GUBJSE: ISSN: 2409-0476

A Fast Multiplication Approach Using
A Tree-Based Structure
Md. Solaiman Mia

Abstract— This paper presents a technique for
integer number multiplication using a tree-based
structure. In the proposed method, both the generation
of the partial products and the addition of partial
products are completed in the tree structure. The
proposed multiplication approach has been designed
in two steps: Firstly, the partial products are generated
in a tree-based structure using the fewest numbers of
gates. Secondly, diagonal partial products additions
have been done by the partial products residing in the
diagonal partial product nodes to get a faster
multiplication result, where two partial product nodes
P;; and Py, are diagonal only if |i—k|=[j—1]
where i and k are the multiplicand bits; and j and [
are the multiplier bits. The comparative study shows
that the proposed multiplication algorithm
outperforms the existing techniques; e.g., the
proposed 4 X 4 multiplication algorithm improves
50% on the worst case running time complexity over
the best known existing ones.

Index Terms— Multiplication, Tree,

Complexity.

Algorithmic

I. INTRODUCTION

HE economics of present large-scale scientific

computers is suggested to be benefitted from a

greater investment in hardware to mechanize
multiplication operation. As a move in this direction,
a technique is to be developed for a multiplication
operation which generates the product of two numbers
using purely combinational logic [1].

At first, let’s start with a very brief and very
simplified explanation of how computers work. A
highly simplified explanation of how computers work
is given in the following. In general (i.e., actual
mileage may vary in some specialized hardware):

* Every computer has at least one CPU (Central
Processing Unit), the actual "brain" of the computer
which performs every instruction in a program.

* Every CPU has at least one ALU (Arithmetic

This paper was received on 04 May 2020, revised on 27
September 2020 and accepted on 13 October 2020.

Md. Solaiman Mia, Assistant Professor, Department of
Computer Science and Engineering, Green University of
Bangladesh. E-mail: solaiman @ cse.green.edu.bd.

Logic Unit) or at least its functionality. An ALU
could be a distinct unit in the CPU or else its
functionality could be incorporated into the CPU's
logic. An ALU performs a set of binary integer
arithmetic and logic operations on binary values input
into it.

¢ Every CPU also has a number of registers, which
are used to contain binary values. A register is
hardware circuitry used to hold a pre-determined
number of binary digits (bits) specified by the
computer design (e.g., 8 bits, 16 bits, 32 bits, 64 bits
(tend to follow the powers of two, though many older
designs had other word sizes).

e The binary numbers contained in a register can
be used as integer values, parts of a floating-point
value, the address of a memory location containing
data, the address of a memory location containing the
address of a memory location containing data,
character data, status flags, special data formats, etc.
Basically, virtually all the work that a computer does
is done in the CPU registers.

Because of the frequent use of arithmetic units such
as multipliers and adders, many low-power techniques
have been proposed to optimize these functional units
in terms of power consumption [2-5]. Among other
computing systems, DSP (Digital Signal Processing)
applications make extensive use of multiply and
accumulate computations. Therefore, the design and
the implementation of power-efficient arithmetic
units, especially multipliers, is essential for the design
of low-power DSP hardware [6].

Multipliers can be categorized to sequential and
combinational ones. Sequential multipliers are
attractive for their low area requirements. However,
they take more time to complete a multiplication
operation compared to combinational ones. The
primary objective of this work is to introduce a new
tree-based multiplication algorithm to reduce the
implementation time in practice and to show through
the performance analysis that this algorithm is
competitive with other more commonly used
algorithms when considering the worst case running
time complexity. Modest improvement for the 4 x 4
multiplication algorithm (about 50%) over more
conventional algorithms have been shown compared
with the proposed algorithm. This work has also

20 Green University Press

A Fast Multiplication Approach Using A Tree-Based Structure

shown that the proposed tree-based multiplication
algorithm is based upon the partial product method
since the savings due to the reduction of the partial
products do not seem to justify the extra hardware
required for the generation and distribution of the
"Partial Product Nodes" and "Partial Product Addition
Nodes".

