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Abstract— This paper is concerned with the basic 

properties of a class of regular rings of some 

"classical" type. Abelian regular rings are, however, a 

more indirect concept, in that a nontrivial theorem is 

required to show that strongly regular rings are 

actually regular. For this reason, we view abelianness 

as the more natural property. We first collect a 

number of equivalent characterizations of abelian 

regular rings, before proving that "abelian regular" is 

equivalent to "strongly regular".  

 

Index Terms—Abelian regular ring, Strongly 

regular ring, Injective module, Projective module, von 

Neumann regular ring.  

I. INTRODUCTION 

 

he subject of von Neumann regular rings is a 

portion of non-commutative ring theory 

which was originally introduced by von 

Neumann in order to clarify certain aspects of 

operator algebras. Much of the impetus behind the 

development of regular rings is due to this and a 

number of other connections with functional analysis, 

of two basic kinds: constructions of regular rings 

associated with operator algebras and continuous 

geometries, and structural analogies between regular 

rings and operator algebras. In addition, a connection 

in the reverse direction has recently been developed, 

based on the construction of a compact convex set 

associated with any regular ring. As would be 

expected with any good concept, regular rings have 
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also been extensively studied for own sake, and most 

ring theorists are at least aware of the connections 

between regular rings and the rings they happened to 

be interested in. If only for cultural reasons, the 

student of regular rings should be exposed to at least a 

rough outline of the influences which functional 

analysis has had on regular rings. 

All described rings will be assumed to be 

commutative [1] and to have a unit element 1 unless 

the contrary is stated obviously. Such a ring 𝑅 is said 

to be a von Neumann regular ring or a VNR-ring 

(simply say regular) [2] if for each 𝑎 ∈ 𝑅, there is an 

𝑥 in 𝑅 such that 𝑎𝑥𝑎 = 𝑎2𝑥 = 𝑎. Sample results: Let 

𝐽 ≤ 𝐾 be two-sided ideals in a ring 𝑅. Then 𝐾 is 

regular if and only if 𝐽 and 𝐾/𝐽 are both regular. In 

case of division rings, any direct product [3] is 

regular. If 𝐴 is a finitely generated projective module 

over a regular ring 𝑅, then End𝑅(𝐴) is a regular ring. 

Inverse limits of regular rings need not be regular. 

The center of a regular ring is regular. A ring 𝑅 is 

regular if and only if all two-sided ideals of 𝑅 are 

idempotent and 𝑅/𝑃 is regular for all prime ideals 𝑃 

of 𝑅.𝑅 is right and left nonsingular. If 𝐴 is a 

projective right module over a regular ring 𝑅, then all 

finitely generated submodules of 𝐴 are direct 

summands [4] of 𝐴. We have followed the works due 

to K. R. Goodearl and Qing-Wen Wang.  

Von Neumann algebras have found applications in 

diverse areas of mathematics like knot theory, 

statistical mechanics, Quantum field theory, Local 

quantum physics, Free probability, Non-commutative 

geometry, representation theory, geometry, and 

probability. For instance, C*-algebra provides an 

alternative axiomatization to probability theory. In 

this case the method goes by the name of Gelfand-

Naimark-Segal construction. This is analogous to the 

two approaches to measure and integration, where one 

has the choice to construct measures of sets first and 

define integrals later, or construct integrals first and 

define set measures as integrals of characteristic 

functions. 

The rest of the paper is organized as follows. In 

section II, we talk over on abelian regular rings with 

some lemma, proposition, corollary, and theorem. In 

section III, we discuss some propositions and theorem 

related to the projective and injective 𝑅-modules. In 
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section IV, we discuss strongly regular rings with 

their proposition and theorem. In section V, we have 

to do with some important results about von Neumann 

abelian regular rings. Finally, we draw a conclusion in 

section VI. 

II. ABELIAN REGULAR RINGS 

A regular ring 𝑅 is abelian regular ring [2] (simply 

say abelian) provided all idempotents in 𝑅 are central. 

e.g.: (1) Since any direct product of division rings is 

abelian, so that any commutative regular ring is 

abelian. (2) Only for the dimension of 𝑉 is 1, the 

endomorphism ring of a vector space 𝑉 over a 

division ring is abelian.  

A. Lemma 

If 𝑒 is an idempotent in a semiprime ring 𝑅, then the 

conditions are equivalent:  

(i) 𝑒 is central.  

(ii) 𝑒 commutes with every idempotent in 𝑅.  

(iii) 𝑒𝑅 is a two-sided ideal of 𝑅.  

(iv) 𝑅𝑒 is a two-sided ideal of 𝑅.  

