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ABSTRACT 

The purpose of this paper is to introduce p-Γ-rings and a few of their most basic 
properties. Then these have been applied to investigate whether the most important properties 
like commutativty, being radical class and some other characterizations are preserved 
under our defined p-Γ-rings.  
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1. Introduction:  

The idea of a Γ-ring as the generalization of a ring was introduced by N. Nobusawa [8] 
and obtained analogues of the Wedderburn Theorem for Γ-rings with minimum condition 
on left ideals. W.E. Barnes [4] improved the idea of N. Nobusawa and gave the definition 
of Γ-rings which are more general than that of N. Nobusawa [8]. The notion of Jacobson 
radical was introduced by Coppape and Luh [5] and they developed some radical 
properties.  

In this paper, we study various properties of p-Γ-rings. In 3, we obtain a basic theorem 
like: if I is an ideal of M, then M/I is a p-Γ-ring. (Th. 3.2), a  p-Γ-ring is commutative(Th. 
3.8) and if if ℜ is a class of all p-Γ-ring, then ℜ is a radical class (3.12). 

In 4, we obtain a couple of necessary and sufficient conditions for p-Γ-rings (Th.4.1). By 
this theorem, we show that every finitely generated ideal is principal and the intersection 
of any two principal ideals of R is principal (4.2). Furthermore, we have seen that (1) The 
Jacobson radical Ј(M) of M is zero, (2) M is a semi-simple ring if and only if it is a 
Noetherian p-Γ-ring, (3) The p-Γ-ring M without zero-divisor is a field, (4) Every ideal of 
M is non-singular, (5) M is left and right semi-hereditary (3.3 ). We have also proved: M 
is closed under homomorphic image; if ℜ is a class of all p-Γ-ring, then ℜ is a radical 
class. 

2. Preliminaries:    

Let M and Γ be additive abelian groups. If there is a mapping M×Γ×M→M satisfying, for 
all a, b, c∈M; α, β, γ∈Γ 
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(i)    (a +b)αc = aαc + bαc 

(ii)    a(α + β)b = aαb + aβb 

(iii)    aα(b + c) = aαb + aαc   and 

(iv)   (aαb)βc = aα(bβc),  

then M is called a Γ-ring. This Γ-ring is due to Barnes [4]. 

Ideal of Γ-rings: A right (left) ideal of a Γ-ring M is an additive subgroup I of M such 
that IΓM = {aαb | a∈A α∈Γ, b∈M} ⊆ I(MΓI ⊆ I). If I is both a right ideal and a left ideal 
then we say that I is an ideal, or redundantly, a two-sided ideal of M. 

        It is clear that the intersection of any number of left (respectively right or two-sided) 
ideal of M is also a left (respectively right or two-sided) ideal of M.  

All other definitions and standard results used in this paper are due to Barnes [4]. 

3. p-Γ-Rings: 

Definition: A Γ-ring M is said to be a p-Γ-ring if for every x∈M, there exists γ∈Γ such 
that (xγ)px = x for some prime p > 1 with px = 0. 

 

Example. Let M = ( Z5, +, . ) and Γ = ( Z5, + ). Then M is a p-Γ-ring. 

 

Lemma 3.1. Let M be a p-Γ-ring. Then every right ideal I of M is a two-sided ideal of M. 

 

Proof. We first observe that M has no nonzero nilpotent elements. For if x ≠ 0, then (xγ)px 

= x implies that (xγ)px ≠ 0 for some prime p and some γ∈Γ. Next, let a∈I and suppose 
(aγ)pa = a for some prime p. Then {(aγ)p-1a}γ{(aγ)p-1a} = {(aγ)p-1aγ(aγ)p-1a = (aγ)p(aγ)p-1a 
= (aγ)paγ(aγ)p-2a = aγ(aγ)p-2a = (aγ)p-1a, so (aγ)p-1a is an idempotent element.  

  Next, we show that an idempotent element commutes with every elements of M. To 
show this let e be an idempotent element of M. Then for any x∈M, (xγe − eγxγe)γ(xγe − 
eγxγe) = 0 = (eγx − eγxγe)γ(eγx − eγxγe).  Thus, xγe − eγxγe  =  eγx − eγxγe  =  0  and  so 
xγe = eγx, i.e., e commutes with every elements of M. 