The paper is organized as follows: the literature
review of algorithmic complexity and various
multiplication techniques are given in Section II. The
proposed approach of tree-based multiplication is
described in Section III. The experimental results and
comparative analysis are presented in Section IV and
the conclusion is given in Section V.

II. LITERATURE REVIEW

In this section, some preliminaries pertaining to
algorithmic complexity and different multiplication
techniques are described.

A. Algorithmic Complexity

An algorithm is a precise, systematic method for
solving a class of problems. Algorithmic thinking,
which is a form of mathematical thinking, refers to the
thought processes associated with creating and
analyzing algorithms. Both algorithms and
algorithmic thinking are very powerful tools for
problem solving. An integral component of
algorithmic thinking is the study of algorithmic
complexity, which addresses the amount of resources
necessary to execute an algorithm. Through analyzing
the complexity of different algorithms, one can
compare their efficiencies, and the speed at which
they can be performed [7].

There are basically two types of algorithmic
complexity: i. Space complexity and ii. Running time
complexity. Each complexity can be divided into
three different cases like a. Best case complexity, b.
Average case complexity and c. Worst case
complexity. In this paper, worst case of running time
complexities of different multiplication operation is
considered and described.

B. Multiplication Techniques

In this subsection, different multiplication
techniques along with the worst case running time
complexity is explained.

i. Shift-and-add Multiplication [8]

The “long multiplication” of shift-and-add
multiplication technique is illustrated in Fig. 1. This
technique executes in two steps as following:

Step 1: Compute n partial values, each requiring n
single-bit multiplications.

Step 2: Add the partial values (estimate as (n — 1)
additions of pairs of (2n — 1)-bit numbers (upper
bound)).

L 01 +—— N bits in each number
% Jesivaiis 11
............ 1
r A 0
o RN 00 n partial values
Fowvrses 00........0 longest is 2n-1 bits

% result is 2n bits in worst case
Fig. 1. Shift-and-add Multiplication.

So, the calculation of complexity of the single-bit
operation is illustrated in Fig. 2.

Step(1) n?
Step(2) (2n-1)(n-1) = 2n*-3n+1
Total 3n? - 3n+1

Fig. 2. The Complexity of Shift-and-add Multiplication.

ii. A-La-Russe Method [9]

The idea of this method is to start with two columns
where /’ in the first column means integer division by
2 (until the value reaches into1) and the second
column is multiplied by 2 (until the value of first
column reaches into 1). This is illustrated in Fig. 3.

a x b
al2 2b
ald 4b

1 []

Fig. 3. Working Procedure of A-La-Russe Method.

Then a third column is created containing a copy of
the number from the second column everywhere the
number in the first column is odd. Finally, add up this
third column to get the result. An example of this
method is given in Fig. 4.

19 x 11 11
9 x 22 22
4 x 44
2 x 88
1 x 176 +176

=209

Fig. 4. An Example of A-La-Russe Method.

There are O(n) entries in the columns, each
involving work O(1), since each entry is made by
either a right-shift (left column) or by adding a zero
(right column). Adding the third column is 0(n?). So,
the complexity of this method is also O(n?) overall —
but it’s slightly faster than shift-and-add
multiplication technique because it is still only O(n)
before the addition stage.

iii. Divide-and-Conquer Method [10]

The technique of this method is: any number at first
is divided to get the desired result and then the results
are merged to get the final result. An example of
divide-and-conquer multiplication algorithm is given
in Fig. 5.

Green University Press 21

GUB Journal of Science And Engineering, Volume 6, Issue 1, Dec 2019

Multiply Shift | Result
1) 09 12 4 108....
i1) 09 34 2 306..
111) 81 12 2 972..
1v) 81 34 0 2754
1210554

Fig. 5. An Example of Divide-and-Conquer Method.

The complexity required for the divide operation is
log,n and for the conquer operation is n. So, the
overall worst case running time complexity of divide-
and-conquer algorithm is O(n. log,n).

iv. Booth’s Recoding Algorithm [11]

Booth’s algorithm reduced the number of
multiplicand multiples. For 4 X 4 multiplication
operation, the worst case running time complexity
is O(n). The working procedure is given in follows:

Step 1: Booth’s Recoding of the Multiplier Bits.

