaily,
2020).
One notable drawback of these techniques is that they exhibit less uniformity
than pushing mechanisms. This inherent characteristic implies a substantial
delay between the initiation of an update and the moment when the updated
material becomes accessible on replicas (Xie, Wang, & Wang, 2017).
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Figure 2
Updating process through pulling

3. Problem definition
In this section, we clearly define the problem at hand and outline the
requirements that must be met to address this problem effectively.

3.1 Problem

Replication plays a vital role in enhancing data availability within
peer-to-peer systems. However, replicating files becomes challenging when
peers leave the system, potentially eliminating file replicas. Distributed Hash
Tables (DHTs) offer mechanisms to create and distribute new replicas of
relatively small files. However, there is a critical gap in propagating replicas of
larger files (exceeding 1MB in size). Coordinators disseminating these more
giant file replicas to interested peers encounter significant bandwidth
constraints, resulting in slowed propagation of large files. Moreover, peers
with low-bandwidth connections can further impede the coordinator, leading
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to potential performance degradation across the entire DHT system (Gupta,
Hada, & Sudhir, 2017).

The primary objective of this thesis is to develop a propagation scheme
capable of accelerating the distribution of substantial files within DHTs. The
implementation of our proposed propagation protocol offers several

advantages:
1. It enhanced system performance through the efficient utilization of
low bandwidth.

2. It efficiently replicates and rapidly propagates large files, particulatly
when videos or audio become viral in peet-to-peer systems.

3. Itis compatible with mutable and immutable data stored within
DHTs, enabling the swift propagation of updated replicas.

3.2 Requirements

The efficient and effective propagation of files within DHTSs necessitates the
fulfilment of both functional and non-functional requirements (Zhou, Dai,
& Li, 2000):

Functional Requirements:

1. Ensure that each peer remaining within the system receives a file
replica.

2. Our proposed protocol should exclusively involve peers interested
in a particular file while excluding unrelated peers.

Non-Functional Requirements:

1. Preserve all essential properties offered by a typical DHT.

2. Maintain scalability, even as the number of files within the DHT
increases, by enhancing load balancing through modified SpiderCast
overlays and the propagation of partial replicas to establish

connections between peets.

3. Uphold churn resilience without modifying the recovery
mechanisms or failure detection processes of standard DHTs.

4. Reduce update and replica generation time to increase data
availability.

5. Improve bandwidth utilization by deploying a modified push-pull
protocol that allows peers to communicate efficiently, considering
their available bandwidth.

6. Keep overhead to a minimum by monitoring control messages
effectively.
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4. Proposed solution

We previously discussed a conventional Master-Slave (MS) distribution
strategy, where a coordinator was responsible for individually transferring file
content to each peer. However, this approach needed to be revised,
particularly in common peer-to-peer system scenarios involving low
bandwidth connections. To overcome these limitations, we have introduce a
novel protocol, which we will explain comprehensively along with its
pseudo-code.

4.1 Proposed propagation protocol
The proposed protocol represents a modified push-pull protocol designed
for rapidly propagating large files.

4.1.1 Algorithm for push

In this part, we consider that peer p has received the logs from node n, which
has begun an iterative push. Periodically, push processes are called. The paush
iteration is started by the subsequent function. The state of peer #is updated
in the /og entries before pushing is initiated. Then local /ogs are added, and
neighbours share them. The following function analyses nearby /g files and
distributes /ggs tailored to neighbors' interests.

Step 1: Start push iteration for nth time

Step 2: store «— logs()

Step 3: Loop for all n nezghbors

Step 4: while (n.push)

Step 5: Send push notification to p

Step 6: End while

Step 7: End Loop

Step 8: Stop

4.1.2 Algorithm for pop

We shall detail the pu// procedures in this section. This protocol's major goal
is to use every available slot, or to occupy every slot. A policy directs the
sending of pull requests by transfer slots. The following function goes
through every fi/e hosted and determines which files are missing,

A file that 1s unfinished is one for which not all of the components have been
sent. We iterate through all nearby hosts of the same file for each unfinished
file. If a transfer slot becomes available, we use it to ask the neighbour for a
piece. The pull processes are being started by peer n in our pseudo-code in
order to ask peer p for a piece.

