


A QUANTITATIVE ANALYSIS OF PREVENTIVE MEASURES TO MITIGATE THE INFECTIOUS DISEASES USING SIR MODEL BY OPTIMAL CONTROL TECHNIQUE

SIR model as a selection tool in general. We used optimal
control strategies in the form of vaccination and observed an
increase in the number of recovered individuals.

The following section discusses optimal control theory
with standard SIR model. Formulation of the specific model
with vaccination and without vaccination along with existing
optimal control theory is discussed in the II section. Charac-
terization of the optimal control problem is discussed in the
IV section. Numerical results with final analysis are provided
in section VI. Finally, the paper ends with a brief conclusion.

II. MODEL FORMULATION

There are various models for describing epidemics with
different properties in consideration with mortality, immunity,
recovery etc [1], [6]. We will consider a standard SIR model
with variable total population. To do this, we use a control
u(t) in our model. Let u(t) be the percentage of susceptible
individuals being vaccinated per unit of time. This percentage
is a function of time. Hence, the optimal control (vaccina-
tion) strategy is to minimize the infected individuals and to
maximize the total number of recovered individuals. Here we
formulate our SIR model following [7]

A. Discussion about Classes

We assume that an individual can be infected only
through contacts with infectious individuals and that also that
immunity is permanent. We also consider the SIR epidemic
model with variable total population size (N ). The population
is divided into three disease states compartments which are
given below:

• Susceptible class(S): Susceptible class consists of the
individuals who are not infected but can be affected by
the disease or infection. Individuals are borne into the
susceptible class.

• Infectious class(I): Infectious class consists of the indi-
viduals who spread the disease to susceptible and remain
in the infectious class for a specified period of time (the
infectious period) before moving into the recovered class.

• Recovered class(R): Recovered class consists of the in-
dividuals who were affected by the disease but recovered
from the disease or infection.

B. SIR Model without Vaccination:

In SIR model, the total population is subdivided into
three compartments namely, susceptible (S), infectious (I),
recovered (R) and the total population can be represented by
N(t)=S(t)+I(t)+R(t). the corresponding model in the form
of The following system of non-linear differential equation
will be considered as the standard SIR Model:

S′(t) = bN(t)− gS(t)I(t)− ds(t)

I ′(t) = gS(t)I(t)− (α+m+ d)I(t)

R′(t) = αI(t)− dR(t)

N ′(t) = (b− d)N(t)−mI(t).

(1)

with initial conditions,

S(0) = S0 ≥ 0, I(0) = I0 ≥, R(0) = R0 ≥ 0, N(0) = N0

Here, The parameter g is the disease contact rate or
transmission rate between the susceptible and infected
classes. So the incidence of the disease is described by the
term gS(t)I(t). Here b denotes the natural birth rate and d
indicates the natural death rate. Moreover, α represents the
rate at which the infectious individuals become recovered and
m indicates the disease induced death rate.

C. SIR Model with Vaccination:

Here the imposing control parameter in the SIR model
will be defined as vaccination which may help to control the
spread of the infectious disease. Let the control parameter
be considered as u(t) which represents the percentage of
susceptible individuals keeping under vaccination per unit of
time. Then the vaccinated people enters into the recovered
class (R). The vaccinated people can be represented by
u(t)S(t) over time t. Since it is impossible to vaccinate the
entire susceptible population, so the control is kept under
bound with 0 ≤ u(t) ≤ 0.9.

Taking all the above considerations, we rewrite the
SIR model with control as follows:

S′(t) = bN(t)− gS(t)I(t)− ds(t)− u(t)S(t)

I ′(t) = gS(t)I(t)− (α+m+ d)I(t)

R′(t) = αI(t)− dR(t) + u(t)S(t)

N ′(t) = (b− d)N(t)−mI(t)

(2)

with initial conditions,

S(0) = S0 ≥ 0, I(0) = I0 ≥, R(0) = R0 ≥ 0, N(0) = N0 (3)

D. Objective Functional:

Neilan and Lenhart in [8] proposed an optimal control
problem to determine the vaccination strategy over a certain
vaccination interval [0,T]. The aim is to determine the vacci-
nation technique u to minimize the objective functional.

J(u) =

∫ T

0

AI(t) + u2(t)dt

Our aim is to minimize the number of infectious individuals
and minimize the total cost of vaccination over T years. The
problem is defined as:

min
u

∫ T

0

AI(t) + u2(t)dt

and the control set is defined as
U = {u : [0,T]→ [0,0.9] | u is piecewise continuous function}
It is considered that for u=0, there are no vaccine and u=1
means that all susceptible people are vaccinated.
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III. EXISTENCE OF THE OPTIMAL CONTROL

To prove the existence of the optimal control, existence of
the state and existence of the objective functional need to be
shown.