Step 2: Multiplication of the Recoded Number to
the Multiplicand to Generate Partial Products.

Step 3: Adding Sign Extensions.

Step 4: Addition of the Partial Products.

An example along with the working procedure of
Booth’s algorithm is illustrated in Fig. 6.

Multiplicand ---—----> 00 1 1 O
Multiplier ——-—--=> 01110
+100-10<— Stpl
Step3 |—>—— 00000
1111010
00000 € step2
00000
00110
Step4 |-—> 001010100

Fig. 6. An Example of Booth’s Recoding Method.

All these methods [8-11] work perfectly to get the
results of the multiplication operation. But, the
methods have different worst case running time
complexities. The target of this paper is to find an
approach that will do the multiplication operation
perfectly and the approach should have the minimum
worst case running time complexity as well. The next
section describes such an approach.

III. PROPOSED APPROACH OF TREE-BASED
MULTIPLICATION

There are many multiplication techniques using
tree-based architectures in the literature [1]. In this
section, a new approach for multiplication using a
conventional tree structure is shown, where both the
generation of partial products and the addition of

partial products for multiplier and multiplicand bits
are done by the tree structure. In next subsections,
basic definitions and properties are presented and the
procedure of multiplication of the proposed approach
is explained. The time complexity of the proposed
multiplication approach is also discussed in this
section.

A. Proposed Approach

Multipliers play an important role in various
applications. To achieve a high speed, low power
consumption and less area in the multiplier, a tree-
based multiplication approach is proposed in this
paper.

Some definitions along with some examples are
discussed in the following for the better understanding
of the proposed technique.

Definition 1: A Tree-Based multiplication is a
graphical structure for representing the multiplicand
bits, multiplier bits, partial product bits and the partial
product addition bits, where the non-terminal nodes
represent the multiplicand bits, multiplier bits and
partial product bits; and the terminal nodes represent
the partial product addition bits. In the tree, the non-

terminal nodes are denoted as O and the terminal
nodes are denoted as C_J.

Example 1: A tree-based structure consists of non-
terminal nodes and terminal nodes. In Fig. 7, there are
seven non-terminal nodes and two terminal nodes
which form a tree.

First Layer: s
Root Node l/.\A
- Second Layer:
‘l’ / Multivlicand Nodes
Third Layer: Ny £
Multiplier Nodes \U/ kﬂﬁ
iy () < Fourth Layer:
\\/' ";,,l,/‘ Partial Product Nodes
Last Layer: \i(‘i’
Partial Product > D D
Addition Nodes

Fig. 7. Tree-Based Structure.

Definition 2: A Root Node is denoted by a black
circled node which is connecting the multiplicand
nodes of a tree-based multiplication structure. The
position of the root node is at the first layer (top layer)
of a tree.

Example 2: In Fig. 7, the root node can be found at
the top of the tree which is a black circled non-
terminal node.

Definition 3: Multiplicand Nodes are the non-
terminal nodes at the second layer of the tree-based
multiplication structure which represent the
multiplicand bits. These non-terminal nodes are
represented by orange circled nodes. Note that, the
number of multiplicand nodes are as many as the

22 Green University Press

A Fast Multiplication Approach Using A Tree-Based Structure

multiplicand bits. The most significant multiplicand
bit resides at the left-most multiplicand node of the
tree and the rest of the multiplicand bits reside in the
rest of the multiplicand nodes sequentially towards
the right-most node, where the least significant
multiplicand bit resides at the right-most multiplicand
node of the tree.

Example 3: In Fig. 7, the multiplicand nodes are
shown at the second layer of the tree, where they are
indicated by orange circled nodes. In Fig. 8, a 2-bit
multiplicand A;A4, is shown at the second layer,
where the most significant multiplicand bit A, resides
at the left-most multiplicand node and the least
significant multiplicand bit A, resides at the right-
most multiplicand node.