Step 1: Initialize the pull iteration for the nth time.
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Step 2: Iterate over all files hosted by peer 7.

Step 3: If the file is incomplete, proceed to the next steps.

Step 4: Iterate over all links associated with the file.

Step 5: Search for a free slot to use.

Step 6: Determine the specific piece to request based on a global piece policy.
Step 7: If the slot is idle, send a pull request, including the slot, piece, and file.
Step 8: End the slot check.

Step 9: End the loop for links.

Step 10: End the loop for files.

Step 11: End the pull iteration.

Step 12: Stop the process.

5. Experiment setup

5.1 Simulator

We employed the PeerSim simulator for our experiments due to its efficient
memory utilization and effectiveness in simulating real-world scenarios
(PeerSim P2P Simulator, 2009). We used customized PeerSim components to

irnplementm;.________________.I ______ f___:_.___l
| Rephea Creation i: Update Propagation |
_______________ |

Propagation Protocol
SprderCast
Generic DHT
Figure 3

A simplified view of PeerSim components

5.1.1 PeerSinm: components

5.1.1.1 DHT

We simulated a DHT-lookup by returning pointers to peers using the
DHT-lookup function. This method accelerated simulations without
compromising precision. We created a large data transfer among the
DHT-lookup origin and destination to mimic real-world bandwidth use. This
optimization enabled more extended simulations that better captured
real-world events (Ucar, Higuchi, & Altintas, 2019). Our approach and the
standard master-slave protocol use replication strategies to propagate files
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without DHT lookups. The revised parameters did not influence the amount
of DHT lookups, but we changed the number of neighbors returned to
account for more replicas.

5.1.1.2 Replication Policy

Our research focuses on developing an efficient file propagation protocol
independently of the specific replication policy employed. Hence, our
protocol can work in conjunction with any replication policy.

5.1.1.3 SpiderCast

The modifications to SpiderCast, as explained in Section 2.2, were
successfully incorporated into our simulator. SpiderCast's performance will
be assessed inferentially as part of our system.

5.1.1.4 Input Files

We categorize input files as Files, Peers, Events, and Parameters. These files
are vital for the simulator, defining system files, peers, events, and parameter
values necessary for execution.

5.1.1.5 Output Files

To avoid excessive log generation for uninteresting components, we turned
off the logging of specific components. However, we focused on two
significant output files:

Delay: The simulator records coordinators' activities, including delays, in log
files for each file.

Consumption of Bandwidth: We developed a dedicated monitor to monitor
the bandwidth usage associated with unique push and pull processes for each
item. We store these logs as files upon completing the simulation.

5.2 Evaluation metrics

This study considers two crucial evaluation metrics: propagation time and
ovethead. These metrics allow us to assess our proposed protocol's
performance compared to the standard master-slave protocol. Propagation
time refers to the total time taken to disseminate a file from a coordinator to
all peers within the DHT.

Control messages, that contribute significantly to overhead, were selected
for evaluation, as outlined in Table I. Our protocol shares the same DHT,
failure detection, and SpiderCast with the baseline MS protocol. Thus, the
overhead associated with these three protocols does not impact the validity of
our experiment. Table 1 reveals that our proposed protocol generates more pull
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requests than its counterpart, resulting in higher overhead. However, measuring
pull overhead is not warranted due to the negligible size of each pull message.
Our proposed protocol efficiently propagates large files to all participating
peers during propagation by maintaining necessary state information as
bitmaps within the push header. Therefore, to measure the total overhead
contributed by our protocol, we need to consider the size of the push message.