A. Existence of the State:

We consider the state equation (2) with initial condition (3).
From fourth equation of syestem (2) we can write,

N
′
(t) ≤ (b− d)N(t).

so we have

N(t) ≤ N0e
(b−d)T = V1 ∈ R+

and

lim
t→∞

sup N(t) ≤ V1.

which conclude S(t), I(t), R(t) ≤ V1 as t → ∞
Then, we can rewrite (1) in the following form:

φt = Bφ+ F (φ) (4)

where, φt denotes the derivative of φ with respect to time t and

φ =




S(t)
I(t)
R(t)
N(t)


 , φt =




dS
dt

dI
dt

dR
dt

dN
dt



.

F (φ) =




−gSI
gSI
0
0


 ,

B=




−(d+ u) 0 0 b
0 −(α+m+ d) 0 0
u α −d 0
0 −m 0 (b− d)


 .

Now,

F (φ1)− F (φ2) =




−gS1I1
gS1I1
0
0


−




−gS2I2
gS2I2
0
0


 (5)

Equation (4) is a non-linear system with a bounded coefficient.
We set D(φ) = φt = Bφ+ F (φ)

To obtain the existence of an optimal control and optimality
system the boundedness of solution of the system for finite
time is needed and we consider for u ∈ U , there exists a
bounded solution.

Now,

| F (φ1)− F (φ2) | = | − gS1I1 + gS2I2|

+|gS1I1 − gS2I2|

= g|S1I1 − S2I2|+ g|S1I1 − S2I2|

= 2g|S1I1 − S2I2|

= 2g|S1I1 − S2I1 + S2I1 − S2I2|

= 2g|I1(S1 − S2) + S2(I1 − I2)|

≤ 2g

(
| I1 | | S1 − S2 |

+| S2 | | I1 − I2 |
)
.

We can write,

| F (φ1)− F (φ2) | ≤ M [ | S1 − S2 |+ | I1 − I2 | ]

≤ M | φ1 − φ2 |

where, M = 2gV1

Also, we get
| D(φ1)−D(φ2) | ≤ || B || | φ1 − φ2 |+M | φ1 − φ2 |

≤ V | φ1 − φ2 |

where, V = max

(
M, || B ||

)
< ∞.

Thus, it follows that the function D is uniformly Lipschitz
continuous. From the definition of the control u(t) and the
restriction on S, I, R and N ≥ 0, we see that a solution of
the system (4) exists.

B. Existence of the objective functional

Consider the following optimal control problem

J(u) =

∫ T

0

AI(t) + u2(t)dt (6)

Our aim is to minimize the number of infectious individuals
and also to minimize the vaccination cost. Infact, the infected
people need medical treatment. Here, T indicates the treatment
period or vaccination period for which time the infected people
keeps under treatment. The value A is a balancing parameter
that establishes the importance and interaction between two
factors.
To prove the existence of the objective functional we use the
following theorem from Fleming and Rishel [9].
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Theorem 1: Let

x̄(t) =




x1(t)
...

xn(t)




be a system of n state variables, and let u(t) be a control
variable with set of admissible controls U , that satisfy the
following differential equation

x
′

i(t) = gi(t, xi(t), u(t)) for i = 1, . . . n

with associated objective functional

J(u) =

∫
f(t, x̄(t), u(t))dt

There exists an optimal control which minimizes J(u) if the
following conditions are satisfied:

(i) F is non-empty.

(ii) The control set U must be closed and convex.

(iii) The right hand side of the state system is continuous,
is bounded above by a linear combination of the control and
the state, and can be written as a linear function of u with
coefficients defined by the time and the state.

(iv) The integrand of the objective functional is convex on
U and is bounded below by −C2 +C1(u)

η , with C1 > 0 and
η > 1

We define F as a class of (S0, I0, R0, N0, u) such that u is a
piecewise function on [0, T ] with values in U . To prove that F
is nonempty, we will use a simplified version of an existence
result in Boyce and DiPrima [10] which is stated below.