Definition 4: Multiplier Nodes are the non-terminal
nodes at the third layer of the tree-based
multiplication structure which represent the multiplier
bits. These non-terminal nodes are represented by red
circled nodes. Note that, the multiplier nodes are the
successors of a multiplicand node and the number of
successors is as many as the number of multiplier bits,
where the most significant multiplier bit resides at the
left-most multiplier node and the least significant
multiplier bit resides at the right-most multiplier node.

Example 4: In Fig. 7, the multiplier nodes are
shown at the third layer of the tree, where they are
indicated by red circled nodes. In Fig. 8, two
multiplier bits B; B, are shown at the third layer,
where the most significant multiplier bit B; resides at
the left-most multiplicand node and the Ileast
significant multiplier bit B, resides at the right-most
multiplicand node.

Definition 5: Partial Product Nodes (PPN) are the
non-terminal nodes at the fourth layer of the tree-
based multiplication structure which represent the
partial products formed by ANDing the bits of the
connected predecessor multiplicand nodes and the
multiplier nodes. Partial Products are wused as
intermediate steps in calculating the larger products.
These non-terminal nodes are represented by blue
circled nodes.

Example 5: In Fig. 7, the partial product nodes are
shown at the fourth layer of the tree, where they are
indicated by blue circled nodes and represent the
partial products of multiplicand and multiplier bits. In
Fig. 8, two multiplicand bits A; 4, and two multiplier
bits B; B, are considered at the fourth layer, where the
bits of the PPN nodes are formed by ANDing the bits
of the connected predecessor multiplicand and
multiplier nodes, i.e., PPN node P, ; is formed by
ANDing the bits of the connected predecessor
multiplicand node A; and multiplier node B; .

Property 1: Let P;; and Py; be two PPN nodes,
where i and k are the multiplicand bits and j and [are
the multiplier bits. P;; and P, are said to be
diagonal, only if |i — k| = |j — 1|.

Example 6: In Fig. 8, PPN nodes P, , and P, ; are
diagonal partial product nodes as |1 — 0] = |0 — 1].

Definition 6: Partial Product Addition Nodes
(PPAN) are the terminal nodes of the tree-based
multiplication structure which represent the sum of
the partial products of the connected predecessor
multiplicand and multiplier bits of the corresponding
multiplicand and multiplier nodes. These terminal
nodes are represented by rectangle nodes.

Example 7: In Fig. 7, the partial product addition
nodes are shown at the last layer of the tree, where
they are indicated by rectangle nodes. In Fig. 8, the
sum of the bits of PPN nodes P, ;, and P, ; resides in
the terminal M; node.

B. Approach of Multiplication Using a Tree-Based
Structure

This approach of multiplication is based on a tree
structure. The proposed multiplication approach has
two steps: Firstly, a tree is created, where the non-
terminal nodes in the second layer are considered as
the multiplicand nodes, in which the multiplicand bits
reside. All the multiplicand nodes are the successors
of a single root node which is resided at the first layer.
At the third layer, multiplier nodes are generated as
the successors of the multiplicand nodes. At the fourth
layer of a tree, the PPN nodes are produced by
connecting its predecessor multiplicand and multiplier
nodes. A tree-based multiplication is shown in Fig. 8
for multiplying a 2-bit multiplicand by a 2-bit
multiplier. Firstly, a tree is constructed by
multiplicand nodes, multiplier nodes, partial product
nodes and partial product addition nodes. The partial
product nodes consist of bits of partial products which
are generated by using Algorithm-I. In Fig. 8, the
orange colored non-terminal nodes are the
multiplicand nodes, the red colored non-terminal
nodes are the multiplier nodes, the blue colored non-
terminal nodes are PPN nodes and the terminal nodes
are the PPAN nodes. Secondly, the addition operation
is performed among those PPN nodes which are
diagonal. The addition operations are started from the
right side of the tree and keep each result of the
additions of PPN nodes to the next layer terminal
nodes known as PPAN nodes. To get the result, the
bits of the additions are collected by traversing PPAN
nodes from the left-most side towards the right-most
side of the tree. In this technique, the addition of the
partial products will be done in parallel while the
partial products are producing in the tree. This
mechanism helps us to speed-up the multiplication
process. This approach is described in Algorithm-I
using Example 8.

