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ABSTRACT

In this paper, we develop a unified mathematical framework for nonlinear diffusion in the human respiratory
system, coupling gas exchange with fluid dynamics in both healthy and diseased lungs. We generalize Fick’s
second law by making diffusivity concentration-dependent D(C) = D0(1 + αC), modeling effects such as in-
flammation or tissue damage. Three finite difference schemes (explicit, implicit, Crank-Nicolson) are used to
solve the nonlinear PDE, with the Crank-Nicolson method being most accurate (second-order convergence) and
stable. Analytical solutions to the linear problem confirm the numerical methodology. Through a traveling wave
transformation C(x, t) = U(z), z = x− vt, the PDE is reduced to an ODE system, allowing phase-plane analysis
of wave propagation and steady states. Theoretical and computational results are bridged by this framework,
which provides a flexible tool to investigate oxygen transport and fluid buildup in diseases such as emphysema
or pleural effusion. Predicting spatial-temporal disease progression, the results demonstrate its potential, with
applications in clinical modeling and therapeutic studies.
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1 Introduction
The lungs have thin membranes and a large surface area for efficient gas exchange. This allows oxygen to

enter the blood and carbon dioxide to be removed effectively. When lung structure or function is damaged
by inflammation, tissue breakdown, or fluid buildup, the normal transport of gases or substances is disrupted.
This can lead to disease progression that is difficult to predict from a single observation [1–4]. Mathematical
models help us understand complex biological processes. Partial differential equations describe how things like
concentration or tissue damage change over space and time. Using dynamical systems tools, we can predict
whether a small injury will heal or turn into a long-term disease. This turns unpredictable health outcomes
into a clear, mechanistic story [5–9,21,22].

A very helpful place to begin is Fick’s second law of diffusion. Classical diffusion models assume that the rate
of diffusivity is constant. But in lung diseases, this changes, tissue damage, fluid buildup, or high protease levels
alter the lung’s structure, making diffusion slower and non-uniform. One simple but commonly used extension
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is to allow diffusivity to vary with the local concentration or damage variable, e.g. D(C) = D0(1 + αC). This
simple change turns a linear equation into a nonlinear one. The solutions to this new equation can show traveling
fronts, thresholds, and multiple stable states. These behaviors match what doctors often see in patients, like
slow decline, sudden worsening, or unexpected recovery. [1–4, 10–13]. This model connects biological processes
in the lung, such as protease-antiprotease imbalance and inflammation, to the way damage spreads over time.
It shows how these small-scale mechanisms lead to large-scale patterns like enlarged airspaces or fluid buildup.
In this way, it bridges the gap between cellular events and visible disease progression. [9, 12,17–19].

Here, we follow

∂C

∂t
= ∂

∂x
(D(C)∂C

∂x
) (1)

with
D(C) =D0(1 + αC)

and we (a) compare explicit, implicit, and Crank–Nicolson finite-difference schemes with attention to stability
and accuracy, (b) derive the traveling-wave ODE system. The utility of this strategy is practical and conceptual.

Numerically stable methods help us analyze realistic scenarios in disease progression. Qualitative analysis
shows how small changes, such as higher protease levels or poor clearance, can push the system toward chronic
damage. This shift happens when the system crosses the stable manifold of the saddle point, moving from
recovery to persistent disease. Taken together, the integrated PDE → ODE (traveling-wave) → dynamical-
systems workflow gives a reproducible, interpretable pipeline for analyzing spatial pulmonary disease dynamics,
which is what we build and validate here [5–9,11–16,20]

2 Methodology
This study develops a generic mathematical theory to model the transport of compounds such as oxygen

and other solutes through the human respiratory system under non-ideal conditions. Classical models based on
Fick’s laws assume linear diffusion and constant diffusivity. However, in real physiological conditions, especially
in pathology, thickening of tissue, inflammation, or congestion may alter the ease with which materials spread.
To demonstrate this, we consider a nonlinear version of Fick’s second law where the diffusivity depends on the
local concentration of the material. We begin with the general nonlinear diffusion equation:

∂C

∂t
= ∂

∂x
(D(C)∂C

∂x
)

Here, C(x, t) represents the concentration of a substance (e.g., oxygen) at position x and time t, and D(C) is
the diffusivity, which we allow to vary with C. In this work, we use the form D(C) = D0(1 + αC), where D0

is the baseline diffusivity and α controls the strength of nonlinearity. This form reflects realistic physiological
responses, for example, increased permeability in inflamed tissue or reduced transport in damaged areas.

