
IIUC Studies 17
DOI: https://doi.org/10.3329/iiucs.v17i1.54982

Real time secure messaging service for internet
of things applications using MQTT

MD Jiabul Hoque and Md. Razu Ahmed
Department of Computer and Communication Engineering

International Islamic University Chittagong (IIUC), Bangladesh
MD Akibur Rahman and Shihab Uddin

Department of Electronic and Telecommunication Engineering
International Islamic University Chittagong (IIUC), Bangladesh

Abstract
Most of the IoT applications require real time and secure exchange of information among
connected devices and hence, currently, security of communication protocols is becoming key
topic of research. MQTT, a lightweight communication protocol, is used for real time
communication between networks. Authors have reviewed numerous published researches on
secure MQTT protocol for IoT networks and have discovered security loop holes of MQTT
communication protocol that are needed to be addressed. This article proposes a secure and
real time MQTT protocol by incorporating SSL certificate to MQTT broker for IoT
applications without data loss. The research has been implemented in Raspberry Pi 3B system
using Python 3.4.10 development platform along with Numpy 1.11.1 and scipy 0.18.0 (for
mathematical analysis), paho-mqtt 1.5.0 (for MQTT publication/subscription), and
Chromium (for displaying research outcome). The outcome of this research shows that the
proposed MQTT protocol has tighten security during exchanging information over IoT
networks without any loss of data.

Keywords Internet of Things, MQTT protocol, Real time, Raspberry Pi, Secure

Paper type Research paper

1. Introduction
IoT has been revealed a hot topic of research and innovation around the
world right now. Internet of Things applications in various
fields for instance medical, agriculture, food, production,
horticulture, space, mining and many more are getting
popular as they are making human being life easy, simple,
smart, safe, relaxing and secure (Ahmed, Rahman, & Hoque,
2020). Therefore, numerous entities incorporating research
scholars, public and private sector entities are involving with
IoT related research in order to generate state of the art
applications of it to grab billions (Ahmed, Mortuza, Uddin,
Kabir, & Hoque, 2018). As people are using IoT applications

IIUC Studies
Vol. 17, Dec. 2020

pp. 27-42
 © IIUC

ISSN 1813-7733

such as home automation, biomedical devices, automatic greenhouse for
agriculture or smart farming etc., security as well as loss of information is a
growing matter of concern right now (Hakim, Uddin, & Hoque, 2020).
Researchers around the world are working on how to make this essential IoT
mechanism safe and secure as majority of the IoT applications require real
time and secure communication for instance medical applications (Hoque,
Ahmed, & Hannan, 2020).
MQTT has been used as a de facto standard for coordinating communication
of IoT network applications for long time. Even though it has some security
issues, no other alternative has yet been developed (Hoque, Kabir, &
Hossain, 2018). So, researchers are concentrating on how to make MQTT
communication more secure than ever to ensure trustworthiness to IoT
applications user. It has been appeared that security can be compromised not
only on client side but also on broker of MQTT infrastructure and hence
issues of security must be considered in both ways (Kabir, Rashid, Gafur,
Islam, & Hoque, 2019).
 Internet of Things and MQTT both are took-off now. Mosquitto is the
first MQTT broker which is open source. It was created around 2008. And in
2014 it became the name of Eclipse Mosquitto project (Hoque, Ahmed,
Uddin, & Faisal, 2020). The open source MQTT client libraries were
published in 2012 as Paho project C, Python, JavaScript and Java. And since
then, it is growing day by day. The most remarkable things are the broker
version 3.1.1 becomes OASIS standard in late 2014 and MQTT turn into an
ISO standard in 2016 (Sharma, Hossen, Islam, & Hoque, 2018).
 The main objective of this article is to propose a secure and real time
MQTT protocol for IoT application without compromising any loss of data.
In this regard, a clear and step by step procedure for securing MQTT has
been presented in this paper. The procedure has been begun by tightening
usage control in MQTT communication protocol. This step has been done
by continuously observing mutable attributes related to data, the
environment or the subscriber itself for the purpose of imposing the
constraint on subscriber’s rights to access information (Rahman & Khan,
2008). The research has been implemented in Raspberry Pi 3B system using
Python 3.4.10 development platform along with Numpy 1.11.1 and scipy
0.18.0 (for mathematical analysis), paho-mqtt 1.5.0 (for MQTT
publication/subscription), and Chromium (for displaying research result).
The output of this research shows that the proposed MQTT protocol has
tighten security during exchanging information over IoT network without
any loss of data.

 After the introductory section, the rest of article is organized as follows:
Literature review sections begin right after this section that reviews existing
works relevant to home automation system. In this section, authors have
identified some short comings on existing literatures that need to be resolved
for better home automation system. Section 3 provides the solutions of the
problems identified in literature review section by designing a state-of-the-art
home automation system. Section 4 illustrates the implementation process
and subsequent section presents conclusion and future direction of this
work.

2. Literature review
Authors have reviewed substantial amount of literature related to MQTT
based IoT communication. Among them few notable literatures that cannot
be missed out are presented in this section.
 According to Bansal and Garg (2019), MQTT is a lightweight real time
transmission protocol that is fully adaptable to emergency services like
vehicle accidental notification system. They used vibration sensors, Node
MCU, Adafruit cloud, IFTTT applet to send notification regarding vehicle
accident via SMS in their research on MQTT. This research has been used as
a baseline for our research which is a real time and emergency
communication through all kind of IoT application without any data loss.
 Singh, Rajan, Shivraj, and Balamuralidhar (2015) presented a secure
version of MQTT communication named SMQTT-SN in their research on
secure MQTT for IoT applications. In their work they have incorporated
some added security features such as lightweight Elliptic Curve
Cryptography based policy attribute encryption on MQTT communication
that enhanced security. However, some security flaws such as key revocation
during group subscription and publication are big concern for SMQTT-SN
that has been identified during implementation stage of their research.
 Lee, Kim, Hong, and Ju (2019) analyzed the relationship between delay
and associated loss of data according to QoS measure in their recent work on
MQTT. Rigorous analysis has been done by the researchers on MQTT
communication in this paper that incorporate subscribe client, publish client
(both wired and wireless) and broker server etc. The outcome of this
research depicted that message loss under varying payload has been
significant impacted by end-to-end delay in communication. However, the
behaviour under numerous Quality of Service measure is remain in doubt.
 In the scenario of Wireless Sensors Network (WSN) based IoT
infrastructure where a middleware is required between sensors and server for

flawless MQTT communication. A recent study on performance analysis
between MQTT and Constrained Application Protocol (CoAP) using a
common middleware in the case of IoT application shows that MQTT
communication has significantly low data loss and negligible delay in
communication compare to its counterpart (Upadhyay, Borole, & Dileepan,
2016: 2-3). A similar trend has been revealed in another research on health
information sharing using IoT where MQTT come out as a clear winner in
case of WSN based IoT applications network (Katsikeas, 2017: 1198-1199).

3. Materials and methods
In this section, the authors have described the components required to test
the proposed MQTT protocol that is outlined in the following section 3.2.
Besides, the authors have presented methodology that has been followed for
successful research outcome.

3.1. Hardware and software components
The research has been implemented in Raspberry Pi 3B incorporating
1.2GHz 64-bit quad-core Arm Cortex-A53 CPU with 1GB RAM and
Raspbian operating system has been used to run the system. Besides, Python
3.4.10 has been used as premier development platform along with Numpy
1.11.1 and scipy 0.18.0 for mathematical analysis as well as paho-mqtt 1.5.0
has been used for MQTT publication/subscription. An MQTT mosquitto
broker has also been installed within raspberry pi. The research outcome has
been displayed graphically by the use of Chromium.

3.2. Proposed architecture of MQTT
Figure 1 illustrates the proposed MQTT architecture where a client is
regarded as any electronic medium that is able to communicate with broker.
In the proposed system few (PC, Mobile, Laptop, numerous sensors and
even a server) of many such devices has been projected. The responsibilities
of a broker in MQTT architecture are immense for instance it needs to be
active all the time to coordinate the communication with its connected
clients. The coordination begins by identifying clients and then authorizing
those clients by using secure authentication method. Afterwards, broker
coordinates messages that have been received from various clients and
publish those messages that have been received from subscribe clients. There
is only one constraint in the MQTT architecture which is a broker only
communicates one client at a given time while maintaining connection with
all.

Figure 1: The proposed architecture of MQTT

3.3. Basic MQTT configuration
The method of this proposed MQTT secure communication system in IoT
applications start with configuring Mosquitto server as Mosquitto MQTT
broker has been used as out-broker. First of all, status of the broker needs to
check as broker must be up and running to test the proposed system. Figure
2 shows the status of the Mosquitto MQTT broker used in this system:

Figure 2: Mosquitto MQTT broker status

After confirming broker status as active (running), the status of WebSocket
connection is needed to checked. WebSocket retrieves the values from
mqtt.js file as such connect() function inside mqtt.js file is required to be
configured. Figure 3 depicts the configuration variables of connect()
function:

Figure 3: connect() function configuration

Connect() function in the above Figure 3 has number of variables such as
hostname, port number, session and connection etc that are responsible for
successful connection. After successful configuration of mqtt.js file, the
status of WebSocket is checked this is shown in the figure 4 below:

Figure 4: Status of WebSocket

The status of WebSocket in the above figure 4 shows that the clients are
connected to the server and are ready to communicate.

3.4. Secure MQTT configuration
There are mainly three security mechanisms such as authentication, identity

28 IIUC Studies, 17

Real time secure messaging service for internet
of things applications using MQTT

MD Jiabul Hoque and Md. Razu Ahmed
Department of Computer and Communication Engineering

International Islamic University Chittagong (IIUC), Bangladesh
MD Akibur Rahman and Shihab Uddin

Department of Electronic and Telecommunication Engineering
International Islamic University Chittagong (IIUC), Bangladesh

Abstract
Most of the IoT applications require real time and secure exchange of information among
connected devices and hence, currently, security of communication protocols is becoming key
topic of research. MQTT, a lightweight communication protocol, is used for real time
communication between networks. Authors have reviewed numerous published researches on
secure MQTT protocol for IoT networks and have discovered security loop holes of MQTT
communication protocol that are needed to be addressed. This article proposes a secure and
real time MQTT protocol by incorporating SSL certificate to MQTT broker for IoT
applications without data loss. The research has been implemented in Raspberry Pi 3B system
using Python 3.4.10 development platform along with Numpy 1.11.1 and scipy 0.18.0 (for
mathematical analysis), paho-mqtt 1.5.0 (for MQTT publication/subscription), and
Chromium (for displaying research outcome). The outcome of this research shows that the
proposed MQTT protocol has tighten security during exchanging information over IoT
networks without any loss of data.

Keywords Internet of Things, MQTT protocol, Real time, Raspberry Pi, Secure

Paper type Research paper

1. Introduction
IoT has been revealed a hot topic of research and innovation around the
world right now. Internet of Things applications in various
fields for instance medical, agriculture, food, production,
horticulture, space, mining and many more are getting
popular as they are making human being life easy, simple,
smart, safe, relaxing and secure (Ahmed, Rahman, & Hoque,
2020). Therefore, numerous entities incorporating research
scholars, public and private sector entities are involving with
IoT related research in order to generate state of the art
applications of it to grab billions (Ahmed, Mortuza, Uddin,
Kabir, & Hoque, 2018). As people are using IoT applications

such as home automation, biomedical devices, automatic greenhouse for
agriculture or smart farming etc., security as well as loss of information is a
growing matter of concern right now (Hakim, Uddin, & Hoque, 2020).
Researchers around the world are working on how to make this essential IoT
mechanism safe and secure as majority of the IoT applications require real
time and secure communication for instance medical applications (Hoque,
Ahmed, & Hannan, 2020).
MQTT has been used as a de facto standard for coordinating communication
of IoT network applications for long time. Even though it has some security
issues, no other alternative has yet been developed (Hoque, Kabir, &
Hossain, 2018). So, researchers are concentrating on how to make MQTT
communication more secure than ever to ensure trustworthiness to IoT
applications user. It has been appeared that security can be compromised not
only on client side but also on broker of MQTT infrastructure and hence
issues of security must be considered in both ways (Kabir, Rashid, Gafur,
Islam, & Hoque, 2019).
 Internet of Things and MQTT both are took-off now. Mosquitto is the
first MQTT broker which is open source. It was created around 2008. And in
2014 it became the name of Eclipse Mosquitto project (Hoque, Ahmed,
Uddin, & Faisal, 2020). The open source MQTT client libraries were
published in 2012 as Paho project C, Python, JavaScript and Java. And since
then, it is growing day by day. The most remarkable things are the broker
version 3.1.1 becomes OASIS standard in late 2014 and MQTT turn into an
ISO standard in 2016 (Sharma, Hossen, Islam, & Hoque, 2018).
 The main objective of this article is to propose a secure and real time
MQTT protocol for IoT application without compromising any loss of data.
In this regard, a clear and step by step procedure for securing MQTT has
been presented in this paper. The procedure has been begun by tightening
usage control in MQTT communication protocol. This step has been done
by continuously observing mutable attributes related to data, the
environment or the subscriber itself for the purpose of imposing the
constraint on subscriber’s rights to access information (Rahman & Khan,
2008). The research has been implemented in Raspberry Pi 3B system using
Python 3.4.10 development platform along with Numpy 1.11.1 and scipy
0.18.0 (for mathematical analysis), paho-mqtt 1.5.0 (for MQTT
publication/subscription), and Chromium (for displaying research result).
The output of this research shows that the proposed MQTT protocol has
tighten security during exchanging information over IoT network without
any loss of data.

 After the introductory section, the rest of article is organized as follows:
Literature review sections begin right after this section that reviews existing
works relevant to home automation system. In this section, authors have
identified some short comings on existing literatures that need to be resolved
for better home automation system. Section 3 provides the solutions of the
problems identified in literature review section by designing a state-of-the-art
home automation system. Section 4 illustrates the implementation process
and subsequent section presents conclusion and future direction of this
work.

2. Literature review
Authors have reviewed substantial amount of literature related to MQTT
based IoT communication. Among them few notable literatures that cannot
be missed out are presented in this section.
 According to Bansal and Garg (2019), MQTT is a lightweight real time
transmission protocol that is fully adaptable to emergency services like
vehicle accidental notification system. They used vibration sensors, Node
MCU, Adafruit cloud, IFTTT applet to send notification regarding vehicle
accident via SMS in their research on MQTT. This research has been used as
a baseline for our research which is a real time and emergency
communication through all kind of IoT application without any data loss.
 Singh, Rajan, Shivraj, and Balamuralidhar (2015) presented a secure
version of MQTT communication named SMQTT-SN in their research on
secure MQTT for IoT applications. In their work they have incorporated
some added security features such as lightweight Elliptic Curve
Cryptography based policy attribute encryption on MQTT communication
that enhanced security. However, some security flaws such as key revocation
during group subscription and publication are big concern for SMQTT-SN
that has been identified during implementation stage of their research.
 Lee, Kim, Hong, and Ju (2019) analyzed the relationship between delay
and associated loss of data according to QoS measure in their recent work on
MQTT. Rigorous analysis has been done by the researchers on MQTT
communication in this paper that incorporate subscribe client, publish client
(both wired and wireless) and broker server etc. The outcome of this
research depicted that message loss under varying payload has been
significant impacted by end-to-end delay in communication. However, the
behaviour under numerous Quality of Service measure is remain in doubt.
 In the scenario of Wireless Sensors Network (WSN) based IoT
infrastructure where a middleware is required between sensors and server for

flawless MQTT communication. A recent study on performance analysis
between MQTT and Constrained Application Protocol (CoAP) using a
common middleware in the case of IoT application shows that MQTT
communication has significantly low data loss and negligible delay in
communication compare to its counterpart (Upadhyay, Borole, & Dileepan,
2016: 2-3). A similar trend has been revealed in another research on health
information sharing using IoT where MQTT come out as a clear winner in
case of WSN based IoT applications network (Katsikeas, 2017: 1198-1199).

3. Materials and methods
In this section, the authors have described the components required to test
the proposed MQTT protocol that is outlined in the following section 3.2.
Besides, the authors have presented methodology that has been followed for
successful research outcome.

3.1. Hardware and software components
The research has been implemented in Raspberry Pi 3B incorporating
1.2GHz 64-bit quad-core Arm Cortex-A53 CPU with 1GB RAM and
Raspbian operating system has been used to run the system. Besides, Python
3.4.10 has been used as premier development platform along with Numpy
1.11.1 and scipy 0.18.0 for mathematical analysis as well as paho-mqtt 1.5.0
has been used for MQTT publication/subscription. An MQTT mosquitto
broker has also been installed within raspberry pi. The research outcome has
been displayed graphically by the use of Chromium.

3.2. Proposed architecture of MQTT
Figure 1 illustrates the proposed MQTT architecture where a client is
regarded as any electronic medium that is able to communicate with broker.
In the proposed system few (PC, Mobile, Laptop, numerous sensors and
even a server) of many such devices has been projected. The responsibilities
of a broker in MQTT architecture are immense for instance it needs to be
active all the time to coordinate the communication with its connected
clients. The coordination begins by identifying clients and then authorizing
those clients by using secure authentication method. Afterwards, broker
coordinates messages that have been received from various clients and
publish those messages that have been received from subscribe clients. There
is only one constraint in the MQTT architecture which is a broker only
communicates one client at a given time while maintaining connection with
all.