Theorem 2: Let each of the functions F1, . . . , Fn and the
partial derivatives ∂F1

∂x1
, . . . , ∂F1

∂xn
,

. . . , ∂Fn

∂x1
, . . . , ∂Fn

∂xn
be continuous in a region R of

t, x1, x2, . . . , xn space defined by α < t < β, α1 < x1 <
β1, . . . , αn < x1 < βn, and let the point (t0, x0

1, x
0
2, . . . , x

0
n)

be in R. Then there is an interval [t− t0] < h in which there
exists a unique solution x1 = φ1(t), . . . , xn = φn(t) of the
system of differential equations

x
′

1 = F1(t, x1, . . . , xn),

x
′

2 = F2(t, x1, . . . , xn),

...
x

′

n = Fn(t, x1, . . . , xn) (7)

that also satisfies the initial conditions

x1(t0) = x0
1, x2(t0) = x0

2, . . . , xn(t0) = x0
n. (8)

Theorem 3: Let xi = Fi(t, x1, . . . , xn) for i ∈ [1, n] be
a system of n differential equations with initial conditions
xi(t0) = xi

0 for i ∈ [1, n]. If each of the functions F1, . . . , Fn

and the partial derivatives ∂F1

∂x1
, . . . ∂F1

∂xn
, . . . , ∂Fn

∂x1
, . . . , ∂Fn

∂xn
are

continuous in Rn+1 space, then there exists a unique solution

x1 = σ1(t), . . . , xn = σn(t) that satisfies the initial condi-
tions.
With the help of above two theorems (theorem 2, theorem 3)
we try to prove the existence of the optimal control. We show
that there exists an optimal control u∗ that minimizes J(u)
over the control set U .
Proof of (i): Let

dS

dt
= F1(t, S, I, R,N)

dI

dt
= F2(t, S, I, R,N)

dR

dt
= F3(t, S, I, R,N)

dN

dt
= F4(t, S, I, R,N),

where F1, F2, F3 and F4 buildup the right hand side of the
syestem(3). Let u(t) = C for some constant C. F1, F2, F3 and
F4 must be linear and they are also continuous everywhere.
Moreover, the partial derivatives of F1, F2, F3 and F4 with
respect to all states are constants and they are also continuous
everywhere, so by the above theorem 3, there exists an unique
solution S = σ1(t), I = σ2(t), R = σ3(t), N = σ4(t) which
satisfies the initial conditions. Therefore, the set of controls
and corresponding state variables is non-empty. Hence the
condition (i) is satisfied.
Proof of (ii): By definition, U is closed. We take any two
controls u1, u2 ∈ U and ε ∈ [0, 1] such that

0 ≤ εu1 + (1− ε)u2.

We also observe that εu1 ≤ ε and (1− ε)u2 ≤ (1− ε). Then

εu1 + (1− ε)u2 ≤ ε+ (1− ε) = 1

Hence, 0 ≤ εu1 + (1 − ε)u2 ≤ 1 for all u1, u2 ∈ U and
ε ∈ [0, 1].
So, U is convex and therefore condition (ii) is satisfied.

Proof of (iii): If we consider,

F1 ≤ bN − uS

F2 ≤ K1I

F3 ≤ αI + uS

F4 ≤ bN

then the following system

dS

dt
= F1(t, S, I, R,N)

dI

dt
= F2(t, S, I, R,N)

dR

dt
= F3(t, S, I, R,N)

dN

dt
= F4(t, S, I, R,N)
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can be rewritten as,

F̄ (t, X̄, u) ≤ m̄


t,




S
I
R
N





 X̄(t) + n̄


t,




S
I
R
N





u(t) (9)

where

m̄


t,




S
I
R
N





 =




0 0 0 b
0 K1 0 0
0 α 0 0
0 0 0 b


 (10)

and

n̄


t,




S
I
R
N





 =




−S
0
S
0


 (11)

which gives a linear function of the control u defined by time
and state variables. Then we can find out the bound of the
right hand side. It is noted that all parameters are constant
and greater than or equal to zero. Therefore we can write,

| F̄ (t, X̄, u) | ≤
∣∣∣∣ | m̄ |

∣∣∣∣ | X̄ |+ | S̄ | | u(t) |

≤ p

(
| X̄ |+ | u(t) |

)

Since S̄ is bounded and p includs the upper bound of the
constant matrix. Hence we see that the right hand side is
bounded by a sum of the state and the control. Therefore,
condition (iii) is satisfied.
Proof of (iv):
Let us consider that the integrand of the objective
functional be f(u) = AI(t) + u2. We take two controls
u1, u2 ∈ U and 0 < θ < 1. Then we can write,
u1

2 − 2u1u2 + u2
2 = (u1 − u2)