 Now, for any r∈M and a∈I with  (aγ)pa  =  a,  rγa  =  rγ(aγ)pa  =                           

 rγ(aγ)p-1(aγ)a = (aγ)p-1aγrγa = (aγ)(aγ)p-2aγrγa = aγ(aγ)p-1rγa = aγr/, where  

r/ = (aγ)p-1rγa∈M. Since aγr/∈I, so does rγa and so I is a two-sided ideal. ■ 
 

Lemma 3.2. Let M be a p-Γ-ring and I an ideal of M. Then M/I is   p-Γ-ring.     
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Proof. Let x∈M/I, then x = m + I for all m∈M with (mγ)pm = m, p > 1 and γ∈Γ. Now, 
(xγ)px = (m + I)γ}p(m + I) = {mγ + I}p(m + I) = {(mγ)p + I}(m + I) = (mγ)pm + I = m + I 
= x. Thus, M/I is a p-Γ-ring. ■ 

 

Lemma 3.3. Let D be a division p-Γ-ring of characteristic p ≠ 0 and let C be the center of 

D. Suppose that a∈D, a∉C is such that aaa
hp =)γ(  for some h > 0. Then there exists an 

element x∈D such that xγaγx-1 ≠ a. 

 

Proof. We define the mapping f: D → D by f(x) = xγa − aγx for every x∈D. Now, )(2 xf  
= ff(x) = f(xγa − aγx) = (xγa − aγx)γa − aγ(xγa − aγx) = xγaγa − 2aγxγa + aγaγx. 

     Again, )(3 xf  = f(xγaγa − 2aγxγa + aγaγx) = (xγaγa − 2aγxγa + aγaγx)γa  =  
(xγaγaγa  −  3aγxγaγa  −  3aγaγxγa  +  aγaγaγx). Thus, a simple computation yields that  

              ,γ)γ()γ(γ)( 11 xaaaaxxf ppp −− −=  where charD = p, a prime. 

Continuing we obtain that  

       ,)()()( xaaaaxxf
kkh ppp γγγγ −=  

 for all k ≥ 0. Let P denote the prime field of C; since a is algebraic over P, P(a) must be 

a finite field having pm elements, say. Hence  aaa
mp =)γ(  and so  

         ).()()()( xfxaaxxaaaxxf
mmm ppp =−=−= γγγγγγ   

Thus, we see that the function .ff
mp =    

If r∈P(a), then f(rγx) = (rγx)γa − aγ(rγx) = rγ(xγa − aγx) = rγf(x), since r commutes with 
a. If I denotes the identity map on D and rI denotes the map defined by (rI)(x) = rγx, we 
have that fo(rI) = (rI)of, for all r∈P(a). Since all elements of P(a) satisfy the polynomial 

tt
mp − , we find that  ).()( rttt aPr

pm

−∏=− ∈  Since rI commutes with f, we have 

that  ),(0 )( rfff aPr
pm

−∏=−= ∈  where           (f – rI)(x) = f(x) − rγx. Now, Let  

r1 = 0 (one of r’s must be zero), and suppose for each ri ≠ 0, (f – riI) ≠ 0, all x∈D, x ≠ 0. 
Then ,0))]((......)()[( 32 ≠−−− xIrfooIrfoIrf mp for all x∈D, x ≠ 0.  But since  

                   ),(..........)()(0 32 IrfooIrfoIrffoff m

m

p
p −−−=−=  
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 it follows that f(x) = 0 for all x∈D. Thus, 0 = f(x) = xγa − aγx, whence xγa = aγx for all 
x∈D. Thus, a∈C, contradicting the hypothesis. Thus, there is a ri ≠ 0, ri∈P(a) and x ≠ 0 
in D such that (f – riI)(x) = 0 

i.e. (f(x) – riI)(x) = 0 

i.e. xγa − aγx − riγx = 0 

           i.e. xγa − aγx = riγx 

i.e. xγaγx-1 – aγxγx-1 = riγxγx-1   

i.e. xγaγx-1 = riγxγx-1 + aγxγx-1 ≠ a, since ri ≠ 0. 

This completes the proof. ■ 
 

Lemma 3.4. If D is a division Γ-ring of characteristic p ≠ 0 and G ⊆ D is a finite 
multiplicative subgroup of D, then G is commutative. 