Figure 1: The proposed architecture of MQTT

3.3. Basic MQTT configuration
The method of this proposed MQTT secure communication system in IoT
applications start with configuring Mosquitto server as Mosquitto MQTT
broker has been used as out-broker. First of all, status of the broker needs to
check as broker must be up and running to test the proposed system. Figure
2 shows the status of the Mosquitto MQTT broker used in this system:

Figure 2: Mosquitto MQTT broker status

After confirming broker status as active (running), the status of WebSocket
connection is needed to checked. WebSocket retrieves the values from
mqtt.js file as such connect() function inside mqtt.js file is required to be
configured. Figure 3 depicts the configuration variables of connect()
function:

Figure 3: connect() function configuration

Connect() function in the above Figure 3 has number of variables such as
hostname, port number, session and connection etc that are responsible for
successful connection. After successful configuration of mqtt.js file, the
status of WebSocket is checked this is shown in the figure 4 below:

Figure 4: Status of WebSocket

The status of WebSocket in the above figure 4 shows that the clients are
connected to the server and are ready to communicate.

3.4. Secure MQTT configuration
There are mainly three security mechanisms such as authentication, identity

Real time messaging for IoT 29

Real time secure messaging service for internet
of things applications using MQTT

MD Jiabul Hoque and Md. Razu Ahmed
Department of Computer and Communication Engineering

International Islamic University Chittagong (IIUC), Bangladesh
MD Akibur Rahman and Shihab Uddin

Department of Electronic and Telecommunication Engineering
International Islamic University Chittagong (IIUC), Bangladesh

Abstract
Most of the IoT applications require real time and secure exchange of information among
connected devices and hence, currently, security of communication protocols is becoming key
topic of research. MQTT, a lightweight communication protocol, is used for real time
communication between networks. Authors have reviewed numerous published researches on
secure MQTT protocol for IoT networks and have discovered security loop holes of MQTT
communication protocol that are needed to be addressed. This article proposes a secure and
real time MQTT protocol by incorporating SSL certificate to MQTT broker for IoT
applications without data loss. The research has been implemented in Raspberry Pi 3B system
using Python 3.4.10 development platform along with Numpy 1.11.1 and scipy 0.18.0 (for
mathematical analysis), paho-mqtt 1.5.0 (for MQTT publication/subscription), and
Chromium (for displaying research outcome). The outcome of this research shows that the
proposed MQTT protocol has tighten security during exchanging information over IoT
networks without any loss of data.

Keywords Internet of Things, MQTT protocol, Real time, Raspberry Pi, Secure

Paper type Research paper

1. Introduction
IoT has been revealed a hot topic of research and innovation around the
world right now. Internet of Things applications in various
fields for instance medical, agriculture, food, production,
horticulture, space, mining and many more are getting
popular as they are making human being life easy, simple,
smart, safe, relaxing and secure (Ahmed, Rahman, & Hoque,
2020). Therefore, numerous entities incorporating research
scholars, public and private sector entities are involving with
IoT related research in order to generate state of the art
applications of it to grab billions (Ahmed, Mortuza, Uddin,
Kabir, & Hoque, 2018). As people are using IoT applications

such as home automation, biomedical devices, automatic greenhouse for
agriculture or smart farming etc., security as well as loss of information is a
growing matter of concern right now (Hakim, Uddin, & Hoque, 2020).
Researchers around the world are working on how to make this essential IoT
mechanism safe and secure as majority of the IoT applications require real
time and secure communication for instance medical applications (Hoque,
Ahmed, & Hannan, 2020).
MQTT has been used as a de facto standard for coordinating communication
of IoT network applications for long time. Even though it has some security
issues, no other alternative has yet been developed (Hoque, Kabir, &
Hossain, 2018). So, researchers are concentrating on how to make MQTT
communication more secure than ever to ensure trustworthiness to IoT
applications user. It has been appeared that security can be compromised not
only on client side but also on broker of MQTT infrastructure and hence
issues of security must be considered in both ways (Kabir, Rashid, Gafur,
Islam, & Hoque, 2019).
 Internet of Things and MQTT both are took-off now. Mosquitto is the
first MQTT broker which is open source. It was created around 2008. And in
2014 it became the name of Eclipse Mosquitto project (Hoque, Ahmed,
Uddin, & Faisal, 2020). The open source MQTT client libraries were
published in 2012 as Paho project C, Python, JavaScript and Java. And since
then, it is growing day by day. The most remarkable things are the broker
version 3.1.1 becomes OASIS standard in late 2014 and MQTT turn into an
ISO standard in 2016 (Sharma, Hossen, Islam, & Hoque, 2018).
 The main objective of this article is to propose a secure and real time
MQTT protocol for IoT application without compromising any loss of data.
In this regard, a clear and step by step procedure for securing MQTT has
been presented in this paper. The procedure has been begun by tightening
usage control in MQTT communication protocol. This step has been done
by continuously observing mutable attributes related to data, the
environment or the subscriber itself for the purpose of imposing the
constraint on subscriber’s rights to access information (Rahman & Khan,
2008). The research has been implemented in Raspberry Pi 3B system using
Python 3.4.10 development platform along with Numpy 1.11.1 and scipy
0.18.0 (for mathematical analysis), paho-mqtt 1.5.0 (for MQTT
publication/subscription), and Chromium (for displaying research result).
The output of this research shows that the proposed MQTT protocol has
tighten security during exchanging information over IoT network without
any loss of data.

 After the introductory section, the rest of article is organized as follows:
Literature review sections begin right after this section that reviews existing
works relevant to home automation system. In this section, authors have
identified some short comings on existing literatures that need to be resolved
for better home automation system. Section 3 provides the solutions of the
problems identified in literature review section by designing a state-of-the-art
home automation system. Section 4 illustrates the implementation process
and subsequent section presents conclusion and future direction of this
work.

2. Literature review
Authors have reviewed substantial amount of literature related to MQTT
based IoT communication. Among them few notable literatures that cannot
be missed out are presented in this section.
 According to Bansal and Garg (2019), MQTT is a lightweight real time
transmission protocol that is fully adaptable to emergency services like
vehicle accidental notification system. They used vibration sensors, Node
MCU, Adafruit cloud, IFTTT applet to send notification regarding vehicle
accident via SMS in their research on MQTT. This research has been used as
a baseline for our research which is a real time and emergency
communication through all kind of IoT application without any data loss.
 Singh, Rajan, Shivraj, and Balamuralidhar (2015) presented a secure
version of MQTT communication named SMQTT-SN in their research on
secure MQTT for IoT applications. In their work they have incorporated
some added security features such as lightweight Elliptic Curve
Cryptography based policy attribute encryption on MQTT communication
that enhanced security. However, some security flaws such as key revocation
during group subscription and publication are big concern for SMQTT-SN
that has been identified during implementation stage of their research.
 Lee, Kim, Hong, and Ju (2019) analyzed the relationship between delay
and associated loss of data according to QoS measure in their recent work on
MQTT. Rigorous analysis has been done by the researchers on MQTT
communication in this paper that incorporate subscribe client, publish client
(both wired and wireless) and broker server etc. The outcome of this
research depicted that message loss under varying payload has been
significant impacted by end-to-end delay in communication. However, the
behaviour under numerous Quality of Service measure is remain in doubt.
 In the scenario of Wireless Sensors Network (WSN) based IoT
infrastructure where a middleware is required between sensors and server for

flawless MQTT communication. A recent study on performance analysis
between MQTT and Constrained Application Protocol (CoAP) using a
common middleware in the case of IoT application shows that MQTT
communication has significantly low data loss and negligible delay in
communication compare to its counterpart (Upadhyay, Borole, & Dileepan,
2016: 2-3). A similar trend has been revealed in another research on health
information sharing using IoT where MQTT come out as a clear winner in
case of WSN based IoT applications network (Katsikeas, 2017: 1198-1199).

3. Materials and methods
In this section, the authors have described the components required to test
the proposed MQTT protocol that is outlined in the following section 3.2.
Besides, the authors have presented methodology that has been followed for
successful research outcome.

3.1. Hardware and software components
The research has been implemented in Raspberry Pi 3B incorporating
1.2GHz 64-bit quad-core Arm Cortex-A53 CPU with 1GB RAM and
Raspbian operating system has been used to run the system. Besides, Python
3.4.10 has been used as premier development platform along with Numpy
1.11.1 and scipy 0.18.0 for mathematical analysis as well as paho-mqtt 1.5.0
has been used for MQTT publication/subscription. An MQTT mosquitto
broker has also been installed within raspberry pi. The research outcome has
been displayed graphically by the use of Chromium.

3.2. Proposed architecture of MQTT
Figure 1 illustrates the proposed MQTT architecture where a client is
regarded as any electronic medium that is able to communicate with broker.
In the proposed system few (PC, Mobile, Laptop, numerous sensors and
even a server) of many such devices has been projected. The responsibilities
of a broker in MQTT architecture are immense for instance it needs to be
active all the time to coordinate the communication with its connected
clients. The coordination begins by identifying clients and then authorizing
those clients by using secure authentication method. Afterwards, broker
coordinates messages that have been received from various clients and
publish those messages that have been received from subscribe clients. There
is only one constraint in the MQTT architecture which is a broker only
communicates one client at a given time while maintaining connection with
all.

Figure 1: The proposed architecture of MQTT

3.3. Basic MQTT configuration
The method of this proposed MQTT secure communication system in IoT
applications start with configuring Mosquitto server as Mosquitto MQTT
broker has been used as out-broker. First of all, status of the broker needs to
check as broker must be up and running to test the proposed system. Figure
2 shows the status of the Mosquitto MQTT broker used in this system:

Figure 2: Mosquitto MQTT broker status

After confirming broker status as active (running), the status of WebSocket
connection is needed to checked. WebSocket retrieves the values from
mqtt.js file as such connect() function inside mqtt.js file is required to be
configured. Figure 3 depicts the configuration variables of connect()
function:

Figure 3: connect() function configuration

Connect() function in the above Figure 3 has number of variables such as
hostname, port number, session and connection etc that are responsible for
successful connection. After successful configuration of mqtt.js file, the
status of WebSocket is checked this is shown in the figure 4 below:

Figure 4: Status of WebSocket

The status of WebSocket in the above figure 4 shows that the clients are
connected to the server and are ready to communicate.

3.4. Secure MQTT configuration
There are mainly three security mechanisms such as authentication, identity

30 IIUC Studies, 17

Real time secure messaging service for internet
of things applications using MQTT

MD Jiabul Hoque and Md. Razu Ahmed
Department of Computer and Communication Engineering

International Islamic University Chittagong (IIUC), Bangladesh
MD Akibur Rahman and Shihab Uddin

Department of Electronic and Telecommunication Engineering
International Islamic University Chittagong (IIUC), Bangladesh

Abstract
Most of the IoT applications require real time and secure exchange of information among
connected devices and hence, currently, security of communication protocols is becoming key
topic of research. MQTT, a lightweight communication protocol, is used for real time
communication between networks. Authors have reviewed numerous published researches on
secure MQTT protocol for IoT networks and have discovered security loop holes of MQTT
communication protocol that are needed to be addressed. This article proposes a secure and
real time MQTT protocol by incorporating SSL certificate to MQTT broker for IoT
applications without data loss. The research has been implemented in Raspberry Pi 3B system
using Python 3.4.10 development platform along with Numpy 1.11.1 and scipy 0.18.0 (for
mathematical analysis), paho-mqtt 1.5.0 (for MQTT publication/subscription), and
Chromium (for displaying research outcome). The outcome of this research shows that the
proposed MQTT protocol has tighten security during exchanging information over IoT
networks without any loss of data.

Keywords Internet of Things, MQTT protocol, Real time, Raspberry Pi, Secure

Paper type Research paper

1. Introduction
IoT has been revealed a hot topic of research and innovation around the
world right now. Internet of Things applications in various
fields for instance medical, agriculture, food, production,
horticulture, space, mining and many more are getting
popular as they are making human being life easy, simple,
smart, safe, relaxing and secure (Ahmed, Rahman, & Hoque,
2020). Therefore, numerous entities incorporating research
scholars, public and private sector entities are involving with
IoT related research in order to generate state of the art
applications of it to grab billions (Ahmed, Mortuza, Uddin,
Kabir, & Hoque, 2018). As people are using IoT applications

such as home automation, biomedical devices, automatic greenhouse for
agriculture or smart farming etc., security as well as loss of information is a
growing matter of concern right now (Hakim, Uddin, & Hoque, 2020).
Researchers around the world are working on how to make this essential IoT
mechanism safe and secure as majority of the IoT applications require real
time and secure communication for instance medical applications (Hoque,
Ahmed, & Hannan, 2020).
MQTT has been used as a de facto standard for coordinating communication
of IoT network applications for long time. Even though it has some security
issues, no other alternative has yet been developed (Hoque, Kabir, &
Hossain, 2018). So, researchers are concentrating on how to make MQTT
communication more secure than ever to ensure trustworthiness to IoT
applications user. It has been appeared that security can be compromised not
only on client side but also on broker of MQTT infrastructure and hence
issues of security must be considered in both ways (Kabir, Rashid, Gafur,
Islam, & Hoque, 2019).
 Internet of Things and MQTT both are took-off now. Mosquitto is the
first MQTT broker which is open source. It was created around 2008. And in
2014 it became the name of Eclipse Mosquitto project (Hoque, Ahmed,
Uddin, & Faisal, 2020). The open source MQTT client libraries were
published in 2012 as Paho project C, Python, JavaScript and Java. And since
then, it is growing day by day. The most remarkable things are the broker
version 3.1.1 becomes OASIS standard in late 2014 and MQTT turn into an
ISO standard in 2016 (Sharma, Hossen, Islam, & Hoque, 2018).
 The main objective of this article is to propose a secure and real time
MQTT protocol for IoT application without compromising any loss of data.
In this regard, a clear and step by step procedure for securing MQTT has
been presented in this paper. The procedure has been begun by tightening
usage control in MQTT communication protocol. This step has been done
by continuously observing mutable attributes related to data, the
environment or the subscriber itself for the purpose of imposing the
constraint on subscriber’s rights to access information (Rahman & Khan,
2008). The research has been implemented in Raspberry Pi 3B system using
Python 3.4.10 development platform along with Numpy 1.11.1 and scipy
0.18.0 (for mathematical analysis), paho-mqtt 1.5.0 (for MQTT
publication/subscription), and Chromium (for displaying research result).
The output of this research shows that the proposed MQTT protocol has
tighten security during exchanging information over IoT network without
any loss of data.

 After the introductory section, the rest of article is organized as follows:
Literature review sections begin right after this section that reviews existing
works relevant to home automation system. In this section, authors have
identified some short comings on existing literatures that need to be resolved
for better home automation system. Section 3 provides the solutions of the
problems identified in literature review section by designing a state-of-the-art
home automation system. Section 4 illustrates the implementation process
and subsequent section presents conclusion and future direction of this
work.

2. Literature review
Authors have reviewed substantial amount of literature related to MQTT
based IoT communication. Among them few notable literatures that cannot
be missed out are presented in this section.
 According to Bansal and Garg (2019), MQTT is a lightweight real time
transmission protocol that is fully adaptable to emergency services like
vehicle accidental notification system. They used vibration sensors, Node
MCU, Adafruit cloud, IFTTT applet to send notification regarding vehicle
accident via SMS in their research on MQTT. This research has been used as
a baseline for our research which is a real time and emergency
communication through all kind of IoT application without any data loss.
 Singh, Rajan, Shivraj, and Balamuralidhar (2015) presented a secure
version of MQTT communication named SMQTT-SN in their research on
secure MQTT for IoT applications. In their work they have incorporated
some added security features such as lightweight Elliptic Curve
Cryptography based policy attribute encryption on MQTT communication
that enhanced security. However, some security flaws such as key revocation
during group subscription and publication are big concern for SMQTT-SN
that has been identified during implementation stage of their research.
 Lee, Kim, Hong, and Ju (2019) analyzed the relationship between delay
and associated loss of data according to QoS measure in their recent work on
MQTT. Rigorous analysis has been done by the researchers on MQTT
communication in this paper that incorporate subscribe client, publish client
(both wired and wireless) and broker server etc. The outcome of this
research depicted that message loss under varying payload has been
significant impacted by end-to-end delay in communication. However, the
behaviour under numerous Quality of Service measure is remain in doubt.
 In the scenario of Wireless Sensors Network (WSN) based IoT
infrastructure where a middleware is required between sensors and server for

flawless MQTT communication. A recent study on performance analysis
between MQTT and Constrained Application Protocol (CoAP) using a
common middleware in the case of IoT application shows that MQTT
communication has significantly low data loss and negligible delay in
communication compare to its counterpart (Upadhyay, Borole, & Dileepan,
2016: 2-3). A similar trend has been revealed in another research on health
information sharing using IoT where MQTT come out as a clear winner in
case of WSN based IoT applications network (Katsikeas, 2017: 1198-1199).

3. Materials and methods
In this section, the authors have described the components required to test
the proposed MQTT protocol that is outlined in the following section 3.2.
Besides, the authors have presented methodology that has been followed for
successful research outcome.

3.1. Hardware and software components
The research has been implemented in Raspberry Pi 3B incorporating
1.2GHz 64-bit quad-core Arm Cortex-A53 CPU with 1GB RAM and
Raspbian operating system has been used to run the system. Besides, Python
3.4.10 has been used as premier development platform along with Numpy
1.11.1 and scipy 0.18.0 for mathematical analysis as well as paho-mqtt 1.5.0
has been used for MQTT publication/subscription. An MQTT mosquitto
broker has also been installed within raspberry pi. The research outcome has
been displayed graphically by the use of Chromium.