2 ≥ 0

=⇒ u1
2 + u2

2 ≥ 2u1u2

=⇒ θ(1− θ)u1
2 + θ(1− θ)u2

2 ≥ θ(1− θ)2u1u2

=⇒ (θ−θ2)u1
2+[(1−θ)−(1−θ)2]u2

2 ≥ 2θ(1−θ)u1u2

=⇒ θu1
2 + (1− θ)u2

2 ≥ θ2u1
2 + (1− θ)2u2

2 + 2θ(1−
θ)u1u2

=⇒ θu1
2 + (1− θ)u2

2 ≥ [θu1 + (1− θ)u2]
2

=⇒ AI(t)+θu1
2+(1−θ)u2

2 ≥ AI(t)+[θu1+(1−θ)u2]
2

=⇒ AI(t)[θ + (1 − θ)] + θu1
2 + (1 − θ)u2

2 ≥
AI(t) + [θu1 + (1− θ)u2]

2

=⇒ θAI(t) + AI(t)(1 − θ) + θu1
2 + (1 − θ)u2

2 ≥
AI(t) + [θu1 + (1− θ)u2]

2

=⇒ θf(u1) + (1− θ)f(u2) ≥ f(θu1 + (1− θ)u2)

which implies that f(u) is convex on U

Now we will show that
J(u) ≥ −C2 + C1(u)

η , with η > 1, C1 ≥ 0
Here,

J(u) = AI(t) + u2

J(u) ≥ −AI(t) + u2

= −C2 + C1u
2

where C2 > 0 which depends on upper bounds of I(t). We
can also see that η = 2 > 1, C1 > 0. Therefore, condition (iv)
is also satisfied. From the above discussion the existence of
the objective functional has been established.

IV. CHARACTERIZATION OF THE OPTIMAL CONTROL

By applying Pontryagin’s Maximum Principle [11] Hamil-
tonian (H),we will derive the necessary conditions for the
optimal control. While considering the optimal system, we
will ignore the recovered class as the variable R appears only
in the recovered class.Therefore our derived Hamiltonian (H)
can be defined as follows

H(S, I, t) = AI + u2 + λs(bN − gSI − dS − uS)

+λI(gSI − (α+ d+m)I) + λN ((b− d)N −mI)
(12)

Where, λS , λI , λN are the associated adjoints for the state
S, I , N respectively. Then we differentiate the Hamiltonian
with respect to the state variable S, I , N respectively and we
consider λS(T )=λI(T )= λN (T )= 0 because at final stage they
do not have fixed value.

λ
′

S = λS(d+ gI + u)− λIgI

λ
′

I = λSgS + λI(α+ d+m)− λIgS −A

λ
′

N = λSb+ λN (b− d)

(13)

For the optimal condition we differentiate the Hamiltonian
with respect to u at u=u∗ we get,

∂H

∂u
|u=u∗ = 0

=⇒ u∗ =
SλS

2

(14)

where u∗ denotes the optimal control. By standard control
arguments involving the bounds on the control, we get

u∗ =




SλS

2 if 0 ≤ SλS

2 ≤ 0.9

0 if SλS

2 < 0

0.9 if SλS

2 > 0.9

In compact notion:

u∗ = min[0.9,max[0,
SλS

2
]]. (15)
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Fig. 1: SIR model with vaccination and without vaccination, parameter values are taken from Table 1.
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Fig. 2: SIR model with vaccination changing parameter g = .0001 and other parameter values are taken from Table1.

V. OPTIMALITY SYSTEM

The resulting optimality system is given below:

State equations:

S′(t) = bN(t)− gS(t)I(t)− ds(t)− u(t)S(t)

I ′(t) = gS(t)I(t)− (α+m+ d)I(t)

R′(t) = αI(t)− dR(t) + u(t)S(t)

N ′(t) = (b− d)N(t)−mI(t)

(16)

with initial conditions,

S(0) = S0 ≥ 0, I(0) = I0 ≥, R(0) = R0 ≥ 0, N(0) = N0 (17)

Adjoint equations:

λ
′

S = λS(d+ gI + u)− λIgI

λ
′

I = λSgS + λI(α+ d+m)− λIgS −A

λ
′

N = λSb+ λN (b− d)

(18)
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Fig. 3: SIR model with vaccination changing parameter g = .01 and other parameter values are taken from Table 1.

0 1 2 3 4 5 6 7 8 9 10

Time in Years

400

600

800

1000

S
u

s
c
e

p
ti
b

le
 S

(t
)

0 1 2 3 4 5 6 7 8 9 10

Time in Years

30

40

50

60

In
fe

c
ti
o

u
s
 I
(t

)

0 1 2 3 4 5 6 7 8 9 10

Time in Years

0

500

1000

R
e

c
o

v
e

re
d

 R
(t

)

0 1 2 3 4 5 6 7 8 9 10

Time in Years

1000

1100

1200

1300

1400

P
o

p
u

la
ti
o

n
 N

(t
)

0 1 2 3 4 5 6 7 8 9 10

Time in Years

0

0.5

1

c
o

n
tr

o
l 
u

*
(t

)

Fig. 4: SIR model with vaccination and changing parameter A=3 and other values are taken from Table 1.