Table 1

Comparison between existing MS' protocol and over proposed protocol

Overhead Standard MS protocol Our proposed protocol
Push Control message exclusive of maps Control message inclusive of maps
Pull One large message Single message for each piece
DHT Unchanged Unchanged
Failure Detection Unchanged Unchanged
SpiderCast Unchanged Unchanged
5.3 Dataset

We utilized a Wikipedia trace comprising images and pages to evaluate the
performance of extensive file propagation. This dataset encompasses a mix
of large and small files obtained by sampling HTTP requests to the server
over several months (Urdaneta, 2011). The trace consists of two files: data on
file types, sizes, and creation dates, and the other detailing updates or new
creations. Note that the collection contains about 8,400 images that vary in
size from 44 Bytes to 18 MB. Figure 4 shows the dataset's file size
distribution. This section analyzes the crucial parameters in Section 5.5's
sensitivity.
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Distribution of files size in our dataset
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5.4 Baseline
In our research, we compare P2PPP to two baselines.

5.4.1 Standard Master-Siave (MS)
The conventional master-slave protocol serves as our primary benchmark for
comparison.

5.4.2 Lower-bound

The lower-bound baseline examines the minimum propagation time, where
all peers utilize their entire bandwidth to propagate files. This benchmark is
crucial for assessing collaborative propagation's performance, as it utilizes
each peet's total bandwidth capacity. The lowet-bound time for propagation
depends on neighbor bandwidth (Taheri-Boshrooyeh,
Hassanzadeh-Nazarabadi, & Ozkasap, 2020).

5.5 Important parameters and default values

To streamline our experimentation process and manage the multitude of
parameters in the system, we assessed several parameters in isolation to study
their impact on evaluation metrics. Table 2 outlines the most crucial variables
for our system.

Table 2

Important evaluation criteria and their corresponding defantt values

System parameters Default values
Number of active peers 10000
Peer-to-peer uniformity of bandwidth Yes
Reversing a successful piece reception Yes
Retort following piece reception failure Yes
Iterative reactive pull after push Yes
Timeout nodes 50s
Peer parameters Default values
Peer bandwidth 30 KB/s
Number of transfer slots for peers 2
Transfer slot request policies Random
Size of pieces in the system 3KB
Frequency of push procedures 30s

Frequency of pull procedures 100s
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Replication parameters Default values
Peers returned via DHT-lookup 10
Number of replicas to create 7
SpiderCast parameters Default values
Frequency of maintenance procedure 3 mins
Method of selecting neighbours Greedy
Neighbour preference for each file 3
Maximum number of consecutive executions 15
Churn parameters Default values
Availability skewness None
Maximum peer availability None
Mean offline time None

6. Results and analysis

The primary objective of this study is to assess the speed at which large files
propagate within DHTs using our proposed protocol compared to the
existing master-slave protocol designed for the same purpose. Additionally,
this experiment aims to quantify the reduction in overhead achieved by our
proposed protocol. This section analyzes the crucial parameters in Section
5.5's sensitivity.

6.1 Default values

Our initial and critical evaluation metric focuses on the propagation delay
introduced by our novel protocol within the DHT. Figure 5 presents the
results obtained from ten iterations involving different seed sizes. The graph
illustrates the mean propagation time based on default parameters across
numerous experiments. The error bars within the graph represent the
minimum and maximum delays observed when propagating seven copies of
the same file within the DHT.