3.2. Proposed architecture of MQTT
Figure 1 illustrates the proposed MQTT architecture where a client is
regarded as any electronic medium that is able to communicate with broker.
In the proposed system few (PC, Mobile, Laptop, numerous sensors and
even a server) of many such devices has been projected. The responsibilities
of a broker in MQTT architecture are immense for instance it needs to be
active all the time to coordinate the communication with its connected
clients. The coordination begins by identifying clients and then authorizing
those clients by using secure authentication method. Afterwards, broker
coordinates messages that have been received from various clients and
publish those messages that have been received from subscribe clients. There
is only one constraint in the MQTT architecture which is a broker only
communicates one client at a given time while maintaining connection with
all.

Figure 1: The proposed architecture of MQTT

3.3. Basic MQTT configuration
The method of this proposed MQTT secure communication system in IoT
applications start with configuring Mosquitto server as Mosquitto MQTT
broker has been used as out-broker. First of all, status of the broker needs to
check as broker must be up and running to test the proposed system. Figure
2 shows the status of the Mosquitto MQTT broker used in this system:

Figure 2: Mosquitto MQTT broker status

After confirming broker status as active (running), the status of WebSocket
connection is needed to checked. WebSocket retrieves the values from
mqtt.js file as such connect() function inside mqtt.js file is required to be
configured. Figure 3 depicts the configuration variables of connect()
function:

Figure 3: connect() function configuration

Connect() function in the above Figure 3 has number of variables such as
hostname, port number, session and connection etc that are responsible for
successful connection. After successful configuration of mqtt.js file, the
status of WebSocket is checked this is shown in the figure 4 below:

Figure 4: Status of WebSocket

The status of WebSocket in the above figure 4 shows that the clients are
connected to the server and are ready to communicate.

3.4. Secure MQTT configuration
There are mainly three security mechanisms such as authentication, identity

Real time messaging for IoT 31

Real time secure messaging service for internet
of things applications using MQTT

MD Jiabul Hoque and Md. Razu Ahmed
Department of Computer and Communication Engineering

International Islamic University Chittagong (IIUC), Bangladesh
MD Akibur Rahman and Shihab Uddin

Department of Electronic and Telecommunication Engineering
International Islamic University Chittagong (IIUC), Bangladesh

Abstract
Most of the IoT applications require real time and secure exchange of information among
connected devices and hence, currently, security of communication protocols is becoming key
topic of research. MQTT, a lightweight communication protocol, is used for real time
communication between networks. Authors have reviewed numerous published researches on
secure MQTT protocol for IoT networks and have discovered security loop holes of MQTT
communication protocol that are needed to be addressed. This article proposes a secure and
real time MQTT protocol by incorporating SSL certificate to MQTT broker for IoT
applications without data loss. The research has been implemented in Raspberry Pi 3B system
using Python 3.4.10 development platform along with Numpy 1.11.1 and scipy 0.18.0 (for
mathematical analysis), paho-mqtt 1.5.0 (for MQTT publication/subscription), and
Chromium (for displaying research outcome). The outcome of this research shows that the
proposed MQTT protocol has tighten security during exchanging information over IoT
networks without any loss of data.

Keywords Internet of Things, MQTT protocol, Real time, Raspberry Pi, Secure

Paper type Research paper

1. Introduction
IoT has been revealed a hot topic of research and innovation around the
world right now. Internet of Things applications in various
fields for instance medical, agriculture, food, production,
horticulture, space, mining and many more are getting
popular as they are making human being life easy, simple,
smart, safe, relaxing and secure (Ahmed, Rahman, & Hoque,
2020). Therefore, numerous entities incorporating research
scholars, public and private sector entities are involving with
IoT related research in order to generate state of the art
applications of it to grab billions (Ahmed, Mortuza, Uddin,
Kabir, & Hoque, 2018). As people are using IoT applications

such as home automation, biomedical devices, automatic greenhouse for
agriculture or smart farming etc., security as well as loss of information is a
growing matter of concern right now (Hakim, Uddin, & Hoque, 2020).
Researchers around the world are working on how to make this essential IoT
mechanism safe and secure as majority of the IoT applications require real
time and secure communication for instance medical applications (Hoque,
Ahmed, & Hannan, 2020).
MQTT has been used as a de facto standard for coordinating communication
of IoT network applications for long time. Even though it has some security
issues, no other alternative has yet been developed (Hoque, Kabir, &
Hossain, 2018). So, researchers are concentrating on how to make MQTT
communication more secure than ever to ensure trustworthiness to IoT
applications user. It has been appeared that security can be compromised not
only on client side but also on broker of MQTT infrastructure and hence
issues of security must be considered in both ways (Kabir, Rashid, Gafur,
Islam, & Hoque, 2019).
 Internet of Things and MQTT both are took-off now. Mosquitto is the
first MQTT broker which is open source. It was created around 2008. And in
2014 it became the name of Eclipse Mosquitto project (Hoque, Ahmed,
Uddin, & Faisal, 2020). The open source MQTT client libraries were
published in 2012 as Paho project C, Python, JavaScript and Java. And since
then, it is growing day by day. The most remarkable things are the broker
version 3.1.1 becomes OASIS standard in late 2014 and MQTT turn into an
ISO standard in 2016 (Sharma, Hossen, Islam, & Hoque, 2018).
 The main objective of this article is to propose a secure and real time
MQTT protocol for IoT application without compromising any loss of data.
In this regard, a clear and step by step procedure for securing MQTT has
been presented in this paper. The procedure has been begun by tightening
usage control in MQTT communication protocol. This step has been done
by continuously observing mutable attributes related to data, the
environment or the subscriber itself for the purpose of imposing the
constraint on subscriber’s rights to access information (Rahman & Khan,
2008). The research has been implemented in Raspberry Pi 3B system using
Python 3.4.10 development platform along with Numpy 1.11.1 and scipy
0.18.0 (for mathematical analysis), paho-mqtt 1.5.0 (for MQTT
publication/subscription), and Chromium (for displaying research result).
The output of this research shows that the proposed MQTT protocol has
tighten security during exchanging information over IoT network without
any loss of data.

 After the introductory section, the rest of article is organized as follows:
Literature review sections begin right after this section that reviews existing
works relevant to home automation system. In this section, authors have
identified some short comings on existing literatures that need to be resolved
for better home automation system. Section 3 provides the solutions of the
problems identified in literature review section by designing a state-of-the-art
home automation system. Section 4 illustrates the implementation process
and subsequent section presents conclusion and future direction of this
work.

2. Literature review
Authors have reviewed substantial amount of literature related to MQTT
based IoT communication. Among them few notable literatures that cannot
be missed out are presented in this section.
 According to Bansal and Garg (2019), MQTT is a lightweight real time
transmission protocol that is fully adaptable to emergency services like
vehicle accidental notification system. They used vibration sensors, Node
MCU, Adafruit cloud, IFTTT applet to send notification regarding vehicle
accident via SMS in their research on MQTT. This research has been used as
a baseline for our research which is a real time and emergency
communication through all kind of IoT application without any data loss.
 Singh, Rajan, Shivraj, and Balamuralidhar (2015) presented a secure
version of MQTT communication named SMQTT-SN in their research on
secure MQTT for IoT applications. In their work they have incorporated
some added security features such as lightweight Elliptic Curve
Cryptography based policy attribute encryption on MQTT communication
that enhanced security. However, some security flaws such as key revocation
during group subscription and publication are big concern for SMQTT-SN
that has been identified during implementation stage of their research.
 Lee, Kim, Hong, and Ju (2019) analyzed the relationship between delay
and associated loss of data according to QoS measure in their recent work on
MQTT. Rigorous analysis has been done by the researchers on MQTT
communication in this paper that incorporate subscribe client, publish client
(both wired and wireless) and broker server etc. The outcome of this
research depicted that message loss under varying payload has been
significant impacted by end-to-end delay in communication. However, the
behaviour under numerous Quality of Service measure is remain in doubt.
 In the scenario of Wireless Sensors Network (WSN) based IoT
infrastructure where a middleware is required between sensors and server for

flawless MQTT communication. A recent study on performance analysis
between MQTT and Constrained Application Protocol (CoAP) using a
common middleware in the case of IoT application shows that MQTT
communication has significantly low data loss and negligible delay in
communication compare to its counterpart (Upadhyay, Borole, & Dileepan,
2016: 2-3). A similar trend has been revealed in another research on health
information sharing using IoT where MQTT come out as a clear winner in
case of WSN based IoT applications network (Katsikeas, 2017: 1198-1199).

3. Materials and methods
In this section, the authors have described the components required to test
the proposed MQTT protocol that is outlined in the following section 3.2.
Besides, the authors have presented methodology that has been followed for
successful research outcome.

3.1. Hardware and software components
The research has been implemented in Raspberry Pi 3B incorporating
1.2GHz 64-bit quad-core Arm Cortex-A53 CPU with 1GB RAM and
Raspbian operating system has been used to run the system. Besides, Python
3.4.10 has been used as premier development platform along with Numpy
1.11.1 and scipy 0.18.0 for mathematical analysis as well as paho-mqtt 1.5.0
has been used for MQTT publication/subscription. An MQTT mosquitto
broker has also been installed within raspberry pi. The research outcome has
been displayed graphically by the use of Chromium.

3.2. Proposed architecture of MQTT
Figure 1 illustrates the proposed MQTT architecture where a client is
regarded as any electronic medium that is able to communicate with broker.
In the proposed system few (PC, Mobile, Laptop, numerous sensors and
even a server) of many such devices has been projected. The responsibilities
of a broker in MQTT architecture are immense for instance it needs to be
active all the time to coordinate the communication with its connected
clients. The coordination begins by identifying clients and then authorizing
those clients by using secure authentication method. Afterwards, broker
coordinates messages that have been received from various clients and
publish those messages that have been received from subscribe clients. There
is only one constraint in the MQTT architecture which is a broker only
communicates one client at a given time while maintaining connection with
all.

Figure 1: The proposed architecture of MQTT

3.3. Basic MQTT configuration
The method of this proposed MQTT secure communication system in IoT
applications start with configuring Mosquitto server as Mosquitto MQTT
broker has been used as out-broker. First of all, status of the broker needs to
check as broker must be up and running to test the proposed system. Figure
2 shows the status of the Mosquitto MQTT broker used in this system:

Figure 2: Mosquitto MQTT broker status

After confirming broker status as active (running), the status of WebSocket
connection is needed to checked. WebSocket retrieves the values from
mqtt.js file as such connect() function inside mqtt.js file is required to be
configured. Figure 3 depicts the configuration variables of connect()
function:

Figure 3: connect() function configuration

Connect() function in the above Figure 3 has number of variables such as
hostname, port number, session and connection etc that are responsible for
successful connection. After successful configuration of mqtt.js file, the
status of WebSocket is checked this is shown in the figure 4 below:

Figure 4: Status of WebSocket

The status of WebSocket in the above figure 4 shows that the clients are
connected to the server and are ready to communicate.

3.4. Secure MQTT configuration
There are mainly three security mechanisms such as authentication, identity

Server

Publish

Temperature Sernsor

Humidity Sernsor

Smoke Sensor
PC

Mobile

Publish

Publish

Publish

Pub
lish

Publish

Laptop

Broker
Subscribe

Subscribe

Subscrib
e

Subscribe

Subscribe

Su
bsc

rib
e

32 IIUC Studies, 17

Real time secure messaging service for internet
of things applications using MQTT

MD Jiabul Hoque and Md. Razu Ahmed
Department of Computer and Communication Engineering

International Islamic University Chittagong (IIUC), Bangladesh
MD Akibur Rahman and Shihab Uddin

Department of Electronic and Telecommunication Engineering
International Islamic University Chittagong (IIUC), Bangladesh

Abstract
Most of the IoT applications require real time and secure exchange of information among
connected devices and hence, currently, security of communication protocols is becoming key
topic of research. MQTT, a lightweight communication protocol, is used for real time
communication between networks. Authors have reviewed numerous published researches on
secure MQTT protocol for IoT networks and have discovered security loop holes of MQTT
communication protocol that are needed to be addressed. This article proposes a secure and
real time MQTT protocol by incorporating SSL certificate to MQTT broker for IoT
applications without data loss. The research has been implemented in Raspberry Pi 3B system
using Python 3.4.10 development platform along with Numpy 1.11.1 and scipy 0.18.0 (for
mathematical analysis), paho-mqtt 1.5.0 (for MQTT publication/subscription), and
Chromium (for displaying research outcome). The outcome of this research shows that the
proposed MQTT protocol has tighten security during exchanging information over IoT
networks without any loss of data.

Keywords Internet of Things, MQTT protocol, Real time, Raspberry Pi, Secure

Paper type Research paper

1. Introduction
IoT has been revealed a hot topic of research and innovation around the
world right now. Internet of Things applications in various
fields for instance medical, agriculture, food, production,
horticulture, space, mining and many more are getting
popular as they are making human being life easy, simple,
smart, safe, relaxing and secure (Ahmed, Rahman, & Hoque,
2020). Therefore, numerous entities incorporating research
scholars, public and private sector entities are involving with
IoT related research in order to generate state of the art
applications of it to grab billions (Ahmed, Mortuza, Uddin,
Kabir, & Hoque, 2018). As people are using IoT applications

such as home automation, biomedical devices, automatic greenhouse for
agriculture or smart farming etc., security as well as loss of information is a
growing matter of concern right now (Hakim, Uddin, & Hoque, 2020).
Researchers around the world are working on how to make this essential IoT
mechanism safe and secure as majority of the IoT applications require real
time and secure communication for instance medical applications (Hoque,
Ahmed, & Hannan, 2020).
MQTT has been used as a de facto standard for coordinating communication
of IoT network applications for long time. Even though it has some security
issues, no other alternative has yet been developed (Hoque, Kabir, &
Hossain, 2018). So, researchers are concentrating on how to make MQTT
communication more secure than ever to ensure trustworthiness to IoT
applications user. It has been appeared that security can be compromised not
only on client side but also on broker of MQTT infrastructure and hence
issues of security must be considered in both ways (Kabir, Rashid, Gafur,
Islam, & Hoque, 2019).
 Internet of Things and MQTT both are took-off now. Mosquitto is the
first MQTT broker which is open source. It was created around 2008. And in
2014 it became the name of Eclipse Mosquitto project (Hoque, Ahmed,
Uddin, & Faisal, 2020). The open source MQTT client libraries were
published in 2012 as Paho project C, Python, JavaScript and Java. And since
then, it is growing day by day. The most remarkable things are the broker
version 3.1.1 becomes OASIS standard in late 2014 and MQTT turn into an
ISO standard in 2016 (Sharma, Hossen, Islam, & Hoque, 2018).
 The main objective of this article is to propose a secure and real time
MQTT protocol for IoT application without compromising any loss of data.
In this regard, a clear and step by step procedure for securing MQTT has
been presented in this paper. The procedure has been begun by tightening
usage control in MQTT communication protocol. This step has been done
by continuously observing mutable attributes related to data, the
environment or the subscriber itself for the purpose of imposing the
constraint on subscriber’s rights to access information (Rahman & Khan,
2008). The research has been implemented in Raspberry Pi 3B system using
Python 3.4.10 development platform along with Numpy 1.11.1 and scipy
0.18.0 (for mathematical analysis), paho-mqtt 1.5.0 (for MQTT
publication/subscription), and Chromium (for displaying research result).
The output of this research shows that the proposed MQTT protocol has
tighten security during exchanging information over IoT network without
any loss of data.

 After the introductory section, the rest of article is organized as follows:
Literature review sections begin right after this section that reviews existing
works relevant to home automation system. In this section, authors have
identified some short comings on existing literatures that need to be resolved
for better home automation system. Section 3 provides the solutions of the
problems identified in literature review section by designing a state-of-the-art
home automation system. Section 4 illustrates the implementation process
and subsequent section presents conclusion and future direction of this
work.

2. Literature review
Authors have reviewed substantial amount of literature related to MQTT
based IoT communication. Among them few notable literatures that cannot
be missed out are presented in this section.
 According to Bansal and Garg (2019), MQTT is a lightweight real time
transmission protocol that is fully adaptable to emergency services like
vehicle accidental notification system. They used vibration sensors, Node
MCU, Adafruit cloud, IFTTT applet to send notification regarding vehicle
accident via SMS in their research on MQTT. This research has been used as
a baseline for our research which is a real time and emergency
communication through all kind of IoT application without any data loss.
 Singh, Rajan, Shivraj, and Balamuralidhar (2015) presented a secure
version of MQTT communication named SMQTT-SN in their research on
secure MQTT for IoT applications. In their work they have incorporated
some added security features such as lightweight Elliptic Curve
Cryptography based policy attribute encryption on MQTT communication
that enhanced security. However, some security flaws such as key revocation
during group subscription and publication are big concern for SMQTT-SN
that has been identified during implementation stage of their research.
 Lee, Kim, Hong, and Ju (2019) analyzed the relationship between delay
and associated loss of data according to QoS measure in their recent work on
MQTT. Rigorous analysis has been done by the researchers on MQTT
communication in this paper that incorporate subscribe client, publish client
(both wired and wireless) and broker server etc. The outcome of this
research depicted that message loss under varying payload has been
significant impacted by end-to-end delay in communication. However, the
behaviour under numerous Quality of Service measure is remain in doubt.
 In the scenario of Wireless Sensors Network (WSN) based IoT
infrastructure where a middleware is required between sensors and server for

flawless MQTT communication. A recent study on performance analysis
between MQTT and Constrained Application Protocol (CoAP) using a
common middleware in the case of IoT application shows that MQTT
communication has significantly low data loss and negligible delay in
communication compare to its counterpart (Upadhyay, Borole, & Dileepan,
2016: 2-3). A similar trend has been revealed in another research on health
information sharing using IoT where MQTT come out as a clear winner in
case of WSN based IoT applications network (Katsikeas, 2017: 1198-1199).

