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ABSTRACT 
 

In this paper we have proved a classical characterization of modular join-semilattices. We 
have also given some characterizations of modular ideals of join-semilattices through 
congruences.  
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1. Introduction 
A classical characterization in lattices is:  

• A lattice L is modular if and only if it has no sublattice isomorphic to the 
pentagonal lattice [5, 6].  

For the pentagonal lattice see Figure 1. 
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Figure-1  

Grätzer and Schmidt [4] first introduced the notion of modularity in semilattices. 
Rhodes [7] characterized the modular meet-semilattices like as the classical 
characterization for modular lattice. In section 3, we prove these results for join-
semilattices. We claim that our arguments make the proof easier than Rhodes’ proof. 
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Cornish [2] characterized the modular join-semilattices in terms of congruences. The 
notion of standard and distributive element (ideal) [3] has been introduced to study on 
lattices in general. Talukder and Noor [8, 9] introduced the notion of a modular element 
(ideal) in a join-semilattice. For this notion we can study the join-semilattices in general. 
Talukder and Noor [8, 9] proved some parallel results, of Cornish [2], for modular ideals 
in a join-semilattice. In section 4, we give some more results which characterize modular 
ideal in a join-semilattice. This paper is based on [1]. 
 
2. Preliminaries 

A join-semilattice S: = ∨;S  is an algebra of type 2  that satisfies, for all a, b, c∈S  

(i)                                 (  is idempotent)  aaa =∨ ∨

(ii)                          (∨  is commutative)  abba ∨=∨

(iii) a∨  (b∨ c) = (a b) c       (∨  is associative).  ∨ ∨

We will denote a join-semilattice as algebra, by S: = ∨;S  or simply S if there is no 
confusion. 

A join-semilattice S is said to be modular join-semilattice if for all x, y, z∈S with z x, 
x y z, implies  for some 

≤
≤ ∨ zyx ∨= 1 yy ≤1  and Sy ∈1 . 

The set [a, b] = {x | a  x ≤  b} is called the closed interval from a to b. Clearly, [a, b] is a 
join-semilattice. 

≤

Let S and T be two join-semilattices. A map TS →ψ :  is said to be a homomorphism if 
 is a join preserving map. That is, for all a, bψ ∈S,  

 )()()( baba ψ∨ψ=∨ψ in T 

A one-to-one homomorphism is called a monomorphism or an embedding. A onto 
homomorphism is called an epimorphism. If a map BA →ψ :  is an epimorphism, we say 
that B is a homomorphic image of A. An epimorphism is called an isomorphism if it is 
one-to-one map. 

Let S be a join-semilattice. A non empty set I of S is called an ideal if,  

(i) a, b∈I implies a∨ b∈I and 

(ii) a∈S, b∈I with a≤ b implies a∈I.  

Equivalently by [7], a nonempty subset I of a join-semilattice S is called an ideal if,  

  

,Iba ∈∨  if and only if Ia∈ and Ib∈  

for all a, b∈S. 
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3. A classical characterization 
Let P and Q be two ordered sets. A map  is said to be order preserving if f(a)≤  
f(b) whenever a b. 

QPf →:
≤

Lemma 3.1 Let L and K be two join-semilattices. Every homomorphism  is an 
order preserving map.  

KLf →:

Proof: Let with . Since is a homomorphism so, 
. This implies 

Lba ∈,
)( baf =∨

ba ≤
)(b

KLf →:
()( bfaf)()( fbfaf =∨ )≤  in K. Hence is an order 

preserving map. 
f

A join-semilattice R is called a retract of a join-semilattice S if there are homomorphisms 
 and  such thatRSf →: SRg →: RIgf =o

RR I=↑

, the identity map on R. Clearly, f is an 
epimorphism and g is a monomorphism. If R is a subsemilattice of S and there exists an 
epimorphism  such that , then R is certainly a retract of S. In this case 
h is called a retraction. 

RS →:h h

The dual (that is, for meet-semilattice) of the following theorem stated in [7] without 
proof and the proof is given in [11]. Here we prove the result for a join-semilattice as we 
need in this paper. 