To solve the forthcoming PDE, we employ three finite difference methods:

1. Explicit method: which is simple to apply but requires small time steps in order to remain stable.

2. Implicit method: always stable, but will smooth out sharp gradients.

3. Crank-Nicolson method: it is a combination of the explicit and the implicit method, in which the
latter gives stability and the former gives accuracy for nonlinear problems.

We approximate the spread of concentration with respect to space and time by each technique and test their
performance on numerical stability, accuracy, and efficiency of computation. The Crank-Nicolson scheme best
maintains the shape of the concentration profile, and the implicit method guarantees stable results even with
large time steps. Second, to observe how disturbances propagate in the respiratory system, we make a travelling
wave solution C(x, t) = U(z), with z = x − vt and v being the wave speed. This is a constant concentration
profile propagating at constant velocity, a common pattern for biological spread.

Substituting this into the PDE reduces it to a set of ordinary differential equations (ODEs). Reducing, we
have the following first-order system:

⎧⎪⎪⎨⎪⎪⎩

dU
dz
=W (z)

dW
dz
= − v

D0(1+αU)
W − α

(1+αU)
W 2
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This is a general ODE system that applies to any one-dimensional nonlinear diffusion process with concentration-
dependent diffusivity. It does not depend on the specific form of D(U), making it widely applicable across
different physiological contexts. All simulations and visualizations are performed in MATLAB. This approach
provides a unified framework, one that links nonlinear diffusion modeling with traveling wave analysis, to study
transport processes in the lung in a way that is both mathematically rigorous and physiologically relevant.

3 Results and Discussion
In this section, we first describe the Explicit, Implicit and Crank-Nicolson numerical methods and determine

the numerical solution. Then compare their accuracy. After that, derive the steady state and numerical
solution and compare them. And lastly, derive the unified mathematical framework ODE system for the human
respiratory problem using the traveling wave solution.

3.1 Numerical Solution
Now, we solve the 1D nonlinear diffusion partial differential equation (1) with D(C) = D0(1 + αC), on

x ∈ [0, L] with Dirichlet or Neumann boundary conditions and initial condition C(x,0) = C0(x) Notation: grid
xi = i△ x for i = 0, ....,N ; time levels tn = n△ t

Explicit Method
This is a forward-in-time, centred-in-space (FTCS) scheme.
Discretized Form:

Cn+1
i = Cn

i +
∆t

∆x2
[Di+ 1

2
(Cn

i+1 −Cn
i ) −Di− 1

2
(Cn

i −Cn
i−1)] (2)

Stability Condition:

γ = Dmax∆t

∆x2
≲ 1

2

Where Dmax is the maximum diffusivity in the domain.
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(a) Concentration Profile (b) Diffusion coefficient

(c) Concentration Difference (d) Heatmap

Figure 3.1: Numerical solution of explicit method (α = 0.5,D0 = 0.1) (a) propagation of concentration from
initial (blue) toward final (red) profile as an illustration of nonlinear diffusion in space, (b) concentration-
dependent diffusion coefficient D(C), reflecting reduced transport in regions of higher concentration, (c) initial
versus final state difference with emphasis on zones of localized depletion, (d) heatmap of terminal concentration
distribution with spatial solute transport heterogeneity.

Fig. 1(a) represents the initial and final concentration profiles of a substance over space (x). The blue line
shows the initial concentration profile, while the red line represents how the concentration evolves after diffusion
occurs. The peak in the initial profile spreads out over time, illustrating the nonlinear diffusion process.