3. Materials and methods
In this section, the authors have described the components required to test
the proposed MQTT protocol that is outlined in the following section 3.2.
Besides, the authors have presented methodology that has been followed for
successful research outcome.

3.1. Hardware and software components
The research has been implemented in Raspberry Pi 3B incorporating
1.2GHz 64-bit quad-core Arm Cortex-A53 CPU with 1GB RAM and
Raspbian operating system has been used to run the system. Besides, Python
3.4.10 has been used as premier development platform along with Numpy
1.11.1 and scipy 0.18.0 for mathematical analysis as well as paho-mqtt 1.5.0
has been used for MQTT publication/subscription. An MQTT mosquitto
broker has also been installed within raspberry pi. The research outcome has
been displayed graphically by the use of Chromium.

3.2. Proposed architecture of MQTT
Figure 1 illustrates the proposed MQTT architecture where a client is
regarded as any electronic medium that is able to communicate with broker.
In the proposed system few (PC, Mobile, Laptop, numerous sensors and
even a server) of many such devices has been projected. The responsibilities
of a broker in MQTT architecture are immense for instance it needs to be
active all the time to coordinate the communication with its connected
clients. The coordination begins by identifying clients and then authorizing
those clients by using secure authentication method. Afterwards, broker
coordinates messages that have been received from various clients and
publish those messages that have been received from subscribe clients. There
is only one constraint in the MQTT architecture which is a broker only
communicates one client at a given time while maintaining connection with
all.

Figure 1: The proposed architecture of MQTT

3.3. Basic MQTT configuration
The method of this proposed MQTT secure communication system in IoT
applications start with configuring Mosquitto server as Mosquitto MQTT
broker has been used as out-broker. First of all, status of the broker needs to
check as broker must be up and running to test the proposed system. Figure
2 shows the status of the Mosquitto MQTT broker used in this system:

Figure 2: Mosquitto MQTT broker status

After confirming broker status as active (running), the status of WebSocket
connection is needed to checked. WebSocket retrieves the values from
mqtt.js file as such connect() function inside mqtt.js file is required to be
configured. Figure 3 depicts the configuration variables of connect()
function:

Figure 3: connect() function configuration

Connect() function in the above Figure 3 has number of variables such as
hostname, port number, session and connection etc that are responsible for
successful connection. After successful configuration of mqtt.js file, the
status of WebSocket is checked this is shown in the figure 4 below:

Figure 4: Status of WebSocket

The status of WebSocket in the above figure 4 shows that the clients are
connected to the server and are ready to communicate.

3.4. Secure MQTT configuration
There are mainly three security mechanisms such as authentication, identity

Real time messaging for IoT 33

and authorization should be kept in any researchers mind when it relates to
sensitive communication in real time using IoT infrastructure. There are two
ways that can be used to make IoT network secure such as Username and
password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password
authentication can be added initially and on top of that, SSL certificate can
be implemented.

3.4.1. Username and password approach
Using authentic username and password, the Mosquitto MQTT broker can
be configured as to require client authentication before broker connection
established or permitted. Even though, a clear text username and password
combination is not secure without transport encryption like ssl, it is good
first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS,
username/password etc which all are implemented in this MQTT broker.
After implementing all the credentials to broker, it is now task for client to
add all these credentials to connect, publish and subscribe with maintaining
all the restrictions.
 For configuring the Mosquitto broker, there are some steps need to be
done such as a file for storing password need to be created as well as
mosquito.conf file need to be reconfigured to force to use password from a
password file that has been created earlier.

3.4.1.1. Creating and using a password file
To create the password file, osquito_passwd utility file, which has been
install during the installation of mosquito broker need to be used. There are
numerous ways to create password file however the following way is the best
procedure (terminal command) that is used for this system.
 osquito_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

Figure 5: Creation of password file

Figure 6 shows the status of secure password.

Figure 6: Mosquitto secure password

 Now it is the time to use the password file through mosquito.conf file.
At first, in the Raspberry Pi the password file that has been created earlier
needs to be copied to the directory etc/ osquito. Afterwards, osquito.conf
file needs to be reconfigured in such a way that MQTT communication use
password file to make the communication secure. There are two changes
have been made made. The changes made to osquito.conf file are setting the
password file path and also setting allow anonymous to false cause by default
it remains true.
Settings of osquito.conf:
 password_file /etc/ osquito/password.txt
 allow_anonymous false
 After creating a password file and reconfiguring osquito.conf file,
osquito broker needs to be restarted in order to make the effect of such
changes. However, in Raspberry Pi, without restarting broker the file can be
reloaded using the following command:
 kill-HUP 519
 After executing the above command, the terminal shows that
moquitto.conf file is reloaded. Figure 7 depicts the console log status:

Figure 7: Console log status

 After successfully setting the username and password to MQTT broker,
username and password is added to mqtt.js file for secure and authenticated
connection of WebSocket. Figure 8 shows secure WebSocket connection
configuration.

Figure 8: Secure WebSocket connection configuration

3.4.2. SSL approach
In this approach, OpenSSL must be installed to generate all certificate files
using Raspberry Pi. To create SSL certificates, first step is to connect
Raspberry Pi using ssh. And then create a private key using following
command:
 openssl genrsa -out mosq-ca.key 2048
 The command above will create a 2048-bit key called mosq-ca.key. And
the result of this command is showing the figure 9 below:

Figure 9: Creation of 2048 bit private key

 After creating the private key, the next task is to create an X509
certificate which will use the private key that has been created before. Now
after opening another terminal (directory must be the same), the private key
can be kept by writing the following code:
 openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt
The following figure 10 shows the terminal after submitting the command:

Figure 10: Key certificated

 Now, we are ready to move on to create MQTT server certificate by
creating a CSR (Certificate Signing Request). Usually, before using the newly
created certificate it is required to send certification authority for verification.
Here, self-signed certificate has been used to avoid such complexity. The
following commands are used to create the certificate and required
credentials to use in our server:
 openssl req -new -key mosq-serv.key -out mosq-serv.csr
 openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey
 mosq-ca.key -CAcreateserial -out mosq-serv.crt -days 365 -sha256

3.4.3. Securing MQTT Mosquitto server
After creating secure private certificates, it is time to secure MQTT
mosquitto server for secure communication throughout IoT network. In our
system, three secure certificates listed below have been used:

 1. mosq-ca.crt
 2. mosq-serv.crt
 3. mosq-serv.key

 In order to ensure SSL certificate to the mosquitto broker, few lines of
code from mosquitto.conf file are needed to be edited. The lines are given
below:
 listener 1883
 cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
 certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
 keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

 Here, default MQTT mosquitto port has been changed to 1883 and
private certificates have been kept to the path /home/pi/ssl. Now, it’s time
to restart the mosquitto service by using following two commands:
 sudo service mosquitto stop
 sudo service mosquitto start
 After successfully setup SSL certificate to MQTT broker, some security
options of mqtt.js file must be changed for secure WebSocket connection
with web page to broker. Following figure 11 shows the secure WebSocket
connection.

Figure 11: Secure WebSocket Connection

Finally, the procedure to make secure and encrypted MQTT protocol for
securing communication throughout IoT network has been completed with
expected result.

4. Results and analysis
At first, it is essential to check whether files required to test our secure
MQTT protocol is loaded or not with minimal delay. Following figure 12
depicts files along with their size and loading time requires testing the
proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12: Loading dependency files

 To test the MQTT server, it is required to have a client from which
secure communication can be made with MQTT server. As such, a Java base
MQTT client (MQTT.fx) has been install in our windows operating
system-based client computer. After that, the settings and connection
parameters of client have been changed as well as MQTT mosquitto has
been configured to secure MQTT protocol with necessary information as
shown in the figure 13 below:

Figure 13: Configure MQTT Mosquitto Server to Secure MQTT

 It can be seen from the figure 13 that the information about profile
name, broker address, broker port number and client ID has been provided.
Besides, SSL/TSL configuration has been enabled by providing the
certificate files like mosq-ca.crt in previous steps.
Now secure connection can be made between MQTT server and client by
clicking simply connect button as shown in figure 14. The status of the
connection between client and broker can be seen by clicking the Log tab
shown in figure 14:

Figure 14: Secure MQTT connection

The following figure 15 depicts the connection status along with the size of
sending packets.

Figure 15: Connection status

 Now it is time to check the status from subscribe side, which is located
in another computer. Figure 16 shows the status of the subscriber side:

Figure 16: Subscriber status
 Next approach is testing MQTT connection over port 1883. When there
is no authentication set, any user from any device can connect to this device.
However, after setting authentication and ssl certificate, it becomes difficult
to connect to MQTT broker without knowing the dependencies. After trying
from other devices without proper dependencies, the message appears as
shown in Figure 17.

 Figure 17: SSL WebSocket Status without dependencies

 After adding all the dependencies and ssl certificate, the console showing
that the WebSocket successfully connected to topic: client/accessLog that is
shown in figure 18.

Figure 18: SSL WebSocket Status
5. Conclusion
In this paper, authors have proposed a secured automated messaging system
using MQTT that takes message from other devices such as sensor, mobile,
laptop and accept only the ones with proper authenticity. This work
specifically demonstrated an application of the system that can successfully
communicate securely with IOT support devices without compromising any
data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools
to evaluate the performance of the proposed system. Besides, a hypothetical
webpage was used as sample output device. The performance of the system
was then evaluated in term of accuracy, time and security of communication
system. The outcome of this paper will surely make IoT communication in
real time and make more secure.

References
Ahmed, M., Rahman, M., & Hoque, M. (2020). Smart home: An empirical

analysis of communication technological challenges. European Journal of
Engineering Research and Science, 5(5), 571-575. doi:
https://doi.org/10.24018/ejers.2020.5.5.1905

Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., Kabir, M. H., & Hoque, M. J.
(2018, December 27-29). Internet of Things based patient health monitoring
system using wearable biomedical device. Paper presented at IEEE
International Conference on Innovation in Engineering and Technology
(ICIET), Bangladesh, 1-5. doi: 10.1109/CIET.2018.8660846

34 IIUC Studies, 17

and authorization should be kept in any researchers mind when it relates to
sensitive communication in real time using IoT infrastructure. There are two
ways that can be used to make IoT network secure such as Username and
password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password
authentication can be added initially and on top of that, SSL certificate can
be implemented.

3.4.1. Username and password approach
Using authentic username and password, the Mosquitto MQTT broker can
be configured as to require client authentication before broker connection
established or permitted. Even though, a clear text username and password
combination is not secure without transport encryption like ssl, it is good
first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS,
username/password etc which all are implemented in this MQTT broker.
After implementing all the credentials to broker, it is now task for client to
add all these credentials to connect, publish and subscribe with maintaining
all the restrictions.
 For configuring the Mosquitto broker, there are some steps need to be
done such as a file for storing password need to be created as well as
mosquito.conf file need to be reconfigured to force to use password from a
password file that has been created earlier.

3.4.1.1. Creating and using a password file
To create the password file, osquito_passwd utility file, which has been
install during the installation of mosquito broker need to be used. There are
numerous ways to create password file however the following way is the best
procedure (terminal command) that is used for this system.
 osquito_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

Figure 5: Creation of password file

Figure 6 shows the status of secure password.

Figure 6: Mosquitto secure password

 Now it is the time to use the password file through mosquito.conf file.
At first, in the Raspberry Pi the password file that has been created earlier
needs to be copied to the directory etc/ osquito. Afterwards, osquito.conf
file needs to be reconfigured in such a way that MQTT communication use
password file to make the communication secure. There are two changes
have been made made. The changes made to osquito.conf file are setting the
password file path and also setting allow anonymous to false cause by default
it remains true.
Settings of osquito.conf:
 password_file /etc/ osquito/password.txt
 allow_anonymous false
 After creating a password file and reconfiguring osquito.conf file,
osquito broker needs to be restarted in order to make the effect of such
changes. However, in Raspberry Pi, without restarting broker the file can be
reloaded using the following command:
 kill-HUP 519
 After executing the above command, the terminal shows that
moquitto.conf file is reloaded. Figure 7 depicts the console log status:

Figure 7: Console log status

 After successfully setting the username and password to MQTT broker,
username and password is added to mqtt.js file for secure and authenticated
connection of WebSocket. Figure 8 shows secure WebSocket connection
configuration.

Figure 8: Secure WebSocket connection configuration

3.4.2. SSL approach
In this approach, OpenSSL must be installed to generate all certificate files
using Raspberry Pi. To create SSL certificates, first step is to connect
Raspberry Pi using ssh. And then create a private key using following
command:
 openssl genrsa -out mosq-ca.key 2048
 The command above will create a 2048-bit key called mosq-ca.key. And
the result of this command is showing the figure 9 below:

Figure 9: Creation of 2048 bit private key

 After creating the private key, the next task is to create an X509
certificate which will use the private key that has been created before. Now
after opening another terminal (directory must be the same), the private key
can be kept by writing the following code:
 openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt
The following figure 10 shows the terminal after submitting the command:

Figure 10: Key certificated

 Now, we are ready to move on to create MQTT server certificate by
creating a CSR (Certificate Signing Request). Usually, before using the newly
created certificate it is required to send certification authority for verification.
Here, self-signed certificate has been used to avoid such complexity. The
following commands are used to create the certificate and required
credentials to use in our server:
 openssl req -new -key mosq-serv.key -out mosq-serv.csr
 openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey
 mosq-ca.key -CAcreateserial -out mosq-serv.crt -days 365 -sha256

3.4.3. Securing MQTT Mosquitto server
After creating secure private certificates, it is time to secure MQTT
mosquitto server for secure communication throughout IoT network. In our
system, three secure certificates listed below have been used:

 1. mosq-ca.crt
 2. mosq-serv.crt
 3. mosq-serv.key

 In order to ensure SSL certificate to the mosquitto broker, few lines of
code from mosquitto.conf file are needed to be edited. The lines are given
below:
 listener 1883
 cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
 certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
 keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

 Here, default MQTT mosquitto port has been changed to 1883 and
private certificates have been kept to the path /home/pi/ssl. Now, it’s time
to restart the mosquitto service by using following two commands:
 sudo service mosquitto stop
 sudo service mosquitto start
 After successfully setup SSL certificate to MQTT broker, some security
options of mqtt.js file must be changed for secure WebSocket connection
with web page to broker. Following figure 11 shows the secure WebSocket
connection.

Figure 11: Secure WebSocket Connection

Finally, the procedure to make secure and encrypted MQTT protocol for
securing communication throughout IoT network has been completed with
expected result.

4. Results and analysis
At first, it is essential to check whether files required to test our secure
MQTT protocol is loaded or not with minimal delay. Following figure 12
depicts files along with their size and loading time requires testing the
proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12: Loading dependency files

 To test the MQTT server, it is required to have a client from which
secure communication can be made with MQTT server. As such, a Java base
MQTT client (MQTT.fx) has been install in our windows operating
system-based client computer. After that, the settings and connection
parameters of client have been changed as well as MQTT mosquitto has
been configured to secure MQTT protocol with necessary information as
shown in the figure 13 below:

Figure 13: Configure MQTT Mosquitto Server to Secure MQTT

 It can be seen from the figure 13 that the information about profile
name, broker address, broker port number and client ID has been provided.
Besides, SSL/TSL configuration has been enabled by providing the
certificate files like mosq-ca.crt in previous steps.
Now secure connection can be made between MQTT server and client by
clicking simply connect button as shown in figure 14. The status of the
connection between client and broker can be seen by clicking the Log tab
shown in figure 14:

Figure 14: Secure MQTT connection

The following figure 15 depicts the connection status along with the size of
sending packets.

Figure 15: Connection status

 Now it is time to check the status from subscribe side, which is located
in another computer. Figure 16 shows the status of the subscriber side:

Figure 16: Subscriber status
 Next approach is testing MQTT connection over port 1883. When there
is no authentication set, any user from any device can connect to this device.
However, after setting authentication and ssl certificate, it becomes difficult
to connect to MQTT broker without knowing the dependencies. After trying
from other devices without proper dependencies, the message appears as
shown in Figure 17.

 Figure 17: SSL WebSocket Status without dependencies

 After adding all the dependencies and ssl certificate, the console showing
that the WebSocket successfully connected to topic: client/accessLog that is
shown in figure 18.

Figure 18: SSL WebSocket Status
5. Conclusion
In this paper, authors have proposed a secured automated messaging system
using MQTT that takes message from other devices such as sensor, mobile,
laptop and accept only the ones with proper authenticity. This work
specifically demonstrated an application of the system that can successfully
communicate securely with IOT support devices without compromising any
data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools
to evaluate the performance of the proposed system. Besides, a hypothetical
webpage was used as sample output device. The performance of the system
was then evaluated in term of accuracy, time and security of communication
system. The outcome of this paper will surely make IoT communication in
real time and make more secure.

References
Ahmed, M., Rahman, M., & Hoque, M. (2020). Smart home: An empirical

analysis of communication technological challenges. European Journal of
Engineering Research and Science, 5(5), 571-575. doi:
https://doi.org/10.24018/ejers.2020.5.5.1905

Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., Kabir, M. H., & Hoque, M. J.
(2018, December 27-29). Internet of Things based patient health monitoring
system using wearable biomedical device. Paper presented at IEEE
International Conference on Innovation in Engineering and Technology
(ICIET), Bangladesh, 1-5. doi: 10.1109/CIET.2018.8660846

Real time messaging for IoT 35

and authorization should be kept in any researchers mind when it relates to
sensitive communication in real time using IoT infrastructure. There are two
ways that can be used to make IoT network secure such as Username and
password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password
authentication can be added initially and on top of that, SSL certificate can
be implemented.