The propagation delay increases as file sizes grow. However, particular spikes
are noticeable due to the inherent system for distributing events in the
Master-Slave (MS) procedure. These spikes occur because files ate
introduced into the DHT with uneven timing, leading to irregular
propagation patterns in the graph. An event trace was conducted randomly
to mitigate this issue, introducing the duplicate files into the DHT
randomized. Consequently, these spikes were eliminated from our dataset
sourced from Wikipedia.
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Figure 5 underscores the stability of our novel protocol concerning
propagation delays. This stability can be attributed to the randomized
selection of coordinators, which significantly alleviates the propagation delay
by distributing a substantial portion of the load away from the coordinator.
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The propagation time for proposed defanlt values

Our proposed protocol's evaluation of overthead introduced to the
Distributed Hash Table (DHT) represents the second crucial metric in this
research endeavor. Figure 6 comprehensively illustrates the bandwidth
consumption attributed to our innovative protocol. During the propagation
of a substantial file exceeding 18 MB, the most efficient utilization of push
bandwidth recorded was slightly below 250 KB. Consequently, the overhead
incurred during the propagation of the most extensive file via our protocol
does not exceed 0.2%.

Notably, the graph exhibits some minor spikes, primarily attributable to
increases in propagation time. An escalation in propagation delay necessitates
transmitting a more significant number of push messages, which, in turn,
contributes to the observed overhead.
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6.2 Transfer slots
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Increasing the number of transfer slots during propagation boosts our
protocol's parallelism. In this scenario, interested peetrs can concutrently
execute multiple requests from their neighboring peers, reducing propagation
time. Figure 7 visually represents the propagation time observed when
propagating seven identical file copies, considering various available

neighboring transfer slots, including 1, 2, 4, 6, and 8.
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Transfer slots' impact on propagation time
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The insights gleaned from Figure 7 reveal that a noticeable reduction in
propagation time is achieved with an increasing number of available transfer
slots. However, it is crucial to note that this enhanced parallelism does result
in increased overhead attributed to the higher volume of request copies
originating from a single neighbor. Intriguingly, the optimal balance between
propagation time and overhead is struck when precisely six transfer slots are
available from neighboring peers. Surprisingly, a significant reduction in
propagation time is evident when each neighbor possesses only a single
transfer slot.

In summary, our dataset demonstrates that the most efficient
propagation time is achieved when six transfer slots are available, despite
marginal disparities between 8 and 4 slots.

Figure 8 further elucidates the impact of different transfer slots on
overhead. It becomes apparent that overhead diminishes as the number of
transfer slots increases. This phenomenon can be attributed to the expedited
propagation process, resulting in fewer push messages sent by participant
nodes. Notably, the overhead consumption is minimized when six transfer
slots are available in the dataset compared to other alternatives.

These outcomes are consistent with those observed in Figure 7, as
propagation time and protocol overhead are closely intertwined. The highest
level of overhead consumption, which remains below 350 KB, is recorded
when a neighbor possesses only a single transfer slot. Overall, it is
noteworthy that the overhead consumption does not exceed 0.3% in any
scenario.
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6.3 Piece size

Here, we are going to examine how the alteration of component sizes affects
propagation time and overhead usage. To do that default values will be used
apart from changing the parameter of piece size. From figure 9, it can be seen
that propagation time increased with the decrement of piece size. It is noted
that negligible propagation time observed for over 100 KB piece size but
highest propagation delay occured for 10 KB piece size.
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Propagation delay for different piece sizes

Following figure 10 illustrates consumption of overhead due to the push
message of different piece sizes. The overhead is drastically increased to
approximately 180 KB when having 30 KB piece size while less than 20 KB
overhead has been consumed with the piece size of 150 KB. In relation to
the volume of data propagated, less than 1.1% overhead has been consumed.
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6.4 Amount of replicas

Here, we only modify the number of created replicas and leave rest of the
parameters remain unchanged. Following table 3 shows the values used for
replication policy.