(v) (1 − 𝑒)𝑅𝑒 = 0.  

(vi) 𝑒𝑅(1 − 𝑒) = 0.  

Proof:  

(𝐢) ⟹ (𝐢𝐢𝐢) Is trivial. 

(𝐢𝐢𝐢) ⟹ (𝐯) Since 𝑒𝑅 is a left ideal, 𝑅𝑒 ⊆ 𝑒𝑅, whence 

(1 − 𝑒)𝑅𝑒 = 0. 

(𝐯) ⟹ (𝐢) Since (1 − 𝑒)𝑅𝑒 = 0, we see that 𝑅𝑒 ⊆

𝑒𝑅, whence 𝑒𝑅 is a left ideal of 𝑅. Then 𝑒𝑅(1 − 𝑒) is 

a left ideal of 𝑅 such that {𝑒𝑅(1 − 𝑒)}2 = 0, hence 

𝑒𝑅(1 − 𝑒) = 0. Given any 𝑟 ∈ 𝑅, we thus have 

𝑒𝑟(1 − 𝑒) = 0 as well as (1 − 𝑒)𝑟𝑒 = 0, whence 

𝑒𝑟 = 𝑒𝑟𝑒 = 𝑟𝑒. Therefore 𝑒 is central.  

(𝐢) ⟹ (𝐢𝐯) ⟹ (𝐯𝐢) By symmetry.  

(𝐢) ⟹ (𝐢𝐢) A priori.  

(𝐢𝐢) ⟹ (𝐯) Given any 𝑥 ∈ (1 − 𝑒)𝑅𝑒, we see that 

𝑒 + 𝑥 is an idempotent, hence e commutes with 𝑒 + 𝑥. 

Then 𝑒 commutes with 𝑥, so that 𝑥 = 𝑥𝑒 = 𝑒𝑥 =

0 [𝟐]. 

B. Proposition 

Let 𝐽 be a two-sided ideal in a regular ring 𝑅, and let 

𝑓1,𝑓2,….. be a finite or countably infinite sequence of 

orthogonal idempotents in 𝑅/𝐽. Then there exist 

orthogonal idempotents 𝑒1,𝑒2,. . . . . ∈ 𝑅 such that �̅�𝑛 =

𝑓𝑛 for all 𝑛. Moreover, if 𝑓1 + ⋯ +  𝑓𝑘 = 1 for some 

𝑘, then the 𝑒𝑛 can be chosen so that 𝑒1 + ⋯ + 𝑒𝑘 =

1. 

C. Corollary 

Let 𝑅 be a regular ring.  

a) All one-sided ideals of 𝑅 are idempotent.  

b) All two-sided ideals of 𝑅 are semiprime.  

c) The Jacobson radical of 𝑅 is zero.  

d) 𝑅 is right and left semihereditary.  

e) 𝑅 is right and left nonsingular. 

D. Theorem 

The following conditions are equivalent for a regular 

ring 𝑅: 

(i) 𝑅 is abelian. 

(ii) 𝑅/𝑃 is a division ring for all prime ideals 𝑃 

of 𝑅.  

(iii) 𝑅 has no nonzero nilpotent elements.  

(iv) Right (left) ideals of 𝑅 are two-sided.  

(v) Every nonzero right (left) ideal of 𝑅 holds a 

nonzero central idempotent.  

Proof: 

(𝐢) ⟹ (𝐢𝐢) Since all idempotents in the prime ring 

𝑅/𝑃 come from idempotents in 𝑅 (by above 

proposition B), they are all central, hence we see that 

0 and 1 are the only idempotents in 𝑅/𝑃. As a result, 

𝑥(𝑅/𝑃) = (𝑅/𝑃)𝑥 = 𝑅/𝑃 for any nonzero 𝑥 ∈ 𝑅/𝑃, 

whence 𝑅/𝑃 is a division ring. 

(𝐢𝐢) ⟹ (𝐢𝐢𝐢) Since 𝑅 is semiprime, it follows from (b) 

that 𝑅 is isomorphic to a subdirect product of division 

rings, where 𝑅 has no nonzero nilpotent elements.  

(𝐢𝐢𝐢) ⟹ (𝐢) If 𝑒 ∈ 𝑅 is an idempotent, then every 

element of (1 − 𝑒)𝑅𝑒 is nilpotent, whence (1 −

𝑒)𝑅𝑒 = 0. By lemma A, e is central. 

(𝐢) ⟹ (𝐢𝐯) Each principal right ideal of 𝑅 is 

developed by a central idempotent and so is two-

sided, where right ideals of 𝑅 are two- sided.  

(𝐢𝐯) ⟹ (𝐢) Lemma A.  