3.4.1. Username and password approach
Using authentic username and password, the Mosquitto MQTT broker can
be configured as to require client authentication before broker connection
established or permitted. Even though, a clear text username and password
combination is not secure without transport encryption like ssl, it is good
first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS,
username/password etc which all are implemented in this MQTT broker.
After implementing all the credentials to broker, it is now task for client to
add all these credentials to connect, publish and subscribe with maintaining
all the restrictions.
 For configuring the Mosquitto broker, there are some steps need to be
done such as a file for storing password need to be created as well as
mosquito.conf file need to be reconfigured to force to use password from a
password file that has been created earlier.

3.4.1.1. Creating and using a password file
To create the password file, osquito_passwd utility file, which has been
install during the installation of mosquito broker need to be used. There are
numerous ways to create password file however the following way is the best
procedure (terminal command) that is used for this system.
 osquito_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

Figure 5: Creation of password file

Figure 6 shows the status of secure password.

Figure 6: Mosquitto secure password

 Now it is the time to use the password file through mosquito.conf file.
At first, in the Raspberry Pi the password file that has been created earlier
needs to be copied to the directory etc/ osquito. Afterwards, osquito.conf
file needs to be reconfigured in such a way that MQTT communication use
password file to make the communication secure. There are two changes
have been made made. The changes made to osquito.conf file are setting the
password file path and also setting allow anonymous to false cause by default
it remains true.
Settings of osquito.conf:
 password_file /etc/ osquito/password.txt
 allow_anonymous false
 After creating a password file and reconfiguring osquito.conf file,
osquito broker needs to be restarted in order to make the effect of such
changes. However, in Raspberry Pi, without restarting broker the file can be
reloaded using the following command:
 kill-HUP 519
 After executing the above command, the terminal shows that
moquitto.conf file is reloaded. Figure 7 depicts the console log status:

Figure 7: Console log status

 After successfully setting the username and password to MQTT broker,
username and password is added to mqtt.js file for secure and authenticated
connection of WebSocket. Figure 8 shows secure WebSocket connection
configuration.

Figure 8: Secure WebSocket connection configuration

3.4.2. SSL approach
In this approach, OpenSSL must be installed to generate all certificate files
using Raspberry Pi. To create SSL certificates, first step is to connect
Raspberry Pi using ssh. And then create a private key using following
command:
 openssl genrsa -out mosq-ca.key 2048
 The command above will create a 2048-bit key called mosq-ca.key. And
the result of this command is showing the figure 9 below:

Figure 9: Creation of 2048 bit private key

 After creating the private key, the next task is to create an X509
certificate which will use the private key that has been created before. Now
after opening another terminal (directory must be the same), the private key
can be kept by writing the following code:
 openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt
The following figure 10 shows the terminal after submitting the command:

Figure 10: Key certificated

 Now, we are ready to move on to create MQTT server certificate by
creating a CSR (Certificate Signing Request). Usually, before using the newly
created certificate it is required to send certification authority for verification.
Here, self-signed certificate has been used to avoid such complexity. The
following commands are used to create the certificate and required
credentials to use in our server:
 openssl req -new -key mosq-serv.key -out mosq-serv.csr
 openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey
 mosq-ca.key -CAcreateserial -out mosq-serv.crt -days 365 -sha256

3.4.3. Securing MQTT Mosquitto server
After creating secure private certificates, it is time to secure MQTT
mosquitto server for secure communication throughout IoT network. In our
system, three secure certificates listed below have been used:

 1. mosq-ca.crt
 2. mosq-serv.crt
 3. mosq-serv.key

 In order to ensure SSL certificate to the mosquitto broker, few lines of
code from mosquitto.conf file are needed to be edited. The lines are given
below:
 listener 1883
 cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
 certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
 keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

 Here, default MQTT mosquitto port has been changed to 1883 and
private certificates have been kept to the path /home/pi/ssl. Now, it’s time
to restart the mosquitto service by using following two commands:
 sudo service mosquitto stop
 sudo service mosquitto start
 After successfully setup SSL certificate to MQTT broker, some security
options of mqtt.js file must be changed for secure WebSocket connection
with web page to broker. Following figure 11 shows the secure WebSocket
connection.

Figure 11: Secure WebSocket Connection

Finally, the procedure to make secure and encrypted MQTT protocol for
securing communication throughout IoT network has been completed with
expected result.

4. Results and analysis
At first, it is essential to check whether files required to test our secure
MQTT protocol is loaded or not with minimal delay. Following figure 12
depicts files along with their size and loading time requires testing the
proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12: Loading dependency files

 To test the MQTT server, it is required to have a client from which
secure communication can be made with MQTT server. As such, a Java base
MQTT client (MQTT.fx) has been install in our windows operating
system-based client computer. After that, the settings and connection
parameters of client have been changed as well as MQTT mosquitto has
been configured to secure MQTT protocol with necessary information as
shown in the figure 13 below:

Figure 13: Configure MQTT Mosquitto Server to Secure MQTT

 It can be seen from the figure 13 that the information about profile
name, broker address, broker port number and client ID has been provided.
Besides, SSL/TSL configuration has been enabled by providing the
certificate files like mosq-ca.crt in previous steps.
Now secure connection can be made between MQTT server and client by
clicking simply connect button as shown in figure 14. The status of the
connection between client and broker can be seen by clicking the Log tab
shown in figure 14:

Figure 14: Secure MQTT connection

The following figure 15 depicts the connection status along with the size of
sending packets.

Figure 15: Connection status

 Now it is time to check the status from subscribe side, which is located
in another computer. Figure 16 shows the status of the subscriber side:

Figure 16: Subscriber status
 Next approach is testing MQTT connection over port 1883. When there
is no authentication set, any user from any device can connect to this device.
However, after setting authentication and ssl certificate, it becomes difficult
to connect to MQTT broker without knowing the dependencies. After trying
from other devices without proper dependencies, the message appears as
shown in Figure 17.

 Figure 17: SSL WebSocket Status without dependencies

 After adding all the dependencies and ssl certificate, the console showing
that the WebSocket successfully connected to topic: client/accessLog that is
shown in figure 18.

Figure 18: SSL WebSocket Status
5. Conclusion
In this paper, authors have proposed a secured automated messaging system
using MQTT that takes message from other devices such as sensor, mobile,
laptop and accept only the ones with proper authenticity. This work
specifically demonstrated an application of the system that can successfully
communicate securely with IOT support devices without compromising any
data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools
to evaluate the performance of the proposed system. Besides, a hypothetical
webpage was used as sample output device. The performance of the system
was then evaluated in term of accuracy, time and security of communication
system. The outcome of this paper will surely make IoT communication in
real time and make more secure.

References
Ahmed, M., Rahman, M., & Hoque, M. (2020). Smart home: An empirical

analysis of communication technological challenges. European Journal of
Engineering Research and Science, 5(5), 571-575. doi:
https://doi.org/10.24018/ejers.2020.5.5.1905

Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., Kabir, M. H., & Hoque, M. J.
(2018, December 27-29). Internet of Things based patient health monitoring
system using wearable biomedical device. Paper presented at IEEE
International Conference on Innovation in Engineering and Technology
(ICIET), Bangladesh, 1-5. doi: 10.1109/CIET.2018.8660846

36 IIUC Studies, 17

and authorization should be kept in any researchers mind when it relates to
sensitive communication in real time using IoT infrastructure. There are two
ways that can be used to make IoT network secure such as Username and
password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password
authentication can be added initially and on top of that, SSL certificate can
be implemented.

3.4.1. Username and password approach
Using authentic username and password, the Mosquitto MQTT broker can
be configured as to require client authentication before broker connection
established or permitted. Even though, a clear text username and password
combination is not secure without transport encryption like ssl, it is good
first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS,
username/password etc which all are implemented in this MQTT broker.
After implementing all the credentials to broker, it is now task for client to
add all these credentials to connect, publish and subscribe with maintaining
all the restrictions.
 For configuring the Mosquitto broker, there are some steps need to be
done such as a file for storing password need to be created as well as
mosquito.conf file need to be reconfigured to force to use password from a
password file that has been created earlier.

3.4.1.1. Creating and using a password file
To create the password file, osquito_passwd utility file, which has been
install during the installation of mosquito broker need to be used. There are
numerous ways to create password file however the following way is the best
procedure (terminal command) that is used for this system.
 osquito_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

Figure 5: Creation of password file

Figure 6 shows the status of secure password.

Figure 6: Mosquitto secure password

 Now it is the time to use the password file through mosquito.conf file.
At first, in the Raspberry Pi the password file that has been created earlier
needs to be copied to the directory etc/ osquito. Afterwards, osquito.conf
file needs to be reconfigured in such a way that MQTT communication use
password file to make the communication secure. There are two changes
have been made made. The changes made to osquito.conf file are setting the
password file path and also setting allow anonymous to false cause by default
it remains true.
Settings of osquito.conf:
 password_file /etc/ osquito/password.txt
 allow_anonymous false
 After creating a password file and reconfiguring osquito.conf file,
osquito broker needs to be restarted in order to make the effect of such
changes. However, in Raspberry Pi, without restarting broker the file can be
reloaded using the following command:
 kill-HUP 519
 After executing the above command, the terminal shows that
moquitto.conf file is reloaded. Figure 7 depicts the console log status:

Figure 7: Console log status

 After successfully setting the username and password to MQTT broker,
username and password is added to mqtt.js file for secure and authenticated
connection of WebSocket. Figure 8 shows secure WebSocket connection
configuration.

Figure 8: Secure WebSocket connection configuration

3.4.2. SSL approach
In this approach, OpenSSL must be installed to generate all certificate files
using Raspberry Pi. To create SSL certificates, first step is to connect
Raspberry Pi using ssh. And then create a private key using following
command:
 openssl genrsa -out mosq-ca.key 2048
 The command above will create a 2048-bit key called mosq-ca.key. And
the result of this command is showing the figure 9 below:

Figure 9: Creation of 2048 bit private key

 After creating the private key, the next task is to create an X509
certificate which will use the private key that has been created before. Now
after opening another terminal (directory must be the same), the private key
can be kept by writing the following code:
 openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt
The following figure 10 shows the terminal after submitting the command:

Figure 10: Key certificated

 Now, we are ready to move on to create MQTT server certificate by
creating a CSR (Certificate Signing Request). Usually, before using the newly
created certificate it is required to send certification authority for verification.
Here, self-signed certificate has been used to avoid such complexity. The
following commands are used to create the certificate and required
credentials to use in our server:
 openssl req -new -key mosq-serv.key -out mosq-serv.csr
 openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey
 mosq-ca.key -CAcreateserial -out mosq-serv.crt -days 365 -sha256

3.4.3. Securing MQTT Mosquitto server
After creating secure private certificates, it is time to secure MQTT
mosquitto server for secure communication throughout IoT network. In our
system, three secure certificates listed below have been used:

 1. mosq-ca.crt
 2. mosq-serv.crt
 3. mosq-serv.key

 In order to ensure SSL certificate to the mosquitto broker, few lines of
code from mosquitto.conf file are needed to be edited. The lines are given
below:
 listener 1883
 cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
 certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
 keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

 Here, default MQTT mosquitto port has been changed to 1883 and
private certificates have been kept to the path /home/pi/ssl. Now, it’s time
to restart the mosquitto service by using following two commands:
 sudo service mosquitto stop
 sudo service mosquitto start
 After successfully setup SSL certificate to MQTT broker, some security
options of mqtt.js file must be changed for secure WebSocket connection
with web page to broker. Following figure 11 shows the secure WebSocket
connection.

Figure 11: Secure WebSocket Connection

Finally, the procedure to make secure and encrypted MQTT protocol for
securing communication throughout IoT network has been completed with
expected result.

4. Results and analysis
At first, it is essential to check whether files required to test our secure
MQTT protocol is loaded or not with minimal delay. Following figure 12
depicts files along with their size and loading time requires testing the
proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12: Loading dependency files

 To test the MQTT server, it is required to have a client from which
secure communication can be made with MQTT server. As such, a Java base
MQTT client (MQTT.fx) has been install in our windows operating
system-based client computer. After that, the settings and connection
parameters of client have been changed as well as MQTT mosquitto has
been configured to secure MQTT protocol with necessary information as
shown in the figure 13 below:

Figure 13: Configure MQTT Mosquitto Server to Secure MQTT

 It can be seen from the figure 13 that the information about profile
name, broker address, broker port number and client ID has been provided.
Besides, SSL/TSL configuration has been enabled by providing the
certificate files like mosq-ca.crt in previous steps.
Now secure connection can be made between MQTT server and client by
clicking simply connect button as shown in figure 14. The status of the
connection between client and broker can be seen by clicking the Log tab
shown in figure 14:

Figure 14: Secure MQTT connection

The following figure 15 depicts the connection status along with the size of
sending packets.

Figure 15: Connection status

 Now it is time to check the status from subscribe side, which is located
in another computer. Figure 16 shows the status of the subscriber side:

Figure 16: Subscriber status
 Next approach is testing MQTT connection over port 1883. When there
is no authentication set, any user from any device can connect to this device.
However, after setting authentication and ssl certificate, it becomes difficult
to connect to MQTT broker without knowing the dependencies. After trying
from other devices without proper dependencies, the message appears as
shown in Figure 17.

 Figure 17: SSL WebSocket Status without dependencies

 After adding all the dependencies and ssl certificate, the console showing
that the WebSocket successfully connected to topic: client/accessLog that is
shown in figure 18.

Figure 18: SSL WebSocket Status
5. Conclusion
In this paper, authors have proposed a secured automated messaging system
using MQTT that takes message from other devices such as sensor, mobile,
laptop and accept only the ones with proper authenticity. This work
specifically demonstrated an application of the system that can successfully
communicate securely with IOT support devices without compromising any
data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools
to evaluate the performance of the proposed system. Besides, a hypothetical
webpage was used as sample output device. The performance of the system
was then evaluated in term of accuracy, time and security of communication
system. The outcome of this paper will surely make IoT communication in
real time and make more secure.

References
Ahmed, M., Rahman, M., & Hoque, M. (2020). Smart home: An empirical

analysis of communication technological challenges. European Journal of
Engineering Research and Science, 5(5), 571-575. doi:
https://doi.org/10.24018/ejers.2020.5.5.1905

Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., Kabir, M. H., & Hoque, M. J.
(2018, December 27-29). Internet of Things based patient health monitoring
system using wearable biomedical device. Paper presented at IEEE
International Conference on Innovation in Engineering and Technology
(ICIET), Bangladesh, 1-5. doi: 10.1109/CIET.2018.8660846

Real time messaging for IoT 37

and authorization should be kept in any researchers mind when it relates to
sensitive communication in real time using IoT infrastructure. There are two
ways that can be used to make IoT network secure such as Username and
password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password
authentication can be added initially and on top of that, SSL certificate can
be implemented.

3.4.1. Username and password approach
Using authentic username and password, the Mosquitto MQTT broker can
be configured as to require client authentication before broker connection
established or permitted. Even though, a clear text username and password
combination is not secure without transport encryption like ssl, it is good
first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS,
username/password etc which all are implemented in this MQTT broker.
After implementing all the credentials to broker, it is now task for client to
add all these credentials to connect, publish and subscribe with maintaining
all the restrictions.
 For configuring the Mosquitto broker, there are some steps need to be
done such as a file for storing password need to be created as well as
mosquito.conf file need to be reconfigured to force to use password from a
password file that has been created earlier.

3.4.1.1. Creating and using a password file
To create the password file, osquito_passwd utility file, which has been
install during the installation of mosquito broker need to be used. There are
numerous ways to create password file however the following way is the best
procedure (terminal command) that is used for this system.
 osquito_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

Figure 5: Creation of password file

Figure 6 shows the status of secure password.

Figure 6: Mosquitto secure password

 Now it is the time to use the password file through mosquito.conf file.
At first, in the Raspberry Pi the password file that has been created earlier
needs to be copied to the directory etc/ osquito. Afterwards, osquito.conf
file needs to be reconfigured in such a way that MQTT communication use
password file to make the communication secure. There are two changes
have been made made. The changes made to osquito.conf file are setting the
password file path and also setting allow anonymous to false cause by default
it remains true.
Settings of osquito.conf:
 password_file /etc/ osquito/password.txt
 allow_anonymous false
 After creating a password file and reconfiguring osquito.conf file,
osquito broker needs to be restarted in order to make the effect of such
changes. However, in Raspberry Pi, without restarting broker the file can be
reloaded using the following command:
 kill-HUP 519
 After executing the above command, the terminal shows that
moquitto.conf file is reloaded. Figure 7 depicts the console log status:

Figure 7: Console log status

 After successfully setting the username and password to MQTT broker,
username and password is added to mqtt.js file for secure and authenticated
connection of WebSocket. Figure 8 shows secure WebSocket connection
configuration.