Fig. 1(b) shows the diffusion coefficient D(C) in relation to spatial position (x). The pink curve depicts
the variability of diffusivity as it relates to concentration, representing authentic physiological circumstances
including alveolar injury or inflammation. Elevated concentrations result in diminished diffusivity, signifying a
decrease in transport efficiency within impaired areas.

Fig. 1(c) demonstrates the alteration of concentration (△C) from the initial to the final state. The black line
represents where the concentration has risen (positive values) or fallen (negative values) as a result of diffusion.
The trough close to x = 35 shows an area where the concentration fell considerably.

Fig. 1(d) provides the distribution of the final concentration C(x) along the spatial variable (x). Warm
colors, such as yellow, represent high concentrations, while cold colors, like blue, represent low concentrations.
The gradient provides a spatial indication of the distribution of the substance after the diffusion process.
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Implicit Method
This scheme uses fully backward time discretization:
Discretized Form:

Cn+1
i = Cn

i +
∆t

∆x2
[Dn+1

i+ 1
2
(Cn+1

i+1 −Cn+1
i ) −Dn+1

i− 1
2
(Cn+1

i −Cn+1
i−1 )] (3)

which is nonlinear because Cn+1
i±1/2 depends on Cn+1. We solve at each time step using Picard iteration.

(a) Concentration profile (b) Diffusion coefficient

(c) Concentration Difference (d) Heatmap

Figure 3.2: Numerical solution of implicit method ( α = 0.5,D0 = 0.1) (a) initial and final concentration profiles,
with stable long-time behavior, (b) spatial variations in diffusivity that reflect physiological changes in affected
tissue, (c) concentration change over initial and final states with smoothing out of gradients by the implicit
scheme, (d) the heatmap depicts the resulting distribution, with diffused but stable patterns as opposed to the
explicit scheme.

Crank-Nicolson Method
This is an implicit-explicit average:
Discretized Form:

Cn+1
i = Cn

i +
∆t

2∆x2
[Dn+1

i+ 1
2
(Cn+1

i+1 −Cn+1
i ) −Dn+1

i− 1
2
(Cn+1

i −Cn+1
i−1 ) +Dn

i+ 1
2
(Cn

i+1 −Cn
i ) −Dn

i− 1
2
(Cn

i −Cn
i−1)] (4)
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(a) Concentration profile (b) Diffusion coefficient

(c) Concentration Difference (d) Heatmap

Figure 3.3: Numerical solution of implicit method: (α = 0.5,D0 = 0.1) (a) initial and final concentration
profiles with the correct reproduction of nonlinear diffusion, (b) diffusion coefficient distribution, maintaining
spatial variability, (c) concentration characteristics, showing high fidelity of this approach relative to explicit
and implicit approaches, (d) heatmap of final distribution, showing stable and accurate solution for nonlinear
transport

Table 3.1: Comparison of Numerical Methods

METHOD TIME ACCURACY STABILITY TYPE REQUIRES ITERATION
Explicit First-order Conditional Explicit No
Implicit First-order Unconditional Fully implicit Yes
Crank-Nicolson Second-order Unconditional Semi implicit Yes

3.2 Accuracy Comparison
The Crank-Nicolson scheme is very accurate in time, much more so than explicit and implicit schemes, as

far as accuracy is concerned. This result confirms its use in high-fidelity simulations, especially in simulating
small oxygen transport changes that result from disease processes
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Figure 3.4: Final concentration profiles show similar qualitative behavior, but quantitative differences in ac-
curacy. Error plots reveal that the explicit scheme accumulates boundary errors, while the implicit method
over-smooths. Crank–Nicolson achieves second-order accuracy with symmetric error reduction.