(𝐢) ⟹ (𝐯) Is clear.  

(𝐯) ⟹ (𝐢) Let 𝑒 ∈ 𝑅 be an idempotent, and let 𝐽 be 

the right ideal of R generated to those central 

idempotents of 𝑅 which lie in 𝑒𝑅. Mention that 𝐽 is a 

two-sided ideal. In view of (e), we see that 𝐽 ≤𝑒 𝑒𝑅, 

whence 𝑒𝑅/𝐽 is singular. Given any 𝑥 ∈ 𝑅, we have 

𝑥𝐽 ≤ 𝐽 ≤ 𝑒𝑅 and so (1 − 𝑒)𝑥𝐽 = 0. Consequently, 

(1 − 𝑒)𝑥𝑒𝑅 is a homomorphic image of 𝑒𝑅/𝐽 and so 

is singular. Inasmuch as 𝑅𝑅 is nonsingular by 

corollary C, we obtain (1 − 𝑒)𝑥𝑒𝑅 = 0. Therefore 

(1 − 𝑒)𝑅𝑒 = 0, hence 𝑒 is central, by Lemma A.   

III. PROJECTIVE AND INJECTIVE 𝑅-MODULES 

An 𝑅-module 𝑃 over the ring 𝑅 is projective [6] 

if 𝑋 and 𝑌 are 𝑅-modules and f ∶ 𝑋 → 𝑌 is a surjective 

module homomorphism and g ∶ 𝑃 → 𝑌 is an arbitrary 

module homomorphism, then there exists a module 

homomorphism h ∶ 𝑃 → 𝑋 such that f ∘ h = g. 
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An 𝑅-module 𝑄 over the ring 𝑅 is injective if 𝑋 and 

𝑌 are 𝑅-modules and f ∶ 𝑋 → 𝑌 is an injective module 

homomorphism and g ∶ 𝑋 → 𝑄 is an arbitrary module 

homomorphism, then there exists a module 

homomorphism  h ∶ 𝑌 → 𝑄 such that h ∘ f = g. 

If a ring is injective over itself as a right module, 

then it is called a right self-injective ring. A left self-

injective ring is defined in a symmetric way. 

A. Proposition 

Let 𝐴1,⋯,𝐴𝑛 be finitely generated projective right 

modules over a regular ring 𝑅. Then there exist 

orthogonal idempotents 𝑒1,⋯,𝑒𝑘 ∈ 𝑅 and nonnegative 

integers 𝑡𝑖𝑗 (for 𝑖 = 1,⋯, 𝑛; 𝑗 = 1,⋯, 𝑘) such that  

𝑒1 + ⋯ + 𝑒𝑘 = 1 and 

each 𝐴𝑖 ≃ 𝑡𝑖1(𝑒1𝑅) ⨁ ⋯ ⨁𝑡𝑖𝑘(𝑒𝑘𝑅). 

Note: The absence of nilpotent elements in abelian 

regular rings suggests that an arbitrary regular ring 𝑅 

might consist of a two-sided ideal 𝑁 generated by 

nilpotent elements extended by an abelian factor ring 

𝑅/𝑁. This can actually be done so that 𝑁 is generated 

as a ring (without identity) by nilpotent elements, as 

follows. 

B. Proposition 

Let 𝑅 be a regular ring, and let 𝑁 be the sum of all 

ideals of the form 𝑅𝑒𝑅(1 − 𝑒)𝑅, where 𝑒 is any 

idempotent in 𝑅. Then 𝑁 equals the subring (without 

identity) of 𝑅 generated by the nilpotent elements, and 

𝑅/𝑁 is abelian. Also, 𝑁 is contained in the subring of 

𝑅 generated by the idempotents. 

Proof: 

Given any idempotent 𝑓 ∈ 𝑅/𝑁, proposition B shows 

that there exists an idempotent 𝑒 ∈ 𝑅 such that �̅� = 𝑓. 

Inasmuch as 𝑒𝑅(1 − 𝑒) ⊆ 𝑁, we obtain 𝑓(𝑅/𝑁)(1 −

𝑓) = 0, whence 𝑓 is central (by lemma A). Thus, 

𝑅/𝑁 is abelian.  