Table 3

Values the replication policy takes into acconnt while selecting coordinators and replicas

Experiment No. DHT Lookup Size Replicas
1 7 5
2 10 7
3 13 10

It can be seen from the figure 11 that surprisingly, propagation time enlarges
gradually with the increasing number of participants during propagation. For
instance, 10 copies of file propagation have more spikes than propagating 5
copies. Figure 11 illustrates that in all 3 experiments with different replicas
(5, 7 and 10), our proposed protocol performs well in term of holding lower
propagation time than its counterpart MS protocol. The reason behind
performing worse by MS protocol is that an entire file has to propagate to all
the participating peers which lead to increasing propagation delay.
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Figure 12 depicts the consumption of overhead for increasing number of
participated peers. It can be seen from the figure that overhead consumption
is proportional to the increasing number of replicas. For instance, highest
amount of overhead was consumed for propagating 10 replicas where as
negligible amount of overhead consumed for propagating 5 replicas within
DHT. Overall, the consumption of overhead is slightly over 0.1% by our
proposed protocol that is very negligible.
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Figure 12
Ouwerhead for the P2PPP protocol's growing participant population
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6.5 Bandwidth

In order to get best possible result of propagation time and overhead caused
by peer bandwidth, number of transfer slots and piece sizes should be
modified from the default value mentioned in section 5.5. Table 4 shows the
modified values of transfer slots and piece sizes during sensitivity analysis of
peer bandwidth. Those parameters were chosen according to the amount of
contributed bandwidth.

Table 4

Modified transfer slots and piece size

Experiment Piece Size Transfer Slots
1 30 KB 2
2 30 KB (default) 2 (default)
3 50 KB 4
4 150 KB 4

Following figure 13 shows the propagation time during the consumption of
contributed bandwidth of peers. The graph shows that our proposed
protocol perform less propagation delay than it master-slave counterpart.
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Figure 13
Propagation speed changes with peer bandwidth contribution

Figure 14 depicts the consumption of overhead due to the propagation of
push messages during sensitivity analysis. It can be seen from the graph that
there is a reciprocal relationship between overhead consumption and
utilization of bandwidth. For instance, the consumption of overhead is
highest when there is a lower utilization of peer bandwidth.
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Effect of bandwidth contribution on overbead.

7. Conclusion
This section summarizes our study and discusses propagation time and
overhead management challenges.

7.1 Propagation time

During the evaluation of our dataset, specific instances of elevated
propagation time were identified. It is possible to employ various strategies
to mitigate these spikes in propagation delay. One approach is mapping
different items to different peers, thereby reducing the likelihood of
propagation delays. Another potential solution is to modify the piece-pulling
policy of peers, favoring faster peers for piece retrieval during propagation.
Additionally, an alternative to the existing DHT lookup-based replication
policy could involve implementing a more structured, non-random
placement of replicas. Furthermore, considerations may include optimizing
transfer slots and ensuring an appropriate piece size to minimize propagation
delay. However, these optimizations must be made about peer bandwidth,
aligning transfer slots and piece size with the available download bandwidth.

7.2 Overhead
Our evaluation has revealed that both bitmap size and propagation time are
responsible for overhead consumption. Specifically, bandwidth utilization,
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piece sizes, and push frequency are key factors contributing to overhead. For
instance, it is unwise to fragment a 2 GB file into 5 KB pieces due to the
extensive mapping required for file representation. Reducing the size of push
messages is pivotal in limiting overhead consumption; hence, the number of
maps within a push message should be restrained. Moreover, optimizing
push frequency may be necessary to minimize overhead.

7.3 Future directions

The proposed protocol exhibits significant potential for efficiently
propagating multimedia applications. In future research, improvements in
piece and specific file selection policies could be explored to enhance the
seamless delivery of user applications. For instance, a linear piece policy
could be implemented for streaming services, ensuring file pieces' sequential
ordering or retrieval. Furthermore, researchers in this field can utilize this
article as a valuable reference for further exploration and study.

References

Franchi, E., & Poggi, A. (2019). Blogracy: A peer-to-peer social network. In
Censorship, surveillance, and privacy: concepts, methodologies, tools, and applications
(pp- 675-696). IGI global. doi: 10.4018/978-1-5225-7113-1.ch063.