Figure 8: Secure WebSocket connection configuration

3.4.2. SSL approach
In this approach, OpenSSL must be installed to generate all certificate files
using Raspberry Pi. To create SSL certificates, first step is to connect
Raspberry Pi using ssh. And then create a private key using following
command:
 openssl genrsa -out mosq-ca.key 2048
 The command above will create a 2048-bit key called mosq-ca.key. And
the result of this command is showing the figure 9 below:

Figure 9: Creation of 2048 bit private key

 After creating the private key, the next task is to create an X509
certificate which will use the private key that has been created before. Now
after opening another terminal (directory must be the same), the private key
can be kept by writing the following code:
 openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt
The following figure 10 shows the terminal after submitting the command:

Figure 10: Key certificated

 Now, we are ready to move on to create MQTT server certificate by
creating a CSR (Certificate Signing Request). Usually, before using the newly
created certificate it is required to send certification authority for verification.
Here, self-signed certificate has been used to avoid such complexity. The
following commands are used to create the certificate and required
credentials to use in our server:
 openssl req -new -key mosq-serv.key -out mosq-serv.csr
 openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey
 mosq-ca.key -CAcreateserial -out mosq-serv.crt -days 365 -sha256

3.4.3. Securing MQTT Mosquitto server
After creating secure private certificates, it is time to secure MQTT
mosquitto server for secure communication throughout IoT network. In our
system, three secure certificates listed below have been used:

 1. mosq-ca.crt
 2. mosq-serv.crt
 3. mosq-serv.key

 In order to ensure SSL certificate to the mosquitto broker, few lines of
code from mosquitto.conf file are needed to be edited. The lines are given
below:
 listener 1883
 cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
 certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
 keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

 Here, default MQTT mosquitto port has been changed to 1883 and
private certificates have been kept to the path /home/pi/ssl. Now, it’s time
to restart the mosquitto service by using following two commands:
 sudo service mosquitto stop
 sudo service mosquitto start
 After successfully setup SSL certificate to MQTT broker, some security
options of mqtt.js file must be changed for secure WebSocket connection
with web page to broker. Following figure 11 shows the secure WebSocket
connection.

Figure 11: Secure WebSocket Connection

Finally, the procedure to make secure and encrypted MQTT protocol for
securing communication throughout IoT network has been completed with
expected result.

4. Results and analysis
At first, it is essential to check whether files required to test our secure
MQTT protocol is loaded or not with minimal delay. Following figure 12
depicts files along with their size and loading time requires testing the
proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12: Loading dependency files

 To test the MQTT server, it is required to have a client from which
secure communication can be made with MQTT server. As such, a Java base
MQTT client (MQTT.fx) has been install in our windows operating
system-based client computer. After that, the settings and connection
parameters of client have been changed as well as MQTT mosquitto has
been configured to secure MQTT protocol with necessary information as
shown in the figure 13 below:

Figure 13: Configure MQTT Mosquitto Server to Secure MQTT

 It can be seen from the figure 13 that the information about profile
name, broker address, broker port number and client ID has been provided.
Besides, SSL/TSL configuration has been enabled by providing the
certificate files like mosq-ca.crt in previous steps.
Now secure connection can be made between MQTT server and client by
clicking simply connect button as shown in figure 14. The status of the
connection between client and broker can be seen by clicking the Log tab
shown in figure 14:

Figure 14: Secure MQTT connection

The following figure 15 depicts the connection status along with the size of
sending packets.

Figure 15: Connection status

 Now it is time to check the status from subscribe side, which is located
in another computer. Figure 16 shows the status of the subscriber side:

Figure 16: Subscriber status
 Next approach is testing MQTT connection over port 1883. When there
is no authentication set, any user from any device can connect to this device.
However, after setting authentication and ssl certificate, it becomes difficult
to connect to MQTT broker without knowing the dependencies. After trying
from other devices without proper dependencies, the message appears as
shown in Figure 17.

 Figure 17: SSL WebSocket Status without dependencies

 After adding all the dependencies and ssl certificate, the console showing
that the WebSocket successfully connected to topic: client/accessLog that is
shown in figure 18.

Figure 18: SSL WebSocket Status
5. Conclusion
In this paper, authors have proposed a secured automated messaging system
using MQTT that takes message from other devices such as sensor, mobile,
laptop and accept only the ones with proper authenticity. This work
specifically demonstrated an application of the system that can successfully
communicate securely with IOT support devices without compromising any
data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools
to evaluate the performance of the proposed system. Besides, a hypothetical
webpage was used as sample output device. The performance of the system
was then evaluated in term of accuracy, time and security of communication
system. The outcome of this paper will surely make IoT communication in
real time and make more secure.

References
Ahmed, M., Rahman, M., & Hoque, M. (2020). Smart home: An empirical

analysis of communication technological challenges. European Journal of
Engineering Research and Science, 5(5), 571-575. doi:
https://doi.org/10.24018/ejers.2020.5.5.1905

Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., Kabir, M. H., & Hoque, M. J.
(2018, December 27-29). Internet of Things based patient health monitoring
system using wearable biomedical device. Paper presented at IEEE
International Conference on Innovation in Engineering and Technology
(ICIET), Bangladesh, 1-5. doi: 10.1109/CIET.2018.8660846

38 IIUC Studies, 17

and authorization should be kept in any researchers mind when it relates to
sensitive communication in real time using IoT infrastructure. There are two
ways that can be used to make IoT network secure such as Username and
password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password
authentication can be added initially and on top of that, SSL certificate can
be implemented.

3.4.1. Username and password approach
Using authentic username and password, the Mosquitto MQTT broker can
be configured as to require client authentication before broker connection
established or permitted. Even though, a clear text username and password
combination is not secure without transport encryption like ssl, it is good
first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS,
username/password etc which all are implemented in this MQTT broker.
After implementing all the credentials to broker, it is now task for client to
add all these credentials to connect, publish and subscribe with maintaining
all the restrictions.
 For configuring the Mosquitto broker, there are some steps need to be
done such as a file for storing password need to be created as well as
mosquito.conf file need to be reconfigured to force to use password from a
password file that has been created earlier.

3.4.1.1. Creating and using a password file
To create the password file, osquito_passwd utility file, which has been
install during the installation of mosquito broker need to be used. There are
numerous ways to create password file however the following way is the best
procedure (terminal command) that is used for this system.
 osquito_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

Figure 5: Creation of password file

Figure 6 shows the status of secure password.

Figure 6: Mosquitto secure password

 Now it is the time to use the password file through mosquito.conf file.
At first, in the Raspberry Pi the password file that has been created earlier
needs to be copied to the directory etc/ osquito. Afterwards, osquito.conf
file needs to be reconfigured in such a way that MQTT communication use
password file to make the communication secure. There are two changes
have been made made. The changes made to osquito.conf file are setting the
password file path and also setting allow anonymous to false cause by default
it remains true.
Settings of osquito.conf:
 password_file /etc/ osquito/password.txt
 allow_anonymous false
 After creating a password file and reconfiguring osquito.conf file,
osquito broker needs to be restarted in order to make the effect of such
changes. However, in Raspberry Pi, without restarting broker the file can be
reloaded using the following command:
 kill-HUP 519
 After executing the above command, the terminal shows that
moquitto.conf file is reloaded. Figure 7 depicts the console log status:

Figure 7: Console log status

 After successfully setting the username and password to MQTT broker,
username and password is added to mqtt.js file for secure and authenticated
connection of WebSocket. Figure 8 shows secure WebSocket connection
configuration.

Figure 8: Secure WebSocket connection configuration

3.4.2. SSL approach
In this approach, OpenSSL must be installed to generate all certificate files
using Raspberry Pi. To create SSL certificates, first step is to connect
Raspberry Pi using ssh. And then create a private key using following
command:
 openssl genrsa -out mosq-ca.key 2048
 The command above will create a 2048-bit key called mosq-ca.key. And
the result of this command is showing the figure 9 below:

Figure 9: Creation of 2048 bit private key

 After creating the private key, the next task is to create an X509
certificate which will use the private key that has been created before. Now
after opening another terminal (directory must be the same), the private key
can be kept by writing the following code:
 openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt
The following figure 10 shows the terminal after submitting the command:

Figure 10: Key certificated

 Now, we are ready to move on to create MQTT server certificate by
creating a CSR (Certificate Signing Request). Usually, before using the newly
created certificate it is required to send certification authority for verification.
Here, self-signed certificate has been used to avoid such complexity. The
following commands are used to create the certificate and required
credentials to use in our server:
 openssl req -new -key mosq-serv.key -out mosq-serv.csr
 openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey
 mosq-ca.key -CAcreateserial -out mosq-serv.crt -days 365 -sha256

3.4.3. Securing MQTT Mosquitto server
After creating secure private certificates, it is time to secure MQTT
mosquitto server for secure communication throughout IoT network. In our
system, three secure certificates listed below have been used:

 1. mosq-ca.crt
 2. mosq-serv.crt
 3. mosq-serv.key

 In order to ensure SSL certificate to the mosquitto broker, few lines of
code from mosquitto.conf file are needed to be edited. The lines are given
below:
 listener 1883
 cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
 certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
 keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

 Here, default MQTT mosquitto port has been changed to 1883 and
private certificates have been kept to the path /home/pi/ssl. Now, it’s time
to restart the mosquitto service by using following two commands:
 sudo service mosquitto stop
 sudo service mosquitto start
 After successfully setup SSL certificate to MQTT broker, some security
options of mqtt.js file must be changed for secure WebSocket connection
with web page to broker. Following figure 11 shows the secure WebSocket
connection.

Figure 11: Secure WebSocket Connection

Finally, the procedure to make secure and encrypted MQTT protocol for
securing communication throughout IoT network has been completed with
expected result.

4. Results and analysis
At first, it is essential to check whether files required to test our secure
MQTT protocol is loaded or not with minimal delay. Following figure 12
depicts files along with their size and loading time requires testing the
proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12: Loading dependency files

 To test the MQTT server, it is required to have a client from which
secure communication can be made with MQTT server. As such, a Java base
MQTT client (MQTT.fx) has been install in our windows operating
system-based client computer. After that, the settings and connection
parameters of client have been changed as well as MQTT mosquitto has
been configured to secure MQTT protocol with necessary information as
shown in the figure 13 below:

Figure 13: Configure MQTT Mosquitto Server to Secure MQTT

 It can be seen from the figure 13 that the information about profile
name, broker address, broker port number and client ID has been provided.
Besides, SSL/TSL configuration has been enabled by providing the
certificate files like mosq-ca.crt in previous steps.
Now secure connection can be made between MQTT server and client by
clicking simply connect button as shown in figure 14. The status of the
connection between client and broker can be seen by clicking the Log tab
shown in figure 14:

Figure 14: Secure MQTT connection

The following figure 15 depicts the connection status along with the size of
sending packets.

Figure 15: Connection status

 Now it is time to check the status from subscribe side, which is located
in another computer. Figure 16 shows the status of the subscriber side:

Figure 16: Subscriber status
 Next approach is testing MQTT connection over port 1883. When there
is no authentication set, any user from any device can connect to this device.
However, after setting authentication and ssl certificate, it becomes difficult
to connect to MQTT broker without knowing the dependencies. After trying
from other devices without proper dependencies, the message appears as
shown in Figure 17.

 Figure 17: SSL WebSocket Status without dependencies

 After adding all the dependencies and ssl certificate, the console showing
that the WebSocket successfully connected to topic: client/accessLog that is
shown in figure 18.

Figure 18: SSL WebSocket Status
5. Conclusion
In this paper, authors have proposed a secured automated messaging system
using MQTT that takes message from other devices such as sensor, mobile,
laptop and accept only the ones with proper authenticity. This work
specifically demonstrated an application of the system that can successfully
communicate securely with IOT support devices without compromising any
data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools
to evaluate the performance of the proposed system. Besides, a hypothetical
webpage was used as sample output device. The performance of the system
was then evaluated in term of accuracy, time and security of communication
system. The outcome of this paper will surely make IoT communication in
real time and make more secure.

References
Ahmed, M., Rahman, M., & Hoque, M. (2020). Smart home: An empirical

analysis of communication technological challenges. European Journal of
Engineering Research and Science, 5(5), 571-575. doi:
https://doi.org/10.24018/ejers.2020.5.5.1905

Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., Kabir, M. H., & Hoque, M. J.
(2018, December 27-29). Internet of Things based patient health monitoring
system using wearable biomedical device. Paper presented at IEEE
International Conference on Innovation in Engineering and Technology
(ICIET), Bangladesh, 1-5. doi: 10.1109/CIET.2018.8660846

Real time messaging for IoT 39

and authorization should be kept in any researchers mind when it relates to
sensitive communication in real time using IoT infrastructure. There are two
ways that can be used to make IoT network secure such as Username and
password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password
authentication can be added initially and on top of that, SSL certificate can
be implemented.

3.4.1. Username and password approach
Using authentic username and password, the Mosquitto MQTT broker can
be configured as to require client authentication before broker connection
established or permitted. Even though, a clear text username and password
combination is not secure without transport encryption like ssl, it is good
first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS,
username/password etc which all are implemented in this MQTT broker.
After implementing all the credentials to broker, it is now task for client to
add all these credentials to connect, publish and subscribe with maintaining
all the restrictions.
 For configuring the Mosquitto broker, there are some steps need to be
done such as a file for storing password need to be created as well as
mosquito.conf file need to be reconfigured to force to use password from a
password file that has been created earlier.

3.4.1.1. Creating and using a password file
To create the password file, osquito_passwd utility file, which has been
install during the installation of mosquito broker need to be used. There are
numerous ways to create password file however the following way is the best
procedure (terminal command) that is used for this system.
 osquito_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

Figure 5: Creation of password file

Figure 6 shows the status of secure password.

Figure 6: Mosquitto secure password

 Now it is the time to use the password file through mosquito.conf file.
At first, in the Raspberry Pi the password file that has been created earlier
needs to be copied to the directory etc/ osquito. Afterwards, osquito.conf
file needs to be reconfigured in such a way that MQTT communication use
password file to make the communication secure. There are two changes
have been made made. The changes made to osquito.conf file are setting the
password file path and also setting allow anonymous to false cause by default
it remains true.
Settings of osquito.conf:
 password_file /etc/ osquito/password.txt
 allow_anonymous false
 After creating a password file and reconfiguring osquito.conf file,
osquito broker needs to be restarted in order to make the effect of such
changes. However, in Raspberry Pi, without restarting broker the file can be
reloaded using the following command:
 kill-HUP 519
 After executing the above command, the terminal shows that
moquitto.conf file is reloaded. Figure 7 depicts the console log status:

Figure 7: Console log status

 After successfully setting the username and password to MQTT broker,
username and password is added to mqtt.js file for secure and authenticated
connection of WebSocket. Figure 8 shows secure WebSocket connection
configuration.

Figure 8: Secure WebSocket connection configuration

3.4.2. SSL approach
In this approach, OpenSSL must be installed to generate all certificate files
using Raspberry Pi. To create SSL certificates, first step is to connect
Raspberry Pi using ssh. And then create a private key using following
command:
 openssl genrsa -out mosq-ca.key 2048
 The command above will create a 2048-bit key called mosq-ca.key. And
the result of this command is showing the figure 9 below:

Figure 9: Creation of 2048 bit private key

 After creating the private key, the next task is to create an X509
certificate which will use the private key that has been created before. Now
after opening another terminal (directory must be the same), the private key
can be kept by writing the following code:
 openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt
The following figure 10 shows the terminal after submitting the command:

Figure 10: Key certificated

 Now, we are ready to move on to create MQTT server certificate by
creating a CSR (Certificate Signing Request). Usually, before using the newly
created certificate it is required to send certification authority for verification.
Here, self-signed certificate has been used to avoid such complexity. The
following commands are used to create the certificate and required
credentials to use in our server:
 openssl req -new -key mosq-serv.key -out mosq-serv.csr
 openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey
 mosq-ca.key -CAcreateserial -out mosq-serv.crt -days 365 -sha256

3.4.3. Securing MQTT Mosquitto server
After creating secure private certificates, it is time to secure MQTT
mosquitto server for secure communication throughout IoT network. In our
system, three secure certificates listed below have been used:

 1. mosq-ca.crt
 2. mosq-serv.crt
 3. mosq-serv.key

 In order to ensure SSL certificate to the mosquitto broker, few lines of
code from mosquitto.conf file are needed to be edited. The lines are given
below:
 listener 1883
 cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
 certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
 keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

 Here, default MQTT mosquitto port has been changed to 1883 and
private certificates have been kept to the path /home/pi/ssl. Now, it’s time
to restart the mosquitto service by using following two commands:
 sudo service mosquitto stop
 sudo service mosquitto start
 After successfully setup SSL certificate to MQTT broker, some security
options of mqtt.js file must be changed for secure WebSocket connection
with web page to broker. Following figure 11 shows the secure WebSocket
connection.

Figure 11: Secure WebSocket Connection

Finally, the procedure to make secure and encrypted MQTT protocol for
securing communication throughout IoT network has been completed with
expected result.

4. Results and analysis
At first, it is essential to check whether files required to test our secure
MQTT protocol is loaded or not with minimal delay. Following figure 12
depicts files along with their size and loading time requires testing the
proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12: Loading dependency files

 To test the MQTT server, it is required to have a client from which
secure communication can be made with MQTT server. As such, a Java base
MQTT client (MQTT.fx) has been install in our windows operating
system-based client computer. After that, the settings and connection
parameters of client have been changed as well as MQTT mosquitto has
been configured to secure MQTT protocol with necessary information as
shown in the figure 13 below:

Figure 13: Configure MQTT Mosquitto Server to Secure MQTT

 It can be seen from the figure 13 that the information about profile
name, broker address, broker port number and client ID has been provided.
Besides, SSL/TSL configuration has been enabled by providing the
certificate files like mosq-ca.crt in previous steps.
Now secure connection can be made between MQTT server and client by
clicking simply connect button as shown in figure 14. The status of the
connection between client and broker can be seen by clicking the Log tab
shown in figure 14:

Figure 14: Secure MQTT connection

The following figure 15 depicts the connection status along with the size of
sending packets.

Figure 15: Connection status

 Now it is time to check the status from subscribe side, which is located
in another computer. Figure 16 shows the status of the subscriber side:

Figure 16: Subscriber status
 Next approach is testing MQTT connection over port 1883. When there
is no authentication set, any user from any device can connect to this device.
However, after setting authentication and ssl certificate, it becomes difficult
to connect to MQTT broker without knowing the dependencies. After trying
from other devices without proper dependencies, the message appears as
shown in Figure 17.