Algorithm-I: Algorithm of the Proposed Approach
of Tree-Based Multiplication

Input: (Ao, AL A, ..., An_l), (Bo, B, By, ...
Output: PP_Node[][], PPA Node[][]

1. Begin

2. For i:=0 to (n-1) do

B} Bﬂ'l)

Green University Press 23

GUB Journal of Science and Engineering, Volume 6, Issue 1, Dec 2019

3 For j:==0 to (n-1) do
4 PP_Nodel[i][j] =

5 End Loop

6. End Loop

7 For i:=0 to (n-1) do

8 For j:==0 to (n-1) do

9. PP_Nodel[i][j] = AiBi

10. PP_Node[i][j+1] = AiBj+
11. i=it2

12. End Loop

13. End Loop
14. For i:=0 to (n-1)do
15. For j:==0 to (n-1) do

16. if(i==0 && j==0)

17. Mo, =PPA_Node[i][j]
18. else if(i==j)

19. Mi+j = PPA_Node[i][j]
20. End if

21. End Loop

22. End Loop

23. End

Example 8: Consider the multiplication of 101 and
10, where 101 is the multiplicand and 10 is the
multiplier. As there are three multiplicand bits of 101
and two multiplier bits of 10, a tree is set with three
multiplicand nodes (orange colored nodes) A,A,A,,
where A, =1, A; =0, Ay = 1, at the second layer.
Each multiplicand node has two successive multiplier
nodes (red colored nodes) B, B, at the third layer of
the tree, where B; = 1, B, = 0. At the fourth layer of
the tree, the partial product nodes are produced (blue
colored nodes) by connecting its predecessor nodes
which are given below:

Poo =Ag.By=1.0=10
Pyy=Ag.By=11=1
P o =A,.By =0.0=0
P,=A.B,=01=0
P,y =A,.By=1.0=0
Py =A,.B,=11=1

This is the first step of the proposed multiplication
method. At the last layer, the terminal PPAN nodes
are produced by connecting the diagonal PPN nodes
to get the final result 1010 which are shown below:

My =Py =0

My=Po+Py;=0+1=1

My=P,0+P,=0+0=0
My=P,, =1

So, the result of the multiplication is MM, M, M, =
1010.

This is the second step of the proposed
multiplication method. The whole process of
multiplication is shown in Fig. 9.

IV. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

In this section, the worst case running time
complexity of the proposed method are analyzed.
Then a comparison among the proposed approach and
existing methods are given. The analysis of space
complexity has not been focused here, rather the
worst case running time complexity is the main focus
of this paper. For this reason, there is no comparison
about space complexity for the multiplication
approaches in this paper. In addition, it is known that
the best case is the function which performs the
minimum number of steps on input data of n
elements, worst case is the function which performs
the maximum number of steps on input data of size n
and average case is the function which performs an
average number of steps on input data of n elements.
In real-time computing, the worst-case execution time
is often of particular concern since it is important to
know how much time might be needed in the worst
case to guarantee that the algorithm will always finish
on time [12]. So, the comparison is made focusing
only the worst case running time complexity in this

paper.

AND operation indicator C—» 2 o -
ADD operation indicator --—-3» Root Node
Second Layer:
Ay < Multiplicand Nodes
iz '/ \‘_\ . J/ \ Third Layer:
i\ By | Be | Ba By Multiplier Nodes
L
Step-1: AND Operation \’U/ \H/ \I/ \ﬂ'/
oy ey p o < Fourth Layer:
| Pas | Pio | | Pox | | Pao .: Partial Product Nodes
" 4 __'\/J :.__J,/' _T_,-
Step-2: ADD operation N W F BT gy
; : Addition Nodes

Fig. 8. Proposed Approach of Multiplication Using a Tree-Based Structure.