 

Proof. Let P be the prime field of D and let A = {riγgi/ri∈D and gi∈G}. Clearly A is a 
finite subgroup of D under addition; moreover, since G is a group under multiplication, A 
is finite sub-Γ-ring of D. Therefore A is a finite division Γ-ring, hence is commutative. 
Since G ⊆ A, G is also commutative. ■ 

 

Lemma 3.5. Let D be a division Γ-ring such that for every x∈D there exists a prime p 
such that (xγ)px = x. Then D is commutative. 

 

Proof. Suppose a, b∈D are such that c = aγb − bγa ≠ 0. By hypothesis (cγ)mc = c for 
some prime m > 1. If r(≠0)∈C, the center of D, then   rγc = rγ(aγb − bγa) = (rγa)γb − 
bγ(rγa), hence by hypothesis, {(rγc)γ}p(rγc) = rγc. Let  q = (m – 1)(p – 1) + 1, m > 1, p > 
1. Then    q > 1 and q is prime. It follows that (cγ)qc = c and {(rγc)γ}q(rγc) = rγc, hence  

         {(rγc)γ(rγc)γ(rγc)γ . . . . . .up to q times}(rγc) = rγc 

         i.e. (rγ)q(cγ)q(rγc) = rγc, 

        i.e. (rγ)q(cγ)q(cγr) = rγc, 

        i.e. (rγ)qcγr = rγc, 

        i.e. (rγ)qrγc = rγc, 

        i.e. {(rγ)qr – r}γc = 0. 

Since D is a division Γ-ring and c ≠ 0, so (rγ)qr = r for every r∈C, q > 1 depending on r 
and γ. We know that C is of characteristic p ≠ 0. Let P be the prime field of C. We claim 
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that if D is not commutative, we could have chosen our a, b such that not only is c = aγb 
− bγa ≠ 0 but, in fact, c is not even in C. If not, all commutators are in C; hence c∈C and 
C contains aγ(aγb) – (aγb)γa = aγ(aγb) − aγ(bγa) = aγ(aγb − bγa) = aγc. This would place 
a∈C contrary to c = aγb − bγa ≠ 0. Thus, we assume that c = aγb − bγa∉C. Since (cγ)mc = 

c, c is algebraic over P hence ccc
kp =)γ(  for some k > 0. Thus, all the hypothesis of the 

Lemma 3.3 are satisfied for C. Hence we can find x∈D such that xγcγx-1 = c1 ≠ c, that is 
xγc = c1γx ≠ cγx. In particular,  d = xγc − cγx ≠ 0; but dγc = xγcγc − cγxγc = c1γxγc − 
cγc1γx = c1γxγc − c1γcγx (since c1∈C) = c1γ(xγc − cγx) = c1γd. As a commutator, (dγ)td = d 
for some prime t > 1 and dγcγd-1 = c1. Thus, the multiplicative subgroup of D generated 
by c and d is finite. Hence by Lemma 3.4, the multiplicative subgroup is abelian. This 
contradicts cγd ≠ dγc. and proves the lemma. ■ 
 

Lemma 3.6. Let M be a p-Γ-ring with identity 1. Then for x, y∈M, xγy – yγx is in the 
intersection of the maximal ideals of M. 

 

Proof. We know that every ring has a maximal ideal. Let I be such a maximal ideal. Then 
the quotient ring M/I has an identity, and since I is a maximal right ideal of M, M/I has no 
maximal ideals other than 0 and M/I. Thus, M/I is a division ring. Since M is a p-Γ-ring, 
M/I is a p-Γ-ring (by Lemma 3.2). Then by Lemma 3.5, M/I is commutative. From this it 
follows that xγy – yγx∈I, for all x, y∈M. The conclusion of the lemma is now immediate. 
■ 

 

Lemma 3.7. Let M be p-Γ-ring with identity 1. Then M is commutative. 