 Figure 17: SSL WebSocket Status without dependencies

 After adding all the dependencies and ssl certificate, the console showing
that the WebSocket successfully connected to topic: client/accessLog that is
shown in figure 18.

Figure 18: SSL WebSocket Status
5. Conclusion
In this paper, authors have proposed a secured automated messaging system
using MQTT that takes message from other devices such as sensor, mobile,
laptop and accept only the ones with proper authenticity. This work
specifically demonstrated an application of the system that can successfully
communicate securely with IOT support devices without compromising any
data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools
to evaluate the performance of the proposed system. Besides, a hypothetical
webpage was used as sample output device. The performance of the system
was then evaluated in term of accuracy, time and security of communication
system. The outcome of this paper will surely make IoT communication in
real time and make more secure.

References
Ahmed, M., Rahman, M., & Hoque, M. (2020). Smart home: An empirical

analysis of communication technological challenges. European Journal of
Engineering Research and Science, 5(5), 571-575. doi:
https://doi.org/10.24018/ejers.2020.5.5.1905

Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., Kabir, M. H., & Hoque, M. J.
(2018, December 27-29). Internet of Things based patient health monitoring
system using wearable biomedical device. Paper presented at IEEE
International Conference on Innovation in Engineering and Technology
(ICIET), Bangladesh, 1-5. doi: 10.1109/CIET.2018.8660846

40 IIUC Studies, 17

and authorization should be kept in any researchers mind when it relates to
sensitive communication in real time using IoT infrastructure. There are two
ways that can be used to make IoT network secure such as Username and
password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password
authentication can be added initially and on top of that, SSL certificate can
be implemented.

3.4.1. Username and password approach
Using authentic username and password, the Mosquitto MQTT broker can
be configured as to require client authentication before broker connection
established or permitted. Even though, a clear text username and password
combination is not secure without transport encryption like ssl, it is good
first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS,
username/password etc which all are implemented in this MQTT broker.
After implementing all the credentials to broker, it is now task for client to
add all these credentials to connect, publish and subscribe with maintaining
all the restrictions.
 For configuring the Mosquitto broker, there are some steps need to be
done such as a file for storing password need to be created as well as
mosquito.conf file need to be reconfigured to force to use password from a
password file that has been created earlier.

3.4.1.1. Creating and using a password file
To create the password file, osquito_passwd utility file, which has been
install during the installation of mosquito broker need to be used. There are
numerous ways to create password file however the following way is the best
procedure (terminal command) that is used for this system.
 osquito_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

Figure 5: Creation of password file

Figure 6 shows the status of secure password.

Figure 6: Mosquitto secure password

 Now it is the time to use the password file through mosquito.conf file.
At first, in the Raspberry Pi the password file that has been created earlier
needs to be copied to the directory etc/ osquito. Afterwards, osquito.conf
file needs to be reconfigured in such a way that MQTT communication use
password file to make the communication secure. There are two changes
have been made made. The changes made to osquito.conf file are setting the
password file path and also setting allow anonymous to false cause by default
it remains true.
Settings of osquito.conf:
 password_file /etc/ osquito/password.txt
 allow_anonymous false
 After creating a password file and reconfiguring osquito.conf file,
osquito broker needs to be restarted in order to make the effect of such
changes. However, in Raspberry Pi, without restarting broker the file can be
reloaded using the following command:
 kill-HUP 519
 After executing the above command, the terminal shows that
moquitto.conf file is reloaded. Figure 7 depicts the console log status:

Figure 7: Console log status

 After successfully setting the username and password to MQTT broker,
username and password is added to mqtt.js file for secure and authenticated
connection of WebSocket. Figure 8 shows secure WebSocket connection
configuration.

Figure 8: Secure WebSocket connection configuration

3.4.2. SSL approach
In this approach, OpenSSL must be installed to generate all certificate files
using Raspberry Pi. To create SSL certificates, first step is to connect
Raspberry Pi using ssh. And then create a private key using following
command:
 openssl genrsa -out mosq-ca.key 2048
 The command above will create a 2048-bit key called mosq-ca.key. And
the result of this command is showing the figure 9 below:

Figure 9: Creation of 2048 bit private key

 After creating the private key, the next task is to create an X509
certificate which will use the private key that has been created before. Now
after opening another terminal (directory must be the same), the private key
can be kept by writing the following code:
 openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt
The following figure 10 shows the terminal after submitting the command:

Figure 10: Key certificated

 Now, we are ready to move on to create MQTT server certificate by
creating a CSR (Certificate Signing Request). Usually, before using the newly
created certificate it is required to send certification authority for verification.
Here, self-signed certificate has been used to avoid such complexity. The
following commands are used to create the certificate and required
credentials to use in our server:
 openssl req -new -key mosq-serv.key -out mosq-serv.csr
 openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey
 mosq-ca.key -CAcreateserial -out mosq-serv.crt -days 365 -sha256

3.4.3. Securing MQTT Mosquitto server
After creating secure private certificates, it is time to secure MQTT
mosquitto server for secure communication throughout IoT network. In our
system, three secure certificates listed below have been used:

 1. mosq-ca.crt
 2. mosq-serv.crt
 3. mosq-serv.key

 In order to ensure SSL certificate to the mosquitto broker, few lines of
code from mosquitto.conf file are needed to be edited. The lines are given
below:
 listener 1883
 cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
 certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
 keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

 Here, default MQTT mosquitto port has been changed to 1883 and
private certificates have been kept to the path /home/pi/ssl. Now, it’s time
to restart the mosquitto service by using following two commands:
 sudo service mosquitto stop
 sudo service mosquitto start
 After successfully setup SSL certificate to MQTT broker, some security
options of mqtt.js file must be changed for secure WebSocket connection
with web page to broker. Following figure 11 shows the secure WebSocket
connection.

Figure 11: Secure WebSocket Connection

Finally, the procedure to make secure and encrypted MQTT protocol for
securing communication throughout IoT network has been completed with
expected result.

4. Results and analysis
At first, it is essential to check whether files required to test our secure
MQTT protocol is loaded or not with minimal delay. Following figure 12
depicts files along with their size and loading time requires testing the
proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12: Loading dependency files

 To test the MQTT server, it is required to have a client from which
secure communication can be made with MQTT server. As such, a Java base
MQTT client (MQTT.fx) has been install in our windows operating
system-based client computer. After that, the settings and connection
parameters of client have been changed as well as MQTT mosquitto has
been configured to secure MQTT protocol with necessary information as
shown in the figure 13 below:

Figure 13: Configure MQTT Mosquitto Server to Secure MQTT

 It can be seen from the figure 13 that the information about profile
name, broker address, broker port number and client ID has been provided.
Besides, SSL/TSL configuration has been enabled by providing the
certificate files like mosq-ca.crt in previous steps.
Now secure connection can be made between MQTT server and client by
clicking simply connect button as shown in figure 14. The status of the
connection between client and broker can be seen by clicking the Log tab
shown in figure 14:

Figure 14: Secure MQTT connection

The following figure 15 depicts the connection status along with the size of
sending packets.

Figure 15: Connection status

 Now it is time to check the status from subscribe side, which is located
in another computer. Figure 16 shows the status of the subscriber side:

Figure 16: Subscriber status
 Next approach is testing MQTT connection over port 1883. When there
is no authentication set, any user from any device can connect to this device.
However, after setting authentication and ssl certificate, it becomes difficult
to connect to MQTT broker without knowing the dependencies. After trying
from other devices without proper dependencies, the message appears as
shown in Figure 17.

 Figure 17: SSL WebSocket Status without dependencies

 After adding all the dependencies and ssl certificate, the console showing
that the WebSocket successfully connected to topic: client/accessLog that is
shown in figure 18.

Figure 18: SSL WebSocket Status
5. Conclusion
In this paper, authors have proposed a secured automated messaging system
using MQTT that takes message from other devices such as sensor, mobile,
laptop and accept only the ones with proper authenticity. This work
specifically demonstrated an application of the system that can successfully
communicate securely with IOT support devices without compromising any
data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools
to evaluate the performance of the proposed system. Besides, a hypothetical
webpage was used as sample output device. The performance of the system
was then evaluated in term of accuracy, time and security of communication
system. The outcome of this paper will surely make IoT communication in
real time and make more secure.

References
Ahmed, M., Rahman, M., & Hoque, M. (2020). Smart home: An empirical

analysis of communication technological challenges. European Journal of
Engineering Research and Science, 5(5), 571-575. doi:
https://doi.org/10.24018/ejers.2020.5.5.1905

Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., Kabir, M. H., & Hoque, M. J.
(2018, December 27-29). Internet of Things based patient health monitoring
system using wearable biomedical device. Paper presented at IEEE
International Conference on Innovation in Engineering and Technology
(ICIET), Bangladesh, 1-5. doi: 10.1109/CIET.2018.8660846

Real time messaging for IoT 41

Bansal, B. N., & Garg, V. (2019). Development of message queuing telemetry
transport (MQTT) based vehicle accident notification system.
International Journal of Engineering and Advanced Technology, 9(2), 268-273.
doi: 10.35940/ijeat.B2662.129219

Hakim, M. L., Uddin, M. J., & Hoque, M. J. (2020, June 5-7). 28/38 GHz
dual-band microstrip patch antenna with DGS and stub-slot configurations and Its
2×2 MIMO antenna design for 5G wireless Communication. Paper presented at
IEEE Region 10 Symposium (TENSYMP), Bangladesh, 56-59. doi:
10.1109/TENSYMP50017.2020.9230601

Hoque, M., Ahmed, M., & Hannan, S. (2020). An automated greenhouse
monitoring and controlling system using sensors and solar power.
European Journal of Engineering Research and Science, 5(4), 510-515. doi:
https://doi.org/10.24018/ejers.2020.5.4.1887

Hoque, M., Kabir, S., & Hossain, M. K. (2018). Electricity crisis of
Bangladesh and a new low-cost electricity production system to
overcome this crisis. International Journal of Scientific and Research Publications,
8(7), 201-206. doi: http://dx.doi.org/10.29322/IJSRP.8.7.2018.p7933

Hoque, M. J., Ahmed, M. R., Uddin, M. J., & Faisal, M. A. (2020). Automation
of traditional exam invigilation using CCTV and Bio-Metric. International
Journal of Advanced Computer Science and Applications, 11(6), 392-399. doi:
http://dx.doi.org/10.14569/IJACSA.2020.0110651

Kabir, M. H., Rashid, S. Z., Gafur, A., Islam, M. N., & Hoque, M. J. (2019,
February 7-9). Maximum energy efficiency of three precoding methods for massive
MIMO technique in wireless communication system. Paper presented at IEEE
International Conference on Electrical, Computer and Communication
Engineering (ECCE), Bangladesh, 1-5. doi:
10.1109/ECACE.2019.8679238

Katsikeas, S. (2017, July 3-6). Lightweight & secure industrial IoT communications
via the MQ telemetry transport protocol. Paper presented at IEEE Symposium
on Computers and Communications (ISCC), Heraklion, 1193-1200. doi:
10.1109/ISCC.2017.8024687

Lee, S., Kim, H., Hong, D., & Ju, H. (2019, January 28-30). Correlation analysis
of MQTT loss and delay according to QoS level. Paper presented at IEEE The
International Conference on Information Networking (ICOIN),
Bangkok, 714-717. doi: 10.1109/ICOIN.2013.6496715

Rahman, M. O., & Khan, M. A. (2008). Display unit for Bangla characters.
IIUC Studies, 4, 71-86.

Lack of liberal education at tertiary level: A
study on Newman’s The Idea of a University

and Hirani’s 3 Idiots

Md. Morshedul Alam
Department of English Language and Literature (ELL)

International Islamic University Chittagong (IIUC), Bangladesh
Golshan Ara Akter and Nahida Afrin

MA Student, ELL
International Islamic University Chittagong (IIUC), Bangladesh

Abstract
This paper deals with the process of university education system, how students will enrich the
knowledge and skills, develop the power of reasoning and judgments and promote the
creativity. It also advocates a holistic approach in liberal education system that preserves a
harmonious relationship among the real cultivation of mind, intellectual excellence and
freedom of thought. Newman’s The Idea of a University and Hirani’s3 Idiots have been studied
in line with liberal education of university which gives the enlargement of knowledge that
pertains to the universal appeal of education system. In this study, some barriers, such as,
market value, guardian’s choice and mental depression are addressed as the potential threats
for liberal education. Therefore, this research is an attempt to make a comparative study of
Newman’s The Idea of a University and Hirani’s3 Idiots as illustrating the liberal education of
university and generating an image of liberal education in present society.

Keywords Creativity, Education system, Enlargement of knowledge, Liberal education,
 Tertiary level

Paper type Research paper

Introduction
John Henry Newman (1801-1890), an eminent and
controversial figure in the history of England in the 19th
century, was not only an Anglican poet, but also a Catholic
cardinal and a theologian. He had a good number of literary
works to his credit: Tracts for the Times (1833-1841), Apologia
Pro Vita Sua (1865-1866), The Dream of Gerontius (1866) The
Grammar of Assent (1870) and The Idea of a University (1873).
“Lead kindly Light” and “Praise to the Holiest in the Height”
are his popular hymns. On the other hand, Rajkumar Hirani
(1962- present) is a versatile genius. He is an Indian film
director, script writer, editor and producer. His worldwide

name and fame is for directing Hindi films, such as Munna Bhai M.B.B.S
(2003), Lage Raho Munnabhai (2006), 3 Idiots (2009) and PK (2014). He has
received several awards for his works: 51th National Film Awards (2004),
Bollywood Movie Awards (2006) CNN-IBN Indian of the year (2006), Star
Screen Awards (2010),16th IIFA Awards (2010) etc.
His movies are a moving account of the contemporary educational system,
social and religious crises that exist in the whole world. On the contrary, The
Idea of a University of John Henry Newman manifests ‘Liberal education’ as
the principal purpose of a university. It is considered as a classic work on
university education. Like Newman’s The Idea of a University, Rajkumar Hirani
also glorifies the university education system in his movie 3 Idiots. He is
inspired to produce this movie by Chetan Bhagat’s novel Five Point Someone.
This paper is an attempt to show the similarities between The Idea of a
University of Cardinal Newman and Hirani’s3 Idiots movie about the system
of university education.

Education
Education is globally recognized process of formal learning or the
acquisition of knowledge and skills. It also enhances students’ wisdom,
values, beliefs, habits and above all the enlightenment of thoughts.
According to Mandela (2003),
“Education is the most powerful weapon which you can use to change the
world.”
According to Kennedy (1956),
“The goal of education is the advancement of knowledge and the
dissemination of truth.”
According to Aristotle (n.d.),
“Education is the creation of a sound mind in a sound body.”
To Dewey (1994),
“Education is the development of all those capacities in the individual which
enable him to control his environment and fulfill his possibility”
According to Dictionary of Education,
1. Education assembles the process by which a person exhibits qualities,
thoughts, and diverse forms of attitudes of true changes and values in the
society.
2. “The social process by which people are subjected to the influence of a
selected and controlled environment so that they may attain social
competence and optimum individual development.” (Zahara, 1992)

University education
University Education is the highest seat of institutional education which is a
place of research, a light of world to provide knowledge and increase moral
value of mind. University education is known as tertiary level of education
where knowledge is not only provided but also created. In both Bangladesh
and India, the picture of tertiary education is frustrating. Career oriented
higher education creates a medieval mind set where the scope of liberal
education at university level is quite tough. “This I conceive to be the
advantage of a seat of universal learning, considered as a place of
education.” (Newman, 1873)
 Newman focuses on the purpose of university education. According to
Newman, a university provides training to the learners to be the ordinary
meaning; its objective is to raise the intellectual tone and consciousness of
society. University education is a kind of teaching which gives a man, a
distinct awareness of his own judgment and opinions, a truth on improving
them, an oratory in expressing them and a power in guiding them.

Liberal education
In tertiary level pedagogy, liberal education is a concept or philosophy of
teaching that incorporates individual with wide knowledge and intellect. It
also aims at providing skills and a stronger intuition of values along with
ethics and morality, civic knowledge which is distinguished by significant
issues and more a way of reading than a particular course of study. “Liberal
education and liberal pursuits are exercises of mind, of reason, of reflection”
(Newman, 1873).
 Liberal education is “well-rounded”. In history, the notion of liberal
education was promoted by Plato, Aristotle, Augustine, Aquinas and many
other great idealists in the past. John Henry Newman developed the concept
of liberal education in The Idea of University following the great thinkers of
the past. For Newman, the main principle of liberal education is to develop
all things in us so that we can become distinctively humane.
(www.sites.goole.com/a/nd.e)
In 3 Idiots movie, when teachers become angry and get out Rancho from one
classroom, he goes and sits in another classroom. He used to say that
 RANCHO: Charotoropghanbarta…
 Jahoche mile …lov it! (Hirani, 2009)
 [RANCHO: Knowledge increases everywhere…
 Wherever you go, get …gain it! (Hirani, 2009)]
 Newman also says, man will develop expertise in various sections of
knowledge by training and he is able to achieve a sense of universal

knowledge and wisdom through liberal education. This knowledge enables
us to see all branches of knowledge and intellect not only as forming one but
also a coherent whole.