24 Green University Press

A Fast Multiplication Approach Using A Tree-Based Structure

AND Operation Indicator ——>

ADD Operation Indicator --->

&Pﬂ/\

wf\vf

gﬁ /\lv\

Ba- | B, l\j;ﬂ
1 {‘r.____
Pi 1 : P‘J 1] : : Pn 1 l: !/ Pn o \-l: Step_l
A A
RS 2 W
() ()l o

Fig. 9. Example of the Proposed Approach of Multiplication Using a Tree-Based Structure.

Definition 7: The worst case running time
complexity is the way in which the number of steps
required by an algorithm varies with the size of the
problem it is solving. The worst case running time
complexity is normally expressed as an order of
magnitude, e.g.,0(n?), where n is the size of the
problem.

Theorem 1: The worst case running time
complexity of the proposed approach of multiplication
is 0(2.log,n — 2), where n is the number of bits of
the multiplier and the multiplicand.

Proof: The above statement is proved by the
method of contradiction. Suppose, the worst case
running time complexity of the proposed approach of
multiplication is not O(2.log,n — 2).

In the proposed approach, there are only
0(2.log,n—2) steps. Each step has 0O(1)
transmission delay. As a result, the delay of making
partial products or the delay of adding partial products
is 0(1). So, the total delay of all steps is
0(2.log,n — 2). Therefore, the overall worst case
running time complexity is O (2. log,n — 2).

This contradicts the supposition that the worst case
running time complexity of the proposed approach of
multiplication is not O(2.log,n — 2). Hence, the
supposition is false and Theorem 1 is true and this

completes the proof.]

Example 9: Consider the 4 X 4 multiplier circuit
performing 0110 X 1110 multiplication. = The
multiplication using the proposed tree-based

technique is shown in Fig. 10. This figure shows that
the time complexity of a 4 X 4 multiplier circuit
is 0(2.log,4 — 2).

A comparison of worst case running time
complexity among the proposed approach and
existing methods are given in Table I. In addition,
since Fig. 10 illustrates an example of the proposed
approach of 4 x4 multiplication, the 4 x4
multiplication is also calculated for all the methods.
The results are given in Table II. From this table, it is
clearly understand that, for 4 X 4 multiplication, the
best known existing method [11] requires 4 unit of
time whereas, the proposed method requires 2 unit of
time which is the 50% lower worst case running time.

I

/_/u&\

1

/ \J/_/ ,KJ \J w/

.\.

T%/wwaxw«WV'vwvw%H%y
,j\,j,l_/_ﬂ _A/_/\w/\w,/_/ Products)
S ﬁ“‘l mIlEs

I e N, N

AND Operation Indicator ——

ADD Operation Indicator -===== >

Fig. 10. An Example of the Proposed Approach of Multiplication for 4 x 4 Multiplication.

25

Green University Press

GUB Journal of Science and Engineering, Volume 6, Issue 1, Dec 2019

This statement is also true for 8 X 8 multiplication
also. Table II shows the details results and thus it can
be said that, the proposed tree-based multiplication
approach gains 50% improvement than the existing
methods in the literature. From Table II, it can be said
that the improvement is getting higher for the more
number of bits of the multiplication.

Table I
Worst Case Running Time Complexity among the Proposed and
Existing Methods
Multiplication Approaches ‘Worst Case Running Time
Complexity
Shift-and-add [8] 0(Bn?—3n+1)
A-la-russe [9] on?»
Divide and Conquer [10] O(n.log,n)
Booth’s Recoding [11] o)
Proposed Approach 0(2.log,n — 2)

Table IT
Worst Case Running Time Complexity for Different Bits among the
Proposed and Existing Methods

No. of Existing 191 [10] | Existing | Proposed
Bits 8] [11] Approach
4 x4 53 16 8 4 2
8x8 489 64 24 8 4