Theorem 3.2 A retract of a modular join-semilattice is a modular join-semilattice.  

Proof: Suppose S is an modular join-semilattice and let R be a retract of S. Then there 
exist an epimorphism  and a monomorphism such that . 
Let with 

RSf →: SRg →: RIgf =o

Rzyx ∈,, xz ≤  such that zyx ∨≤ . Then by lemma 3.1 ),() zg∨() ygx(g ≤  as 
g is a homomorphism. Also xz ≤  implies )()( xgzg ≤ . Since S is modular so there exist 

 such that )(yg≤1y ),(1 zgy ∨)(xg =  where .1 Sy ∈  Thus  
 This implies 

))(( xgf o
).z)(g()( 1 fyf o∨= zyf ∨x = )( 1 , where )(1 ygy ≤  implies 

. Therefore R is modular. y=y))(gfy ≤ ()1 of (

For any a, b∈S, the interval [a, b]={x | a≤ x≤ b} is clearly a join-semilattice. We have 
the following result: 

Theorem 3.3 Let S be a join-semilattice. For a, b∈S, the interval [a, b] is retract of S.  

Proof: Define a map such that  ],[: baSf →

⎩
⎨
⎧

≤∨
≤∨∨

=
  bax if          b

bax if    ax
xf )(  

let , this implies . Hence ],[ bay∈ bya ≤≤ .)( yayyf =∨=  Therefore, clearly is an 
epimporphism. Thus [a, b] is a retract of S. 

f

We can easily prove that if B is a retract of A and C is a retract of B, then C is a retract 
of A. Now we prove the following important characterization of modular join-semilattice. 
Rodes [7] proved the result for the case of meet-semilattice. Our case is the dual of meet-
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semilattice. Moreover our argument makes the proof more simpler than the proof of 
Rodes [7]. 

Theorem 3. 4 Let S be a join-semilattice. Then the followings are equivalent:  

(a) S is modular;  

(b) S is directed bellow and it does not contain a retract isomorphic to the pentagonal 
lattice.  

Proof: . Suppose S is a modular join semi lattice, then each pair of elements of S 
has a lower bound. Let R be a retract of S, then by theorem 3.2 R is a modular join-
semilattice. Hence R can not be isomorphic to the pentagonal lattice.  

)()( ba ⇒

 ) Suppose S is directed below non modular join–semilattice. We shall construct 
a retract of S isomorphic to the pentagonal lattice. Since S is non modular, there exist 

here  with 

()( ab ⇒

Scba ∈,,  w bac ∨≤ ca ≤ such that ayc ∨≠  for all  Clearly 
. Since S is directed below, there is 

.by ≤
cbba ∨=∨ .,bal ≤  Set },,{ balL ,, acb ∨= . We 

show that L is a retract of . Let ]b∨,[ al }.,c|] bwb,a[{ lwW ≤∨∈=  

Define iven by, Lbalf →∨ ],[: g

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤∨
∈∨≤≤
∈∨≤≤≤

≤≤
∈

=

cx and bx if      ba
Wz  someforz ax and bx if           a

Wz all zforax and cxb,x if            c
cx and bx if            b

Wx if             l

xf
,
,
,
,

)(  

Clearly, is well defined. We must have to show that is a homomorphism. Let 
 

f
a ∨

f
].,[, blyx ∈

Case 1:  then  and .)( axf = bx ≤ zax ∨≤ for some Wz∈ . Since  we have 
 for each . 

bx ≤
byx ≤∨ ]ba ∨,[l∈y

Suppose  then  and .)( ayf = by ≤ way ∨≤ for some w W∈ . So and byx ≤∨
wayx ∨=∨  some , Thus Ww∈ ).()( yfxxf ∨() fay ==∨  

Suppose , then the proof is trival. lyf =)(
Suppose , then  cyf =)( by ≤ , cy ≤ and pay ∨≤  for every . So Wp∈

payx ∨≤∨ for every . Since Wp∈ zax ∨≤  for some Wz∈ , we have ccax =∨≤  
so cyx ≤∨ , hence )x () yf∨(fc)yx(f ==∨ . 