Let 𝑆 denote the subring (without identity) of𝑅 

generated by the nilpotent elements. According to 

theorem D, 𝑅/𝑁 has no nonzero nilpotent elements, 

whence 𝑆 ⊆ 𝑁. Given any idempotent 𝑒 ∈ 𝑅, every 

element of 𝑒𝑅(1 − 𝑒) and (1 − 𝑒)𝑅𝑒 is nilpotent, 

hence we see that  

𝑒𝑅(1 − 𝑒)𝑅 = [𝑒𝑅(1 − 𝑒)][(1 − 𝑒)𝑅𝑒] + 𝑒𝑅(1 −

𝑒)𝑅(1 − 𝑒) ⊆ 𝑆, 

And, similarly, (1 − 𝑒)𝑅𝑒𝑅 ⊆ 𝑆. Consequently, 

𝑅𝑒𝑅(1 − 𝑒)𝑅 = 𝑒𝑅𝑒𝑅(1 − 𝑒)𝑅 + (1 − 𝑒)𝑅𝑒𝑅(1

− 𝑒)𝑅 

⊆ 𝑒𝑅(1 − 𝑒)𝑅 + (1 − 𝑒)𝑅𝑒𝑅 ⊆ 𝑆 

Therefore 𝑁 =  𝑆.  

Finally, let 𝑇 denote the subring of 𝑅 generated by the 

idempotents. If 𝑒 is an idempotent in 𝑅 and 𝑥 ∈

𝑒𝑅(1 − 𝑒), then 𝑒 + 𝑥 is an idempotent as well. Then 

𝑒 and 𝑒 + 𝑥 both lie in 𝑇, whence 𝑥 ∈ 𝑇. Thus, 

𝑒𝑅(1 − 𝑒) ⊆ 𝑇, and, likewise, (1 − 𝑒)𝑅𝑒 ⊆ 𝑇. 

Proceeding as above, we conclude that 𝑅𝑒𝑅(1 −

𝑒)𝑅 ⊆ Т. Therefore 𝑁 ⊆ 𝑇 [2]. 

C. Proposition 

If 𝐴 and 𝐵 are projective right modules over a regular 

ring 𝑅, then the following conditions are equivalent:  

(a) 𝐻𝑜𝑚𝑅(𝐴, 𝐵) ≠ 0.  

(b) 𝐻𝑜𝑚𝑅(𝐵, 𝐴) ≠ 0.  

(c) There exist nonzero submodules 𝐴′ ≤ 𝐴 

and 𝐵′ ≤ 𝐵 such that 𝐴′ ≃  𝐵′. 

D. Proposition 

Let 𝑅 be a ring with no nonzero nilpotent elements. 

Then 𝑅 is regular if and only if 𝑅/𝑃 is regular for all 

completely prime ideals 𝑃 of 𝑅. 

E. Theorem  

If 𝐴 is a finitely generated projective module over a 

regular ring 𝑅, then 𝐸𝑛𝑑𝑅(𝐴) is a regular ring. 

F. Theorem 

If 𝐴 is a projective right module over a regular ring 𝑅, 

then all finitely generated submodules of 𝐴 are direct 

summands of 𝐴. 

G. Theorem 

Let 𝐴 be a finitely generated projective right module 

over a regular ring 𝑅, and set 𝑇 = 𝐸𝑛𝑑𝑅(𝐴). Then the 

following conditions are equivalent:  

(i) 𝑇 is abelian.  

(ii) Isomorphic submodules of 𝐴 are equal.  

(iii) If 𝐵 is any submodule of 𝐴 such that 2𝐵 ≲

𝐴, then 𝐵 = 0.  

(iv) If 𝐵 and 𝐶 are any submodules of 𝐴  such 

that 𝐵 ∩ 𝐶 = 0, then 𝐻𝑜𝑚𝑅(𝐵, 𝐶) = 0.  

(v) 𝐿(𝐴) is distributive.  

Proof: 

Recall from theorem E that T is regular.  

(𝐢) ⟹ (𝐢𝐢) Let Band 𝐶 be isomorphic submodules of 

𝐴. Given 𝑥 ∈ 𝐵, there exists 𝑦 ∈ 𝐶  such that 𝑥𝑅 ≃

𝑦𝑅.There exist idempotents e, 𝑓 ∈ 𝑇 such that 𝑒𝐴 =

𝑥𝑅 and 𝑓𝐴 = 𝑦𝑅 (by theorem F). Since е𝐴 = 𝑓𝐴, 

there exist elements 𝑠 ∈ 𝑒𝑇𝑓 and 𝑡 ∈ 𝑓𝑇е such that 

𝑠𝑡 = 𝑒 and 𝑡𝑠 = 𝑓. Now, 𝑒 and 𝑓 are central in 𝑇, 

whence  

𝑒 = 𝑠𝑡 = 𝑠𝑓𝑡 = 𝑓𝑠𝑡 = 𝑓𝑒 = 𝑡𝑠𝑒 = 𝑡𝑒𝑠 = 𝑡𝑠 = 𝑓 
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And, consequently, 𝑥𝑅 = 𝑒𝐴 = 𝑓𝐴 = 𝑦𝑅 ≤ 𝐶. Thus, 

𝐵 ≤ 𝐶 and by symmetry 𝐶 ≤ 𝐵.  