Galuba, W., & Girdzijauskas, S. (2009). Peer-to-Peer System. In: LIU, L.,
OZSU, M.T. (eds) Encyclopaedia of Database Systems. Boston, MA;
Springer. https://doi.org/10.1007/978-0-387-39940-9_1230.

Gupta, R. K., Hada, R., & Sudhir, S. (2017). 2-tiered cloud-based content delivery
network architecture: An efficient load balancing approach for video streaming.
Paper presented at the 2017 International Conference on Signal
Processing and Communication (ICSPC), (pp. 431-435). doi:
10.1109/CSPC.2017.8305885.

Hassanzadeh-Nazarabadi, Y., Kupcu, A., & Ozkasap, O. (2020). Interlaced:
Fully decentralized churn stabilization for skip graph-based DHTs.
Journal — of  Parallel  and  Distributed — Computing, 149, 13-28.
https://doi.org/10.1016/].jpdc.2020.10.008.

Hassanzadeh-Nazarabadi, Y., Kupcu, A., & Ozkasap, O. (2021). Lightchain:
Scalable DHT-based blockchain. IEEE Transactions on Parallel and
Distributed Systems, 32(10), 2582-2593. doi: 10.1109/TPDS.2021.3071176.

Hentschel, A., Hassanzadeh-Nazarabadi, Y., Seraj, R., Shirley, D., & Lafrance,
L. (2020). Flow: Separating consensus and compute—block formation
and  execution. arXiv  preprint  arXiv:2002.07403, 1  -41,
https://doi.org/10.48550/arXiv.2002.07403.



Protocol for propagating large files 163

Kaur, R., Gabrijelcic, D., & Klobucar, T. (2022). Churn handling strategies to
support dependable and survivable structured overlay networks. IETE
Technical Review, 39(1), 179-195, doi: 10.1080/02564602.2020.1830001.

Kwon, G., & Ryu, K. D. (2004). BYPASS: Topology-aware lookup overlay for
DHT-based P2P file locating services. Proceedings of the Tenth International
Conference on Parallel and Distributed Systems, ICPADS 2004, (pp.
297-304). doi: 10.1109/ICPADS.2004.1316108.

Lamport, L. (2019). Time, clocks, and the ordering of events in a distributed
system. In Concurrency: The Works of Leslie Lamport (pp. 179-196).
doi:10.1145/3335772.3335934.

Maymounkov, P, & Mazieres, D. (2002). Kademlia: A Peer-to-Peer
information system based on the XOR metric. In: Druschel, P,
Kaashoek, F.,, Rowstron, A. (eds) Peer-to-Peer Systems. IPTPS 2002. Lecture
Notes in Computer Science (pp. 2429). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/3-540-45748-8_5.

Nakayama, T., & Asaka, T. (2017). Peer-to-peer bidirectional streaming using mobile
edge computing. Paper presented at the 2017 Fifth International
Symposium on Computing and Networking (pp. 263-266), IEEE. doi:
10.1109/CANDAR.2017.38.

Nasir, M., Muhammad, K., Bellavista, P, Lee, M. Y., & Sajjad, M. (2020).
Prioritization and alert fusion in distributed IoT sensors using Kademlia
based distributed hash tables. IEEE _Acess, 8, 175194-175204, doi:
10.1109/ACCESS.2020.30170009.

Nguyen, B. M., Hoang, H. N. Q., Hluchy, L., Vu, T. T., & Le, H. (2017).
Multiple peer chord rings approach for device discovery in IoT

environment. Procedia Computer — Science, 110, 125-134.
https://doi.org/10.1016/j.procs.2017.06.133.
PeerSim p2p Simulator. (2009). Retrieved from

http://peersim.sourceforge.net/

Raj, S., & Rajesh, R. (2016). Descriptive analysis of hash table-based intrusion
detection systems. Paper presented at the 2016 International Conference on
Data Mining and Advanced Computing (pp. 233-240), IEEE. doi:
10.1109/SAPIENCE.2016.7684112.