Suppose },{)( babyf ∨∈ . Then y c≤ so cyx ≤∨  and  hence ,byx ≤∨
))( yyxf ()( fxfba ∨=∨=∨ . 

Case 2: Then  .)( lxf = Wx∈
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Suppose then . Hence ,)( lyf = Wy∈ ,Wyx ∈∨ so )()()( yfxflyxf ∨==∨ . 

Suppose  Then and .)( ayf = byx ≤∨ zayx ∨=∨  for some Wz∈ . 

Henve )()()( yfxfayxf ∨==∨  

Suppose . Then and byf =)( byx ≤∨ cyx ≤∨ , hence )()()( yfxfbyxf ∨==∨  

Suppose then , ,)( cyf = byx ≤∨ cyx ≤∨  and zayx ∨≤∨ for ever , hence 
 

Wz∈
)y(),( fyxf = )(xfc ∨=

Suppose  Then bayf ∨=)( . byx ≤∨ and cyx ≤∨ hence 
)y()( fyxf ∨() xfba =∨=∨ . 

Case 3: . Then baxf ∨=)( bx ≤  and cx ≤ . Hence for any ],[ baly ∨∈ . We have 
 and byx ≤∨ cyx ≤∨ . Therefore )y()(( fxfbx ∨) ayf =∨=∨  

Case 4:  Then  and .)( bxf = bx ≤ cx ≤ . Since cx ≤ so cyx ≤∨  for all . 
Suppose , then 

],[ baly ∨∈
],[)( blyf ∈ by ≤ and hence byx ≤∨ . Therefore 

. Suppose)(y)(xfb ==) ∨( fyxf ∨ }, ba ∨,{ ca)(yf ∈ , then by ≤ and hence  
therefore . 

byx ≤∨
)(yf)x ∨(fb =)( yxf =∨ a ∨

Case 5:  Then .)( cxf = cxbx ≤≤ ,  and zax ∨≤  for every Wz∈ . Therefore for every 
we have  and Wy∈ by ≤x ∨ zayx ∨≤∨ for every Wz∈ . 

Suppose Then and hence }.,,{)( calyf ∈ cy ≤ cyx ≤∨ . 
Therefore  )(yf∨)(xf)( cyxf ==∨

Suppose  then }.,{)( babyf ∨∈ cy ≤  and hence cyx ≤∨ . Therefore 
)(( yyxf )() fxfba ∨=∨=∨ . 

This prove that L is an epimorphism image of  and since it is obviously a 
subjoin-semilattice, L is a retract of  . Hence by theorem 3.3 L is a retract of S. 
This completes the proof. 

],[ bal ∨
],[ bal ∨

 
4. Quotient structure 
An equivalence relation on a join-semilattice S is called a congruence relation on S if Θ

)(Θ≡ ba  and )(Θ≡ dc implies that )(Θ∨≡∨ dbca  

where a, b, c, d∈S. 

Let S be a join-semilattice and I be an ideal of S. Then the congruence Θ (I), defined by  

),))((( SyxIyx ∈Θ≡ if and only if iyix ∨=∨ for some i I∈ . 

has I as a congruence class. If S is downwards directed then Θ (I) is the smallest 
congruence of S containing I. We denote the quotient lattice of all the congruence classes 
of (I) by /Θ .  Θ S )(I
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Now we have the following result. 
Theorem 4.1 Let S be a modular join semilattice. The every ideal J of S is modular and 
moreover S / (J) is modular.  Θ

The mapping  is said to be canonical homomorphism if for all x∈S,  )(/: ISS Θ→ϕ

)(][)( Ixx Θ=ϕ  

The following characterizations of modular join semilattice due to [9]. 
Theorem 4.2 (Theorem 2.2 [10]) Let M be an ideal of a join semilattice directed below S. 
Then M is modular if and only if  for all KKK KMM ↑∩Θ=↑Θ )()( ∈I(S).  