(𝐢𝐢) ⟹ (𝐢𝐢𝐢)  Is clear. 

(𝐢𝐢𝐢) ⟹ (𝐢𝐯) If 𝐻𝑜𝑚𝑅(𝐵, 𝐶) ≠ 0, by proposition D, 

then there exist nonzero sub-modules В′ ≤ В and 𝐶′ ≤

𝐶 such that 𝐵′ ≃ 𝐶 ′. But then 2𝐵′ ≲ 𝐵⨁𝐶 ≤ А, which 

contradicts (iii).  

(𝐢𝐯) ⟹ (𝐢) For any idempotent 𝑒 ∈ 𝑇, we have (1 −

е)Те ≃ 𝐻𝑜𝑚𝑅(𝑒𝑇, (1 − 𝑒)𝑇) = 0 by (iii). According 

to lemma A, 𝑒 must be central.  

(𝐢) ⟹ (𝐯) Let 𝐵,𝐶,𝐷 ∈ 𝐿(𝐴), and choose 

idempotents 𝑏,𝑐, 𝑑 ∈ 𝑇 such that 𝑏𝐴 = 𝐵, 𝑐𝐴 = 𝐶, 

and 𝑑𝐴 = 𝐷. Since 𝑇 is abelian, 𝑏, 𝑐, 𝑑are central in 

𝑇. In particular, 𝑐𝑑 = 𝑑𝑐, hence we compute that 𝑒 =

𝑐 + 𝑑 − 𝑐𝑑 is an idempotent. Clearly, 𝑒𝐴 ≤ 𝐶 + 𝐷. 

Observing that 𝑒𝑐 = 𝑐 and 𝑒𝑑 = 𝑑, we see that 𝑒𝐴 =

𝐶 + 𝐷. Consequently,  

𝐵 ∩ (𝐶 + 𝐷) = 𝑏𝐴 ∩ 𝑒𝐴 = 𝑏𝑒𝐴 ≤ 𝑏𝑐𝐴 + 𝑏𝑑𝐴

= (𝐵 ∩ 𝐶) + (𝐵 ∩ 𝐷) 

The reverse inclusion is automatic. 

(𝐯) ⟹ (𝐢) For any idempotents 𝑒, 𝑓 ∈ 𝑇, we have  

еА = еА ∩ [𝑓А + (1 − 𝑓)А]

= [еА ∩ 𝑓А] + [еА ∩ (1 − 𝑓)А] 

by (e). As a result, 𝑓𝑒𝐴 = 𝑒𝐴 ∩ 𝑓𝐴 ≤ 𝑒𝐴, whence 

𝑓𝑒 = 𝑒𝑓𝑒. Likewise, 𝑓(1 − 𝑒) = (1 − 𝑒)𝑓(1 − 𝑒), 

from which we obtain 𝑒𝑓(1 − 𝑒) = 0 and then 𝑒𝑓 =

𝑒𝑓𝑒 = 𝑓𝑒. Thus, all idempotents in 𝑇 commute with 

each other. By lemma A, all idempotents in 𝑇 are 

central. 

IV. STRONGLY REGULAR RINGS 

A. Definition 

If for each 𝑥 ∈ 𝑅 there exists 𝑦 ∈ 𝑅 such that 𝑥2𝑦 =

𝑥, then a ring 𝑅 is said to be strongly regular [2]. 

B. Theorem 

A ring 𝑅 is strongly regular iff it is abelian regular. 

Proof: 

Let 𝑅 be abelian regular. Given any 𝑥 ∈ 𝑅, ∃, 𝑦 ∈ 𝑅 

such that 𝑥𝑦𝑥 = 𝑥. Since 𝑥𝑦 is an idempotent and, 

thus, is central in 𝑅, it follows that 𝑥 = (𝑥𝑦)𝑥 = 𝑥2𝑦.  

Conversely, let 𝑅 be strongly regular. Obviously, an 

element 𝑥 ∈ 𝑅 can satisfy 𝑥2 = 0 only if 𝑥 = 0, from 

which we infer that 𝑅 has no nonzero nilpotent 

elements. In particular, it follows that 𝑅 is a 

semiprime ring.  