Rodrigues, R., & Druschel, P. (2010). Peer-to-Peer Systems. Communications of
the ACM, 53(10), 72-82. doi:10.1145/1831407.1831427.



164 ITUC Studies, Vol.-20, Issue-1, June 2023

Sonbol, K., Ozkasap, O., Al-Oqily, 1., & Aloqaily, M. (2020). EdgeKV:
Decentralized, scalable, and consistent storage for the edge. Journal of
Parallel ~ and  Distributed — Computing, 144, 28  — 40,
https://doi.org/10.1016/}.jpdc.2020.05.009.

Stein, C. A., Tucker, M. J., & Seltzer, M. 1. (2002). Buzlding a reliable mutable file
systenm on peer-to-peer storage. Paper presented at the 21st IEEE Symposium
on  Reliable  Distributed  Systems  (pp.  324-329).  dot:
10.1109/RELDIS.2002.1180204.

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D. R., & Balakrishnan, H.
(2003). Chord: A scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Transactions on Networking, 11(1), 17-32.
https://doi.org/10.1109/TNET.2002.808407.

Taheri-Boshrooyeh, S., Hassanzadeh-Nazarabadi, Y., & Ozkasap, O. (2020).
A proof-of-concept implementation of guard  secure routing protocol. Paper
presented at the 2020 International Symposium on Reliable Distributed
Systems (SRDS) (pp. 332-334). doi: 10.1109/SRDS51746.2020.00041.

Tahir, A., Abid, S. A., & Shah, N. (2017). Logical clusters in a DHT paradigm
for scalable routing in MANETSs. Computer Networks, 128, 142-153.
https://doi.org/10.1016/j.comnet.2017.05.033.

Tran, M. H., Nguyen, V.S., & Ha, S.V.U. (2016). Decentralized online social
network using peer-to-peer technology. REV” Journal on Electronics and
Communications, 5(1-2). doi: http://dx.doi.org/10.21553/rev-jec.95.

Ucar, S., Higuchi, T., & Altintas, O. (2019). Collaborative data storage by a
vehicular micro clond. Paper presented at the 2019 IEEE Vehicular
Networking Conference (VNCO) (pp- 1-2). doi:
10.1109/VNC48660.2019.9062818.

Urdaneta, G. A. (2011). Collaborative wikipedia hosting, Published PhD
thesis: Vrije Universiteit, Amsterdam. doi:
https://tresearch.vu.nl/en/publications/ collaborative-wikipedia-hostin.

Xie, X.-L., Wang, Q., & Wang, P. (2017). Design of smart container clond based on
DHT. Paper presented at the 2017 13th International Conference on
Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNCFSKD) (pp. 2971-2975). doi: 10.1109/FSKD.2017.8393255.

Zahid, S., Abid, S. A., Shah, N., Naqvi, S. H. A., & Mehmood, W. (2018).
Distributed partition detection with dynamic replication management in
a DHT-based MANET. IEEE _Acess, 6, 18731-18746. doi:
10.1109/ACCESS.2018.2814017.



Protocol for propagating large files 165

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., & Kubiatowicz,
J. D. (2004). Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications, 22(1), 41-53.
doi: 10.1109/JSAC.2003.818784.

Zhou, M., Dai, Y., & Li, X. (2006). A measurement study of the structured overlay
network in P2P file-sharing applications. Paper presented at the Eighth IEEE
International Symposium on Multimedia (ISM'06) (pp. 621-628). doi:
10.1109/ISM.2000.5.

Corresponding author
MD Jiabul Hoque can be contacted at: jiabul.hoque@iiuc.ac.bd



166 ITUC Studies, Vol.-20, Issue-1, June 2023




	Forma 18A-18B 71
	Forma 19A-19B
	Forma 20A-20B
	Forma 21A-21B 72