16 x 16 721 256 64 16 6

32 x 32 2977 1024 | 160 32 8

64 x 64 12097 4096 | 384 64 10

V. CONCLUSIONS

This paper presents the design methodology of a
n Xn multiplier using a tree-based multiplication
approach, where n is the number of bits of
multiplicand and multiplier. In the proposed
multiplication approach, the partial products are
produced in a tree-based structure and in the tree, the
diagonal partial product nodes perform addition
operation to produce the final result. An efficient
algorithm is shown based on the proposed
multiplication technique to get the desired result of
the multiplication operation. The multiplication
operation executes in two steps: At first, partial
products are generated in a tree-based architecture.
After that, the diagonal partial products are added to
produce final results. The comparative results prove
that the proposed approach is more scalable and
performs much better than the existing [8-11]
methods.

ACKNOWLEDGEMENT
This work was partially supported by the “Research

Fund” of Green University of Bangladesh.
REFERENCES

[1] C. S. Wallace, “A suggestion for a fast multiplier”, IEEE Trans.
Electronic Computers, vol. 13, pp. 14-17, 1964.

[2] Y. Liu and S. Furber, “The design of a low power asynchronous
multiplier”, in Proc. International Symposium on Low Power
Electronics and Design, pp. 301-306, 2004.

[3] Z. Huang, “High-level optimization techniques for low-power
multiplier design”, PhD dissertation in Computer Science,
UCLA, 2003.

[4] M. C. Wen, S. J. Wang and Y. N. Lin, “Low-power parallel
multiplier with column bypassing”, Electronics Letters, vol. 41,
no. 10, pp. 581-583, 2005.

[5] I. S. A. Khater, A. Bellaouar and M. I. Elmasry, “Circuit
techniques for CMOS low-power high-performance
multipliers”, IEEE Journal on Solid-State Circuits, vol. 31, no.
10, pp. 1535-1546, 1996.

[6] S. Hong, S. Kim, M. C. Papaefthymiou and W. E. Stark, “Low
power parallel multiplier design for DSP applications through
coefficient optimization”, in Proc. 12" IEEE International
ASIC/SOC Conference, pp. 286-290, 1999.

[7]1 A. A. Nasar, “The history of algorithmic complexity”, The
Mathematics Enthusiast, vol. 13, no. 3, pp. 217-242,2016.

[8] F. de Dinechin, S. I. Filip, L. Forget and M. Kumm, “Table-
Based versus Shift-And-Add constant multipliers for FPGAs”,
26™ IEEE Symposium on Computer Arithmetic, pp. 1-8,2019.

[9] B. Smestad and K. Nikolantonakis, “Historical methods for

multiplication”, in Proc. European Summer University on the

History and Epistemology of Mathematics Conference, 2010.

—

[10] D. R. Smith, “The design of divide and conquer algorithms”,
Science of Computer Programming, vol. 5, pp. 37-58, 1985.

[11] A. Booth, “A signed binary multiplication technique”,
Quarterly Journal of Mechanics and Applied Mathematics, vol.
4, no. 2, pp. 236-240, 1951.

[12] “Best, worst and average case.” Wikipedia.org.
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
(accessed Sep. 22, 2020).

Md. Solaiman Mia received his
B.Sc. (Hons.) and M.S. degree
from the Dept. of Computer
Science and Engineering (CSE),
University of Dhaka in 2011 and
2012, respectively. He is
currently working as an Assistant
Professor in the Dept. of CSE,
Green University of Bangladesh. Before this, he
worked as an Assistant Professor in the Dept. of CSE
in Shanto-Mariam University of Creative Technology,
and Dhaka International University. He also worked
as a Lecturer in the Dept. of CSE in Hamdard
University Bangladesh and Asian University of
Bangladesh. Solaiman received the MOICT
Fellowship from Bangladesh Government for his
research work. His research interests include
Reversible Logic Synthesis, Reversible Computing,
Quantum Computing, Data Mining etc. He has some
experiences as a Reviewer in some international
journals and conferences. He is a Professional
Member of IEEE, IEEE Computer Society, Life Time
Member of Bangladesh Computer Society (BCS) and
Internet Society Bangladesh, Dhaka Chapter.

26 Green University Press