Technical education
The technical education refers to the both academic and vocational
preparation of learners for job which involves in acquiring practical
knowledge and skills related with applied science and modern technology.
Technical education has no purpose in acquiring wisdom and gathering
knowledge. Its main purpose is to get a good job. It is also called professional
education. Newman says, “Professional education which commonly
engrosses the title of useful”. (Newman, 1873)

Comparison between the Idea of a University and 3 Idiots
Enriching the knowledge
In Bangladesh and India, liberal education at tertiary level is quite rare as
syllabus and materials have been designed in such a way that education
becomes joyless rather examination and certificate oriented. Here, learners at
tertiary level are much more job seekers than knowledge seekers. Due to
acute unemployment and poor socio-economic condition, students are very
much career oriented instead of achieving knowledge and widening outlook.
3 Idiots by Raj Kumar Hirani (2009) reflects the true picture of education
system in South Asian context particularly in India. In both Bangladesh and
India, almost at every level, students are much under pressures such as high
ambition, familial and social expectation and wrong mind set of success.
 However, in The Idea of University, Newman emphasizes the liberal
education to enrich the power of knowledge. Liberal education is that type
of education which produces nothing profitable but is valuable in a sense
that it maintains its ground for ages due to its self- sufficiency and
independent value. “Those are useful that bear fruits and those are liberal
that tend to enjoyment.” (Newman, 1873)

Purify the human soul by knowledge
Newman’s concept of our universities that he emphasizes is a collision of
thought with thought and intellect with intellect to find out the truth. We
think, the way of solving problem is power where knowledge bears little
meaning and leads to the narrowness of mind. He again says in the lack of
the system of liberal education, a learner cannot discursively mature and he
will be “slave or children”, despite having some upper degrees. “A narrow

mind is thought to be that which contains little knowledge; and an enlarge
mind, that which holds a great deal; and what seems to put the matter beyond
dispute is the fact of the great number of studies which are pursued in a
university, by its very profession”. (Newman, 1873)
 On the other hand, in 3 Idiots movie, we also see that Prof. Virus sir and
Chatur’s mind are not pure. Prof. Virus has never inspired Farhan and Raju.
He has insulted them. Besides, in the exam time, Chatur disturbs other
friends and he gives pornography book to them secretly so that they cannot
concentrate their study. At the end of the movie, Chatur has insulted Rancho
because he is a school master.
 CHATUR: Namaste masterji, tom kothepochega? Tom howga
 school master, eh? A for apple …B for ball…. (Hirani, 2009)
 [CHATUR: Namaste masterji, where have you reached? You have
 become a teacher in the village, eh? A for apple….B for ball….
 (Hirani, 2009)]

Personal preference versus guardian imposition in education
Students learn their own way
Newman emphasizes on personal preference of students in their learning
system and also says that “Each man is to be trusted in his own special art”.
(Newman, 1873). A researcher, Saeful in his article stated, “Education is the
process of development of potential, capabilities and human capacity which
is easily influenced by habit, then refined by the moral habits and supported
by the tool which arranged in such a way so that education can be used to
help others or himself in achieving the goals”. (2012)

Education has no academic purpose
Seaful states in his research “National standard of education has a purpose
to guarantee for quality of national education in framework to create
intelligent manpower of nation and to form the character and civilization of
the nation prestige.” (Saeful, 2012) Newman has given the value of liberal
education which makes a student knowledgeable and increases his overall
understanding and widens knowledge. He will not keep himself engage in
academic rules for gathering only bookish knowledge.
“Some great men argue as if everything as well as every person, had its price;
and that where there has been a great outlay, they have a right to expect a
return in kind”. (Newman, 1873)
 They address this as making teaching and process “useful” and “utility”
that turns their motto. With a principal guiding of this characteristic, they go
on to ask for the expenditure of a university…. (Newman, 1873)

Enlargement of knowledge
Enlargement of knowledge is connected with one another. A famous
researcher, Kar (2011) stated in his article “Newman’s The Idea of a University
and its relevance for the 21th Century”: The enlargement of idea attains its
maximum point in “a truly great intellect” which “possesses the knowledge,
not only of things, but also of their mutual and true relations.”
 True enlargement of mind is the ability of seeing many issues at once as
one whole of mentioning them in turn to their true position. In the general
process of understanding, their respective moral and ethical values, ascertain
their mutual reliance occupying of their true enlightenment. The mind never
examines any part of the content of knowledge without reflection or
without the affinities which emerge from this recollection. It generates all in
some forms which lead to everything else; it would impart the embodiment
of the whole to each individual portion, the whole becomes an imagination
like a psyche, extending and piercing its components, and giving them one
specific meaning.
 Newman emphasizes both useful and good education which did not
create any mental depression. “Though the useful is not always good, the
good is always useful”. (Newman, 1873)

Guardian imposition on education
In 3 Idiots movie, we see that Guardians impose on their own choice in
shaping careers or aims in life as top down process to their children and do
not evaluate their children’s preference. Even before the birth of a child,
guardians take decision; what they would be in future. Few minute later of
Farhan’s birth, his father decided his son’s goal of life.
 FARHAN’S FATHER: Mere beta engineer bone ga. (Hirani, 2009)
 [FARHAN’S FATHER: My son will become an engineer. (Hirani, 2009)]
 PRIYA: Papa kaha, larka howatoh engineer, lurki
 Howa toh doctor bannega. (Hirani, 2009)
 [PRIYA: If it’s a boy, it’s an engineer and if it’s a girl, it’s a doctor.
 (Hirani, 2009)]
 In this movie, education is considered valuable for academic purpose. It also
means the all-out development of both body and mind.
 Prof. VIRUS: Na pass ho genana company une job bejenggi! (Hirani, 2009)
 [Prof. VIRUS: Neither will they pass nor any company will give jobs
 to them! (Hirani, 2009)]

42 IIUC Studies, 17

Sharma, S., Hossen, M. K., Islam, M. S., & Hoque, M. J. (2018). Automatic
question and answer generation from Bengali and English texts. GESJ:
Computer Science and Telecommunications, 2(54), 1512-1232.

Singh, M., Rajan, M. A., Shivraj, V. L., & Balamuralidhar, P. (2015, April 4-6).
Secure MQTT for Internet of Things (IoT). Paper presented at IEEE Fifth
International Conference on Communication Systems and Network
Technologies, Gwalior, 746-751. doi: 10.1109/CSNT.2015.16

Upadhyay, Y., Borole, A., & Dileepan, D. (2016, March 18-19). MQTT based
secured home automation system. Paper presented at IEEE Symposium on
Colossal Data Analysis and Networking (CDAN), Indore, 1-4. doi:
10.1109/CDAN.2016.7570945

Corresponding author
MD Jiabul Hoque can be contacted at: jiabul.hoque@iiuc.ac.bd

Lack of liberal education at tertiary level: A
study on Newman’s The Idea of a University

and Hirani’s 3 Idiots

Md. Morshedul Alam
Department of English Language and Literature (ELL)

International Islamic University Chittagong (IIUC), Bangladesh
Golshan Ara Akter and Nahida Afrin

MA Student, ELL
International Islamic University Chittagong (IIUC), Bangladesh

Abstract
This paper deals with the process of university education system, how students will enrich the
knowledge and skills, develop the power of reasoning and judgments and promote the
creativity. It also advocates a holistic approach in liberal education system that preserves a
harmonious relationship among the real cultivation of mind, intellectual excellence and
freedom of thought. Newman’s The Idea of a University and Hirani’s3 Idiots have been studied
in line with liberal education of university which gives the enlargement of knowledge that
pertains to the universal appeal of education system. In this study, some barriers, such as,
market value, guardian’s choice and mental depression are addressed as the potential threats
for liberal education. Therefore, this research is an attempt to make a comparative study of
Newman’s The Idea of a University and Hirani’s3 Idiots as illustrating the liberal education of
university and generating an image of liberal education in present society.

Keywords Creativity, Education system, Enlargement of knowledge, Liberal education,
 Tertiary level

Paper type Research paper

Introduction
John Henry Newman (1801-1890), an eminent and
controversial figure in the history of England in the 19th
century, was not only an Anglican poet, but also a Catholic
cardinal and a theologian. He had a good number of literary
works to his credit: Tracts for the Times (1833-1841), Apologia
Pro Vita Sua (1865-1866), The Dream of Gerontius (1866) The
Grammar of Assent (1870) and The Idea of a University (1873).
“Lead kindly Light” and “Praise to the Holiest in the Height”
are his popular hymns. On the other hand, Rajkumar Hirani
(1962- present) is a versatile genius. He is an Indian film
director, script writer, editor and producer. His worldwide

name and fame is for directing Hindi films, such as Munna Bhai M.B.B.S
(2003), Lage Raho Munnabhai (2006), 3 Idiots (2009) and PK (2014). He has
received several awards for his works: 51th National Film Awards (2004),
Bollywood Movie Awards (2006) CNN-IBN Indian of the year (2006), Star
Screen Awards (2010),16th IIFA Awards (2010) etc.
His movies are a moving account of the contemporary educational system,
social and religious crises that exist in the whole world. On the contrary, The
Idea of a University of John Henry Newman manifests ‘Liberal education’ as
the principal purpose of a university. It is considered as a classic work on
university education. Like Newman’s The Idea of a University, Rajkumar Hirani
also glorifies the university education system in his movie 3 Idiots. He is
inspired to produce this movie by Chetan Bhagat’s novel Five Point Someone.
This paper is an attempt to show the similarities between The Idea of a
University of Cardinal Newman and Hirani’s3 Idiots movie about the system
of university education.

Education
Education is globally recognized process of formal learning or the
acquisition of knowledge and skills. It also enhances students’ wisdom,
values, beliefs, habits and above all the enlightenment of thoughts.
According to Mandela (2003),
“Education is the most powerful weapon which you can use to change the
world.”
According to Kennedy (1956),
“The goal of education is the advancement of knowledge and the
dissemination of truth.”
According to Aristotle (n.d.),
“Education is the creation of a sound mind in a sound body.”
To Dewey (1994),
“Education is the development of all those capacities in the individual which
enable him to control his environment and fulfill his possibility”
According to Dictionary of Education,
1. Education assembles the process by which a person exhibits qualities,
thoughts, and diverse forms of attitudes of true changes and values in the
society.
2. “The social process by which people are subjected to the influence of a
selected and controlled environment so that they may attain social
competence and optimum individual development.” (Zahara, 1992)

University education
University Education is the highest seat of institutional education which is a
place of research, a light of world to provide knowledge and increase moral
value of mind. University education is known as tertiary level of education
where knowledge is not only provided but also created. In both Bangladesh
and India, the picture of tertiary education is frustrating. Career oriented
higher education creates a medieval mind set where the scope of liberal
education at university level is quite tough. “This I conceive to be the
advantage of a seat of universal learning, considered as a place of
education.” (Newman, 1873)
 Newman focuses on the purpose of university education. According to
Newman, a university provides training to the learners to be the ordinary
meaning; its objective is to raise the intellectual tone and consciousness of
society. University education is a kind of teaching which gives a man, a
distinct awareness of his own judgment and opinions, a truth on improving
them, an oratory in expressing them and a power in guiding them.

Liberal education
In tertiary level pedagogy, liberal education is a concept or philosophy of
teaching that incorporates individual with wide knowledge and intellect. It
also aims at providing skills and a stronger intuition of values along with
ethics and morality, civic knowledge which is distinguished by significant
issues and more a way of reading than a particular course of study. “Liberal
education and liberal pursuits are exercises of mind, of reason, of reflection”
(Newman, 1873).
 Liberal education is “well-rounded”. In history, the notion of liberal
education was promoted by Plato, Aristotle, Augustine, Aquinas and many
other great idealists in the past. John Henry Newman developed the concept
of liberal education in The Idea of University following the great thinkers of
the past. For Newman, the main principle of liberal education is to develop
all things in us so that we can become distinctively humane.
(www.sites.goole.com/a/nd.e)
In 3 Idiots movie, when teachers become angry and get out Rancho from one
classroom, he goes and sits in another classroom. He used to say that
 RANCHO: Charotoropghanbarta…
 Jahoche mile …lov it! (Hirani, 2009)
 [RANCHO: Knowledge increases everywhere…
 Wherever you go, get …gain it! (Hirani, 2009)]
 Newman also says, man will develop expertise in various sections of
knowledge by training and he is able to achieve a sense of universal

knowledge and wisdom through liberal education. This knowledge enables
us to see all branches of knowledge and intellect not only as forming one but
also a coherent whole.

Technical education
The technical education refers to the both academic and vocational
preparation of learners for job which involves in acquiring practical
knowledge and skills related with applied science and modern technology.
Technical education has no purpose in acquiring wisdom and gathering
knowledge. Its main purpose is to get a good job. It is also called professional
education. Newman says, “Professional education which commonly
engrosses the title of useful”. (Newman, 1873)

Comparison between the Idea of a University and 3 Idiots
Enriching the knowledge
In Bangladesh and India, liberal education at tertiary level is quite rare as
syllabus and materials have been designed in such a way that education
becomes joyless rather examination and certificate oriented. Here, learners at
tertiary level are much more job seekers than knowledge seekers. Due to
acute unemployment and poor socio-economic condition, students are very
much career oriented instead of achieving knowledge and widening outlook.
3 Idiots by Raj Kumar Hirani (2009) reflects the true picture of education
system in South Asian context particularly in India. In both Bangladesh and
India, almost at every level, students are much under pressures such as high
ambition, familial and social expectation and wrong mind set of success.
 However, in The Idea of University, Newman emphasizes the liberal
education to enrich the power of knowledge. Liberal education is that type
of education which produces nothing profitable but is valuable in a sense
that it maintains its ground for ages due to its self- sufficiency and
independent value. “Those are useful that bear fruits and those are liberal
that tend to enjoyment.” (Newman, 1873)

Purify the human soul by knowledge
Newman’s concept of our universities that he emphasizes is a collision of
thought with thought and intellect with intellect to find out the truth. We
think, the way of solving problem is power where knowledge bears little
meaning and leads to the narrowness of mind. He again says in the lack of
the system of liberal education, a learner cannot discursively mature and he
will be “slave or children”, despite having some upper degrees. “A narrow

mind is thought to be that which contains little knowledge; and an enlarge
mind, that which holds a great deal; and what seems to put the matter beyond
dispute is the fact of the great number of studies which are pursued in a
university, by its very profession”. (Newman, 1873)
 On the other hand, in 3 Idiots movie, we also see that Prof. Virus sir and
Chatur’s mind are not pure. Prof. Virus has never inspired Farhan and Raju.
He has insulted them. Besides, in the exam time, Chatur disturbs other
friends and he gives pornography book to them secretly so that they cannot
concentrate their study. At the end of the movie, Chatur has insulted Rancho
because he is a school master.
 CHATUR: Namaste masterji, tom kothepochega? Tom howga
 school master, eh? A for apple …B for ball…. (Hirani, 2009)
 [CHATUR: Namaste masterji, where have you reached? You have
 become a teacher in the village, eh? A for apple….B for ball….
 (Hirani, 2009)]

Personal preference versus guardian imposition in education
Students learn their own way
Newman emphasizes on personal preference of students in their learning
system and also says that “Each man is to be trusted in his own special art”.
(Newman, 1873). A researcher, Saeful in his article stated, “Education is the
process of development of potential, capabilities and human capacity which
is easily influenced by habit, then refined by the moral habits and supported
by the tool which arranged in such a way so that education can be used to
help others or himself in achieving the goals”. (2012)

Education has no academic purpose
Seaful states in his research “National standard of education has a purpose
to guarantee for quality of national education in framework to create
intelligent manpower of nation and to form the character and civilization of
the nation prestige.” (Saeful, 2012) Newman has given the value of liberal
education which makes a student knowledgeable and increases his overall
understanding and widens knowledge. He will not keep himself engage in
academic rules for gathering only bookish knowledge.
“Some great men argue as if everything as well as every person, had its price;
and that where there has been a great outlay, they have a right to expect a
return in kind”. (Newman, 1873)
 They address this as making teaching and process “useful” and “utility”
that turns their motto. With a principal guiding of this characteristic, they go
on to ask for the expenditure of a university…. (Newman, 1873)

Enlargement of knowledge
Enlargement of knowledge is connected with one another. A famous
researcher, Kar (2011) stated in his article “Newman’s The Idea of a University
and its relevance for the 21th Century”: The enlargement of idea attains its
maximum point in “a truly great intellect” which “possesses the knowledge,
not only of things, but also of their mutual and true relations.”
 True enlargement of mind is the ability of seeing many issues at once as
one whole of mentioning them in turn to their true position. In the general
process of understanding, their respective moral and ethical values, ascertain
their mutual reliance occupying of their true enlightenment. The mind never
examines any part of the content of knowledge without reflection or
without the affinities which emerge from this recollection. It generates all in
some forms which lead to everything else; it would impart the embodiment
of the whole to each individual portion, the whole becomes an imagination
like a psyche, extending and piercing its components, and giving them one
specific meaning.
 Newman emphasizes both useful and good education which did not
create any mental depression. “Though the useful is not always good, the
good is always useful”. (Newman, 1873)

Guardian imposition on education
In 3 Idiots movie, we see that Guardians impose on their own choice in
shaping careers or aims in life as top down process to their children and do
not evaluate their children’s preference. Even before the birth of a child,
guardians take decision; what they would be in future. Few minute later of
Farhan’s birth, his father decided his son’s goal of life.
 FARHAN’S FATHER: Mere beta engineer bone ga. (Hirani, 2009)
 [FARHAN’S FATHER: My son will become an engineer. (Hirani, 2009)]
 PRIYA: Papa kaha, larka howatoh engineer, lurki
 Howa toh doctor bannega. (Hirani, 2009)
 [PRIYA: If it’s a boy, it’s an engineer and if it’s a girl, it’s a doctor.
 (Hirani, 2009)]
 In this movie, education is considered valuable for academic purpose. It also
means the all-out development of both body and mind.
 Prof. VIRUS: Na pass ho genana company une job bejenggi! (Hirani, 2009)
 [Prof. VIRUS: Neither will they pass nor any company will give jobs
 to them! (Hirani, 2009)]