 

Proof.  Suppose x ≠ 0 is in every maximal ideal of M. Then (xγ)px = x, and (xγ)p-1x  is an 
idempotent, say (xγ)p-1x = e ≠ 0 for all p > 1 and some γ∈Γ and e must also be in every 
maximal ideal of M. Now, 1 – e can not be in any proper right ideal of M, for if it were, it 
would be in a maximal ideal K of M. Since e∈K, 1 = e + (1 – e) would be in K and hence 
K = M, a contradiction. Since (1 – e)γM ≠ 0 and since (1 – e)γM is a (right) ideal, it 
follows that (1 – e)γM = M, whence (1 – e)γr = e for some r∈M. Thus, 0 = eγ(1 – e)γr = 
e, a contradiction. Thus, x can not be in every maximal ideal in M and the intersection of 
all the maximal ideals of M is 0. Thus, by Lemma 3.6, xγy – yγx∈0, x, y∈M, that is, xγy = 
yγx, for all x, y∈M. ■ 

 

Remarks: Since the intersection of all maximal ideals of a commutative Γ-ring with 1 is 
the Jacobson radical, so the Jacobson radical of p-Γ-ring with 1 is zero. 

Theorem 3.8. If M is a p-Γ-ring, then M is commutative. 
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Proof. Let e be an idempotent in M. Then, eγx = xγe for all x∈M. Thus, eγM = Mγe = T is 
also a p-Γ-ring, but T has an identity, namely e. Hence by Lemma 3.7, T is commutative. 
Now, for all x, y∈M, xγyγe = xγyγeγe = (xγe)γ(yγe) = (yγe)γ(xγe) = yγxγe, that is (xγy – 
yγx)γe = 0. Since {(xγy – yγx)γ}p(xγy – yγx)  = (xγy – yγx) for some prime p > 1, so {(xγy – 
yγx)γ}p–1(xγy – yγx)  is an idempotent, say e1.  Thus, 

               0 = (xγy – yγx)e1 = {(xγy – yγx)γ}p(xγy – yγx) = xγy – yγx, 

 that is,  xγy = yγx. Hence, M is commutative ■ 

 

Lemma 3.9. Let M be a commutative Γ-ring. Let I be an ideal of M such that I a p-Γ-
ring. Then eγ{y − (yγ)py} = 0 for all y∈M and some γ∈Γ and e∈I an idempotent. 

 

Proof. Let x∈I and y∈M. Then xγy∈I. Since I is a p-Γ-ring, (xγ)px = x. Also 
{(xγy)γ}p(xγy) = xγy for some prime p and γ∈Γ. 

 Now, {(xγy)γ}p(xγy) = xγy, 

 i.e. {(xγy)γ(xγy)γ . . . . . .up to p times}(xγy) = xγy, 

 i.e. (yγ)p(xγ)p(xγy) = xγy, since M is commutative, 

 i.e. (yγ)pxγy = xγy. 

 i.e. {(yγ)py – y}γx = 0, 

so (xγ)p-1xγ{y – (yγ)py} = 0 and hence eγ{y – (yγ)py} = 0, where e = (xγ)p-1 x is an 
idempotent of I. ■ 

 

Lemma 3.10. Let M be a Γ-ring and I an ideal of M. Then M is a p-Γ-ring if M/I and I 
are p-Γ-rings. 

 

Proof.  Let M/I and I be p-Γ-rings. Let x∈M, then x + I∈M/I and so  

{(x + I)γ}p(x + I) = x + I for some prime p and γ∈Γ. 

i.e. (xγ + I) p(x + I)  = x + I, 

i.e. {(xγ)p + I}(x + I) = x + I, 

i.e. (xγ)px + I = x + I. 

Thus, (xγ)px − x∈I. Since I is a p-Γ-ring, {(xγ)px – x)γ}m{(xγ)px – x} = (xγ)px – x for some 
prime m. Let e/ = {(xγ)px – x)γ}m-1{(xγ)px – x}.  Then e/ is an idempotent of I. By Lemma 
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3.9, e/γ{(xγ)px – x} = 0 for every x∈M. Now, 0 = e/γ{(xγ)px – x} = {(xγ)px – x)γ}m-1{(xγ)px 
– x}γ{(xγ)px – x} = {(xγ)px – x)γ}m{(xγ)px – x} = (xγ)px – x. Hence  (xγ)px = x. Therefore 
M is a p-Γ-ring. ■ 
 

Lemma 3.11.  If  I1  ⊆ I2  ⊆ I3  ⊆  -  -  - - -  -    is an ascending chain of ideals which are 
all  p-Γ-rings, then ∪αIα is a p-Γ-rings. 