Theorem 4.3 (Theorem 3.4 [10]) Let S be a join semilattice directed below and let J be 
an ideal of S. For an ideal I, let )(/: ISS Θ→ϕ ) is the canonical homomorphism. 
Then the following conditions are equivalent:  

(i) J is modular,  

(ii) For any I∈I(S) and x∈I  implies that xJ∨ ≡ jΘ (I) for some j∈J,  

(iii) ϕ (I ) =J∨ ϕ (J),  

(iv)   JIJ ∨=ϕϕ− )(1

(v) is an ideal of  )(Jϕ ).(/ IS Θ

Now we prove our main results. 
Theorem 4.4 Let S be a join-semilattice and J be an ideal of S, for an ideal I of S, if 

 is the canonical homomorphism then the following condition are 
equivalent:  

)(/: ISS Θ→ϕ

(i) J is modular.  
(ii) For any I∈I(S),ϕ (J)=(ϕ (J)] in )(/ IS Θ .  

(iii) For any I,K∈I(S),ϕ (J K∨ )=(ϕ (J)]∨ (ϕ (K)] in )(/ IS Θ . 

Proof:  Suppose (i) holds. So by (v) of theorem 4.3 )()( iii ⇒ )(Jϕ  is an ideal of 
. Since)I ((/S Θ )Jϕ is an ideal it is obvious that )](()( JJ ϕ=ϕ  in . Thus (ii) 

holds. 
)(IΘ/S

(ii)  Suppose (ii) holds. Hence by (iii) of theorem 4.3 we have  
= . Now

)(iii⇒
()(J ϕ⊆ϕ

)( KJ ∨ϕ
)] )()( KJJ ∨(()]( KJ ϕ∨ ϕ=ϕ . So by (ii) )K()](( JJ ∨ϕ=ϕ . Again 
)()( JK ϕ() JK =∨ϕ ϕ⊆ . 

 So = . Hence )()](( JK ϕ⊆ϕ )( KJ ∨ϕ )()](()](( KJKJ ∨ϕ⊆ϕ∨ϕ .  

Therefore = )  in )( KJ ∨ϕ ] )(/ IS(()](( KJ ϕ∨ϕ Θ . 

(iii) Suppose (iii) holds. If in (iii) we replace )(ii⇒ K  by we get     J
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       )](()](()( JJJJ ϕ∨ϕ=∨ϕ , Hence )].(()( JJ ϕ=ϕ  

(ii)  Suppose (ii) holds.  )(i⇒

Theorem 5 Let S be a join semilattice and let J be an ideal of S. The following conditions 
are equivalent:  

(i) J is modular.  

(ii) The canonical map ψ :K/ (JΘ ∩K) J∨K/→ Θ (J) for any K∈I(S) is one-to-one.  

(iii) The canonical map ψ :K/Θ (J∩K) J∨K/→ Θ (J) for any K∈I(S) is onto.  

(iv) The canonical mapψ :K/Θ (J∩K) J K/→ ∨ Θ (J) for any K∈I(S) is an isomorphism.  

Proof. (i)  (ii). Let [x] (J) = [y]⇔ Θ Θ (J) for x, y ∈  K. By the Theorem 4.2 we have 
[x] (J  K) = [y] (J ∩K). The reverse argument gives us the reverse implication. Θ ∩ Θ

(i)  (iii). Let [x] (J)∈  J∨K=⇔ Θ Θ (J). This implies x∈  J∨  K. Hence by the Theorem 
4.3 we have x  k≡ Θ (J K∩ ) for some k∈  K. Hence by Theorem 4.2 we have  

x k (J K). Hence [x] (J) = [k]≡ Θ ∩ Θ Θ (J ∩K) for some k ∈  K. The reverse argument 
gives us the reverse implication.  

(i)  (iv). Let [x], [y]∈  K/ (J⇔ Θ ∩K). Then ψ ([x] [y]) = ∨ ψ ([x y] = [x y]Θ (J) = 
[x] (J)∨ [y] (J) = 

∨ ∨
Θ Θ ψ [x]∨ψ [y]: Hence by (ii) and (iii) we have (iv) holds. The 

reverse argument give us the reverse implication. 
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