We consider 𝑃 as a prime ideal of 𝑅, and mention that 

𝑅/𝑃 is strongly regular. If 𝑥, 𝑦 ∈ 𝑅/𝑃 are nonzero, 

then 𝑦𝑟𝑥 ≠ 0 for some 𝑟 ∈ 𝑅/𝑃 and so (𝑦𝑟𝑥)2 ≠ 0, 

whence 𝑥𝑦 ≠ 0. Thus, 𝑅/𝑃 is a domain. Given any 

nonzero 𝑠 ∈ 𝑅/𝑃, we have 𝑠2𝑡 = 𝑠 for some 𝑡 ∈ 𝑅/𝑃 

and so 𝑠(𝑠𝑡 − 1) = 0, whence 𝑠𝑡 = 1. Thus, 𝑅/𝑃 is 

actually a division ring.  

At this point, we could use proposition D to conclude 

that 𝑅 is regular. However, regularity is easy enough 

in this case to prove directly, as follows. 

Now, let 𝑥 ∈ 𝑅, and choose an element 𝑦 ∈ 𝑅 such 

that 𝑥2𝑦 = 𝑥. Given any prime ideal 𝑃 of 𝑅, we have 

�̅�2�̅� = �̅� in the division ring 𝑅/𝑃, from which we 

infer that 𝑥𝑦𝑥̅̅ ̅̅ ̅ = �̅�, so that 𝑥𝑦𝑥 − 𝑥 ∈ 𝑃. Then 𝑥𝑦𝑥 −

𝑥 belongs to the intersection of all prime ideals of 𝑅, 

which is zero because 𝑅 is semiprime. Thus, 𝑥𝑦𝑥 = 𝑥. 

Therefore 𝑅 is regular. Since there are no nonzero 

nilpotent elements in 𝑅, theorem D says that 𝑅 is 

abelian. 

Note: In general, inverse limits of regular rings need 

not be regular. However, inverse limits of abelian 

regular rings are regular, as the following proposition 

shows.  

C. Proposition 

Every inverse limit of abelian regular rings is an 

abelian regular ring.  

Proof: 

We first claim that any abelian regular ring 𝑅 must 

satisfy the following property: (∗) For each 𝑥 ∈ 𝑅, 

there is a unique 𝑦 ∈ 𝑅 such that  

𝑥𝑦𝑥 = 𝑥 and у𝑥у = у 

First, there is some 𝑧 ∈ 𝑅 such that 𝑥𝑧𝑥 = 𝑥. Setting 

у = 𝑧𝑥𝑧, we check that 𝑥𝑦𝑥 = 𝑥 and у𝑥у = у. Then 

𝑥𝑦 and 𝑦𝑥 are idempotents in 𝑅 and so are central, 

whence  

𝑥𝑦 = 𝑥(𝑦𝑥)𝑦 = (𝑥𝑦)(𝑦𝑥) = 𝑦(𝑥𝑦)𝑥 = 𝑦𝑥 

Now, consider any 𝑤 ∈ 𝑅 such that 𝑥𝑤𝑥 = 𝑥 and 

𝑤𝑥𝑤 = 𝑤. As above, 𝑥𝑤 = 𝑤𝑥 is central, hence  

𝑥𝑤 = (𝑥𝑦)(𝑥𝑤) = (𝑥𝑤)(𝑥𝑦) = 𝑥𝑦 

 And, consequently,  

𝑤 = 𝑤(𝑥𝑤) = 𝑤(𝑥𝑦) = 𝑤(𝑦𝑥) = 𝑦(𝑥𝑤) = 𝑦(𝑥𝑦)

= 𝑦 

Thus, у is unique, proving (∗).  

It is clear that (∗) is preserved by inverse limits. Thus, 

if 𝑅 is an inverse limit of abelian regular rings 𝑅𝑖, we 

see that 𝑅 is regular. Inasmuch as R embeds in ∏𝑅𝑖, 

we conclude that all idempotents in 𝑅 are central [2].  

Note:  The endomorphism ring of an ideal in a 

regular ring need not be regular. However, this does 
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hold in abelian regular rings, as follows. In this 

theorem, we let 𝐸𝑛𝑑𝑅(𝐽𝑅) act on the left of 𝐽 (as 

usual), but we consider 𝐸𝑛𝑑𝑅(R 𝐽) to be acting on the 

right of 𝐽, in order to avoid opposite rings. 

D. Theorem 

If 𝐽 is an ideal in an abelian regular ring 𝑅, then 

𝐸𝑛𝑑𝑅(𝐽𝑅) is an abelian regular ring, and 𝐸𝑛𝑑𝑅(𝐽𝑅) ≃

𝐸𝑛𝑑𝑅(R 𝐽).  