This plot contrasts three numerical schemes, Explicit, Implicit, and Crank-Nicolson, to numerically solve a
nonlinear diffusion equation. The top left figure is the end concentration profiles, with the three schemes produc-
ing very similar overall shapes but different levels of smoothness and stability. The top-right plot demonstrates
the absolute error between the Explicit and Implicit schemes and the Crank-Nicolson solution, revealing that the
Explicit method has more error, especially around the boundaries, whereas the Implicit method is closer to the
actual value. Both ends have the same magnitude error. The error decreases towards the centre and increases
towards the edges. The bottom-left heatmap delineates the terminal concentration from the Crank-Nicolson
scheme, with a symmetric, smooth distribution of the substance across space. The bottom-right plot is the
concentration-dependent diffusion coefficient D(C) describing how the transport characteristics alternate based
on the substance distribution. The panels together demonstrate that the Crank-Nicolson scheme produces a
stable and correct solution and is therefore a stable choice to model nonlinear diffusion in biological systems
like the lung.

3.3 Steady State Solution
Fick’s second law in its nonlinear form is:

∂C

∂t
= ∂

∂x
(D(C)∂C

∂x
)

With C(x, t) = oxygen concentration
D(C) =D0(1 + αC), Concentration-dependent diffusivity
This is a nonlinear PDE due to the dependence of D on C. For steady state solution:
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∂

∂x
(D(C) ∂C

∂x
) = 0

(D(C) ∂C
∂x
) = constant = q(flux constant)

Substituting D(C) =D0(1 + αC) in (10)

D0(1 + αC)
∂C

∂x
= q

∂C

∂x
= q

D0(1 + αC)
Separating variables and integrating, we have

∫ (1 + αC)dC = ∫
q

D0
dx

C + α

2
C2 = q

D0
x +A (5)

Applying the boundary conditions, we can determine q and A. Equation (5) gives a quadratic equation in C,
solvable analytically.

α

2
C2 +C − S(x) = 0, S(x) ∶= q

D0
x +A,

with explicit solution

C(x) =
−1 ±

√
1 + 2αS(x)
α

.

For α > 0 we select the physically admissible positive branch:

C(x) =
−1 +

√
1 + 2α ( q

D0
x +A)

α
. (6)

Boundary conditions determine q and A. For example, specifying C(0) = C0 fixes

A = C0 +
α

2
C2

0 . (7)

A zero flux boundary condition (homogeneous Neumann) at x = L demands q = 0, and a spatially uniform
steady state C(x) = C0 is obtained. Non-trivial profiles consequently have either a specified flux (q = q0) or
mixed Dirichlet boundary conditions.

To verify the analytic solution, we compare it with the numerically computed steady profile from the Crank–
Nicolson simulation. We determine a best-fit flux q through minimizing the L2 discrepancy between analytic
and numerical profiles. For D0 = 0.1, α = 0.5 and C(0) = (chosen C0), the best fit flux is q = (calculated value)
and the associated analytic profile is the same as the numerical profile with error L2 = and the largest error =
is the analytic/numeric graph and point error.
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Figure 3.5: Comparison of the numerical final profile (solid black) and the analytical steady-state solution
(dashed orange) for concentration (C(x)) as a function of space (x), illustrating the agreement between nu-
merical simulations and theoretical predictions

This graph differentiates the analytical steady-state solution and the numerical final profile achieved by
employing a numerical method. The x-axis represents the spatial position and the C-axis represents the con-
centration. The graph shows the extent to which the numerical method reproduces the analytical solution,
demonstrating the validity of the numerical approach.

Figure 3.6: Distribution of pointwise error between the numerical solution and the analytical steady-state
solution, with L2-norm error L2 = 3.0 × 10−2 and maximum error = 5.34 × 10−2

Pointwise error between the numerical and analytical solutions. The x-axis represents spatial position, and
the y-axis shows the error magnitude. The title displays the L2-norm of the error (L2 = 3.0 × 10−2) and the
maximum pointwise error (max = 5.34× 10−2). This plot quantifies the numerical method’s accuracy across the
domain

3.4 Traveling Wave Solution
The form of a traveling wave solution

C(x, t) = U(z), z = x − vt

Here, z = a new variable representing a coordinate moving with speed v, and U(z) = the shape of the wave
profile.