Transversality equations:

λS(T ) = λI(T ) = λN (T ) = 0 (19)

Characterization of the optimal control u∗:

u∗ =




SλS

2 if 0 ≤ SλS

2 ≤ 0.9

0 if SλS

2 < 0

0.9 if SλS

2 > 0.9

VI. NUMERICAL RESULT SIMULATIONS AND
DISCUSSIONS

Here we solve the state equations with initial conditions
numerically using Runge-Kutta method of fourth order
forward in timing. After solving the system without
vaccination, the system with control characterization is solved
numerically to illustrate our control results. This iterative
process terminates when current state, adjoint and control
values are sufficient close to successive values.



A QUANTITATIVE ANALYSIS OF PREVENTIVE MEASURES TO MITIGATE THE INFECTIOUS DISEASES USING SIR MODEL BY OPTIMAL CONTROL TECHNIQUE

0 1 2 3 4 5 6 7 8 9 10

Time in Years

400

600

800

1000

S
u
s
c
e
p
ti
b
le

 S
(t

)
0 1 2 3 4 5 6 7 8 9 10

Time in Years

40

45

50

55

60

In
fe

c
ti
o
u
s
 I
(t

)

0 1 2 3 4 5 6 7 8 9 10

Time in Years

0

200

400

600

800

R
e
c
o
v
e
re

d
 R

(t
)

0 1 2 3 4 5 6 7 8 9 10

Time in Years

1000

1100

1200

1300

1400

P
o
p
u
la

ti
o
n
 N

(t
)

0 1 2 3 4 5 6 7 8 9 10

Time in Years

0

0.5

1

c
o
n
tr

o
l 
u

*
(t

)

Fig. 5: SIR model with vaccination changing parameter A=0.03 and other parameter values are taken from Table 1.

By Using MATLAB, We execute the numerical solutions
to the optimality system. We depict the graphs of the state
variables with and without control strategy to monitor the
effect of control strategy. We monitor the affect of contact rate
if the control strategy is applied in delay. we also monitored
how the weight parameter affects the control strategy.

The parameter values used in the simulations are shown in
Table 1.

TABLE I: DESCRIPTION AND PARAMETER VALUES
OF THE SIR MODEL :

Variable Description Initial Values
S0 initial susceptible individuals 1000 [7]
I0 initial infected individuals 50 [7]
R0 initial recovered individuals 15 [7]

Parameters Definition of Parameters Initial values
b birth rate 0.525 [7]
d death rate 0.5 [7]
g incidence coefficient .001 [7]
α recovery rate 0.002 [assumed]
m disease induced death rate 0.005 [assumed]
A weight parameter 0.1 [7]
T number of years 10 [assumed]

Now we represent the results of our analysis in several steps.
We next solve the optimality system considering the

unlimited vaccines, that is, we can vaccinate the susceptible
individuals as many as we choose during the 10 years.

Figure 1 shows the importance of vaccination to control
the disease.we can see from the graph that control strategy
is much more effective to reduce susceptible and infected
individual, also to increase recovered individual. It is clear

that before vaccination the number of recovered individual
was negligible and after applying vaccination it increased
remarkably. Overall, there is an increase in the total number
of population after vaccination.

Figure 2 and Figure 3 show the effectiveness of control
of various disease transmission rate. It is monitored from the
figures that for high transmission rate (g=0.01) the control
has to work for longer period of time as infected individual
increases whereas for low transmission rate (g=0.0001),
the recovered individual increases for the effectiveness of
the control.This also establishes the importance of early
vaccination.

Now we are showing the way of the weight parameter
affecting the control strategy.
Figure 4 depicts that when weight parameter is high (
A=3), the recovered individuals increase gradually and the
susceptible population starts to decrease.

Figure 5 shows that for low weight parameter (A=0.03),
the number of infected individuals increases gradually for
the first two years.It is also observed that the number of
infected individuals started increasing with the decrease of
the effectiveness of the control.

VII. CONCLUSION

Using optimal control technique we have observed that
a vaccination program minimizes the number of infected
individuals and the overall cost of vaccination during a time
interval. After using optimal control technique it is noticed
that the population of recovered individuals with control is
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increased within a short period.The behavior of the solution
of all cases urge to apply vaccination strategy in early stage
of diseases.
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