 

Proof: 

The set 𝑋 = {𝑥𝑅 ∶ 𝑥 ∈  𝐽} is a family of right ideals of  

𝑅 whose union is 𝐽. Since 𝑅 is abelian, each 𝑥𝑅 ∈ 𝑋 is 

generated by a central idempotent, and so is a fully 

invariant submodule of any right ideal which contains 

it. Thus, we obtain restriction maps  

𝐸𝑛𝑑𝑅((𝑦𝑅)𝑅) ⟶ 𝐸𝑛𝑑𝑅((𝑥𝑅)𝑅) 

Whenever 𝑥𝑅 ≤ 𝑦𝑅 in 𝑋, and we infer that the 

inverse limit of this system of endomorphism rings 

and restriction maps is isomorphic to 𝐸𝑛𝑑𝑅( 𝐽𝑅). 

Given any 𝑥𝑅 ∈ 𝑋, we have 𝑥𝑅 = 𝑒𝑅 for some 

central idempotent 𝑒 ∈ 𝑅, whence 𝑥𝑅 is an abelian 

regular subring (with unit 𝑒) of 𝑅, and, as a ring, 𝑥𝑅 is 

naturally isomorphic (via left multiplication) to 

𝐸𝑛𝑑𝑅((𝑥𝑅)𝑅). Consequently, we infer that 
𝑙𝑖𝑚
⟵

 𝑋 ≃

𝐸𝑛𝑑𝑅( 𝐽𝑅) as rings. Since each 𝑥𝑅 is an abelian 

regular ring, proposition C now says that 𝐸𝑛𝑑𝑅( 𝐽𝑅) is 

an abelian regular ring. 

Proceeding as above, we see that 𝑋 = {𝑅𝑥 ∶ 𝑥 ∈ 𝐽}, 

that each 𝑅𝑥 ∈ 𝑋 is an abelian regular ring which is 

naturally isomorphic (via right multiplication) to 

𝐸𝑛𝑑𝑅(R(𝑅𝑥)), and that 
𝑙𝑖𝑚
⟵

𝑋 ≃ 𝐸𝑛𝑑𝑅(R𝐽) as rings. 

Therefore, 𝐸𝑛𝑑𝑅(𝐽𝑅) ≃  𝐸𝑛𝑑𝑅(R 𝐽). 

E. Theorem 

Let 𝑅 be an abelian regular ring, and let 𝑄 be the 

maximal right quotient ring of 𝑅. Then 𝑄 is abelian, 

and 𝑄 is also the maximal left quotient ring of 𝑅.  

Proof: 

We claim that any idempotent 𝑒 ∈ 𝑅 is central in 𝑄. 

Given 𝑥 ∈ 𝑄, we have 𝑥𝐽 ≤ 𝑅 for some 𝐽 ≤𝑒 𝑅𝑅. For 

all 𝑟 ∈ 𝐽, note that 𝑒 commutes with 𝑥𝑟 as well as 𝑟, 

whence 𝑒𝑥𝑟 = 𝑥𝑟𝑒 = 𝑥𝑒𝑟. Thus (𝑒𝑥 − 𝑥𝑒)𝐽 = 0 and 

so 𝑒𝑥 = 𝑥𝑒, proving the claim.  

Now, if 𝐾 is any nonzero right ideal of 𝑄, then 𝐾 ∩

𝑅 ≠ 0 and so 𝐾 ∩ 𝑅 contains a nonzero idempotent, 

which must be central in 𝑄 by the claim above. Thus, 

every nonzero right ideal of 𝑄 contains a nonzero 

central idempotent, whence theorem D shows that 𝑄 

is abelian.  

Given any nonzero element 𝑥 ∈ 𝑄, there exists 𝑟 ∈ 𝑅 

such that 𝑥𝑟 ≠ 0 and 𝑥𝑟 ∈ 𝑅. Now, 𝑟𝑅 = 𝑒𝑅 for 

some idempotent 𝑒 ∈ 𝑅, and 𝑒 is central in 𝑄.  

Then 𝑒𝑥𝑅 = 𝑥𝑒𝑅 = 𝑥𝑟𝑅 whence 𝑒𝑥 ≠ 0 and 𝑒𝑥 ∈ 𝑅. 

Thus, R𝑅 ≤𝑒R𝑄, so that 𝑄 is a left quotient ring of 𝑅. 

As a result, 𝑄 is a subring of the maximal left quotient 

ring 𝑃 of 𝑅. By symmetry, 𝑃 is a right quotient ring of 

𝑅, hence we conclude from the maximality of 𝑄 that 

𝑄 = 𝑃. 

V. SOME IMPORTANT RESULTS 

A. Let 𝑅 be an abelian regular ring. Then 𝑅 is right 

self-infective if and only if 𝑅 is left self-injective. 

B. Let 𝐴 and В be finitely generated projective right 

modules over an abelian regular ring 𝑅.  