Now, we compute all derivatives in terms of z:

∂C

∂t
= dU

dz
⋅ ∂z
∂t

∂C

∂t
= dU

dz
⋅ (−v)

∂C

∂t
= −v dU

dz
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Again,
∂C

∂x
= dU

dz
⋅ ∂z
∂x

∂C

∂x
= dU

dz

Substituting (4) and (5) into (1), we have

−v dU
dz
= d

dz
(D(U)dU

dz
) ∂z
∂x

d

dz
(D(U)dU

dz
) + v dU

dz
= 0 (6)

Equation (6) is now a second-order nonlinear ODE in U(z).

Reduction to First-Order System:

Let,

W (z) = dU

dz
(7)

∴ dW

dz
= d

dz
(dU
dz
)

dW

dz
= d2U

dz2

From (6):
d

dz
(D(U)W ) + vW = 0

d

dz
(D(U)) ⋅W +D(U) ⋅ dW

dz
+ vW = 0

dD

dU
⋅ dU
dz
⋅W +D(U) ⋅ dW

dz
+ vW = 0

dD

dU
⋅W 2 +D(U) ⋅ dW

dz
+ vW = 0

D(U) ⋅ dW
dz
= −vW − dD

dU
⋅W 2

dW

dz
= − v

D(U)W −
1

D(U)
dD

dU
⋅W 2 (8)

Combining (7) and (8), we obtain the first-order autonomous system:

⎧⎪⎪⎨⎪⎪⎩

dU
dz
=W (z)

dW
dz
= − v

D(U)
W − 1

D(U)
dD
dU
⋅W 2 (9)

Special Case:

If D(U) =D0(1 + αU), then
dD

dU
=D0α

Then equation (9) becomes,
⎧⎪⎪⎨⎪⎪⎩

dU
dz
=W (z)

dW
dz
= − v

D0(1+αU)
W − D0α

D0(1+αU)
W 2

⎧⎪⎪⎨⎪⎪⎩

dU
dz
=W (z)

dW
dz
= − v

D0(1+αU)
W − α

(1+αU)
W 2 (10)
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Equation (10) is the desired system of ODEs derived from (1) using the traveling wave solution.

Figure 3.7: Plot of the traveling wave solution U(z) as a function of spatial coordinate z = x−vt, demonstrating
the propagation of concentration in human respiratory disease. The negative slope indicates the decay of
concentration activity over space.

Fig. 7 represents the traveling wave solution U(z), which shows the concentration profile as it propagates
through space (z). The curve is plotted against the spatial coordinate z, demonstrating how concentration
decreases monotonically with increasing z. This behavior reflects the spatial spread and decay of concentration
activity, a key factor in the progression of pulmonary disease. The negative slope highlights the wastage of
concentration as it moves through the lung tissue.

4 Conclusions
In the present study, a nonlinear diffusion model was developed to describe transport processes in the

human respiratory system. The model incorporated a concentration-dependent diffusion coefficient expressed
as D(C) =D0(1+αC), which allowed the simulation of heterogeneous transport kinetics characteristic of diseased
lung tissue. Explicit, implicit, and Crank–Nicolson numerical methods were used to solve the governing partial
differential equation.

Numerical experiments were carried out to compare the accuracy, stability, and computational efficiency of
the three methods. The explicit method provided accurate results for sufficiently small time steps; however, it
was limited by stability constraints. The implicit method was stable for larger time steps but produced slightly
more diffused solutions. The Crank–Nicolson method achieved second-order accuracy in time and had a good
balance between stability and maintaining sharp profiles.

An analytical steady-state solution was obtained for the model with constant-flux boundary conditions.
The analytical solution was employed to confirm the numerical findings, with excellent agreement in both L2

and maximum error norms. Computational performance was also assessed, pointing out the trade-off between
accuracy and efficiency among the three schemes.
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Lastly, the model was taken to a traveling wave context, minimizing the partial differential equation to a
system of ordinary differential equations. The reduction gave further insights into the propagation of concen-
tration change in respiratory tissue. In summary, nonlinear diffusion models help us understand how diseases
spread in the lungs. When combined with stable numerical methods, they provide reliable simulations of disease
progression. These models can support future clinical studies and improve therapeutic strategies.
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