  (i) 𝐴 ≲ 𝐵 if and only if  

        𝑑𝑖𝑚𝑅/𝑃(𝐴/𝐴𝑃) ≤ 𝑑𝑖𝑚𝑅/𝑃(𝐵/𝐵𝑃) for all  

        𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅).  

  (ii) 𝐴 ≃ 𝐵 if and only if  

       𝑑𝑖𝑚𝑅/𝑃(𝐴/𝐴𝑃) =  𝑑𝑖𝑚𝑅/𝑃(𝐵/𝐵𝑃) for all  

       𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅). 

C. Let 𝐴,𝐵, 𝐶 be finitely generated projective right 

modules over an abelian regular ring 𝑅, and let 𝑛 

be a positive integer.  

   (a)   If 𝐴⨁𝐵 ≲ 𝐴⨁𝐶, then  𝐵 ≲ 𝐶. 

   (b)   If  𝐴⨁𝐵 ≃ 𝐴⨁𝐶, then 𝐵 ≃ 𝐶.  

   (c)   If  𝑛𝐴 ≲ 𝑛𝐵, then 𝐴 ≲ 𝐵.  

   (d)   If  𝑛𝐴 ≃ 𝑛𝐵, then 𝐴 ≃ 𝐵. 

D. For any ring 𝑅, the topology on the prime 

spectrum 𝑆𝑝𝑒𝑐(𝑅) is given by specifying that the 

closed sets are exactly those of the form {𝑃 ∈

𝑆𝑝𝑒𝑐(𝑅) ∶ 𝑋 ⊆ 𝑃}, for any 𝑋 ⊆ 𝑅. If 𝑅 is 

semiprime, then the clopen subsets of 𝑆𝑝𝑒𝑐(𝑅) 

are exactly those of the form {𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∶ 𝑒 ∉

𝑃}, for any central idempotent 𝑒 ∈ 𝑅 [2]. 

E. If 𝑅 is an abelian regular ring, then 𝑆𝑝𝑒𝑐(𝑅) is a 

compact, Hausdorff, totally disconnected space. 

F. Let 𝑅 be an abelian regular ring. If 𝐴 is any 

finitely generated projective right 𝑅-module, then 

the rule 𝑓(𝑃) = 𝑑𝑖𝑚𝑅/𝑃(𝐴/𝐴𝑃) defines a 

continuous map 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑅) ⟶ {0,1,2,. . . }. 

Conversely, any continuous map of 𝑆𝑝𝑒𝑐(𝑅) into 

{0, 1,2,. . . } arises in this manner.  

G. If 𝐴 and 𝐵 are finitely generated projective right 

modules over an abelian regular ring 𝑅, then 
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there exists a central idempotent 𝑒 ∈ 𝑅 such that 

𝐴𝑒 ≲ 𝐵𝑒 and 𝐵(1 − 𝑒) ≲ 𝐴(1 − 𝑒).  

H. Let 𝑅 ⊆ 𝑆 be regular rings such that 𝑅 contains 

all the idempotents of 𝑆.  
 

(i) 𝑆 has a two-sided ideal 𝑁 such that 𝑁 ⊆ 𝑅 

and the rings 𝑅/𝑁 and 𝑆/𝑁 are abelian. 
 

(ii) The rule 𝜑( 𝐽) = 𝐽𝑆 defines a lattice 

isomorphism [9] 𝜑 ∶ 𝐿(𝑅𝑅) ⟶ 𝐿(𝑆𝑆). For all 

𝐾 ∈ 𝐿(𝑆𝑆), we have 𝜑−1(𝐾) = 𝐾 ∩ 𝑅. 
 

(iii) The rule 𝜓(𝐽) = 𝐽 ∩ 𝑅 defines a lattice      

isomorphism 𝜑 ∶ 𝐿2(𝑆) ⟶ 𝐿2(𝑅). For all 

𝐾 ∈ 𝐿2(𝑅), we have 𝜓−1(𝐾) = 𝐾𝑆 = 𝑆𝐾. 

VI. CONCLUSION 

In this paper, we study the von Neumann abelian 

regular elements of 𝑅. The main emphasis is on 

developing sufficient conditions for rings to be 

abelian regular. We also study the right and left 

abelian regular elements, projective module, injective 

module, self-injective module of 𝑅. We also check 

that strongly regular rings are actually regular. For 

this reason, we view abelianness as the more natural 

property. Finally, we investigate many important 

results on von Neumann abelian regular elements of 𝑅 

induced by the above elements. We also investigate 

that many of the properties of abelian regular rings are 

direct consequences of the corresponding properties 

for regular rings and self-injective rings.  
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