 

Proof.  Let x∈∪αIα, then x∈Iα for some α. Since Iα is a p-Γ-ring, then (xγ)px = x for some 
prime p and γ∈Γ. Hence  ∪αIα is a p-Γ-ring. ■ 
 

Thus, by Lemma 3.2, Lemma 3.10 and Lemma 3.11, we have the following theorem: 

 

Theorem 3.12. The class of all p-Γ-rings is a radical class. 

 

4. Some Characterizations of p-Γ-rings 

Theorem 4.1. Let M be a ring with 1. Let a, x∈M such that a = (xγ)p-2x. Then the 
following statements are equivalent: 

M is a p-Γ-ring. 

Every principal ideal Mγa is generated by an idempotent.  

For every principal ideal Mγa of M, there exists an element b∈M such that M = Mγa ⊕ 
Rγb. 

Every principal ideal Mγa is a direct summand of M. 

 

Proof.  (a) ⇒ (b) Let x∈M. Then (xγ)px = x for some prime p and γ∈Γ. Let a∈M such 
that a = (xγ)p-2x. Now, the principal ideal Mγa is generated by the element xγa which is 
idempotent; for (xγa)γ(xγa) = xγ{(xγ)p-2x}γ{xγ(xγ)p-2x} = (xγ)pxγ(xγ)p-2x = xγa. 

 

(b) ⇒ (c) Let Mγa = Mγe, where eγe = e and a = (xγ)p-2x, x∈M. Since 1 = e + (1 − e), and 
if there exists b∈M such that aγe = bγ(1 − e), then aγe = aγeγe = bγ(1 − e)γe = 0. So  M = 
Mγe ⊕ Mγ(1 − e).  

 

(c) ⇒ (d)  Trivial. 
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(d) ⇒ (a) Let a∈M. Then there exists an ideal I of M such that M = Mγa ⊕ I. Hence 1 = 
xγa + b, where b∈I, so x = xγaγx + bγx. Since a = (xγ)p-2x, bγx = x − xγaγx∈Mγa ∩ I = 0, 
and therefore  x = xγ{(xγ)p-2 x}γx = (xγ)px. Hence M is a p-Γ-ring. 

 

Theorem 4.2. Let M be a p-Γ-ring with 1. Then 

Every finitely generated ideal is principal. 

The intersection of any two principal ideals of M is principal. 

 

Proof. 1) It is enough to prove that if a, b∈M, then Mγa + Mγb is principal. Since M is a 
p-Γ-ring, there exists elements x, y∈M with    a = (xγ)p-2x and b = (yγ)p-2y such that the 
elements e1 = xγa and e2 = yγb are the idempotent elements of Mγa and Mγb respectively 
and also Mγa = Mγe1 and Mγb = Mγe2 by Theorem 4.1(b). Now, Mγa + Mγb = Mγe1 + 
Mγe2 = Mγe1 + Mγ(e2 − e2γe1) because a1γe1 + a2γe2 = (a1 + a2γe2)γe1 + a2γ(e2 − e2γe1). If s 
= {(e2 − e2γe1)γ}p-2(e2 − e2γe1)∈M, then  

(e2 − e2γe1)γsγ(e2 − e2γe1) = {(e2 − e2γe1)γ}p(e2 − e2γe1) = (e2 − e2γe1). Then e/
2
 = sγ(e2 − 

e2γe1) is an idempotent of Mγb. Then Mγe1 + Mγe2 = 

Mγe1 + Mγe/
2 with e/

2γe1 = sγ(e2 − e2γe1)γe1 = 0. 

      Finally, we have, a1γe1 + a2γe/
2

  = (a1γe1 + a2γe/
2)γ(e1 + e/

2 − e/
2γe1), a1, b1∈M. Thus, 

Mγe1 + Mγe/
2 = Mγ(e1 + e/

2 − e/
2γe1). Therefore Mγa + Mγb = Mγ(e1  + e/

2
  − e/

2γe1).  Thus, 
Mγa + Mγb is a principal ideal. 

2) Let Mγa and Mγb be two principal ideals. Since M is a p-Γ-ring, there exists elements 
x, y∈M with a = (xγ)p-2x and b = (yγ)p-2y such that the elements e1 = xγa and e2 = yγb are 
the idempotents of Mγa and Mγb respectively and also Mγa = Mγe1 and Mγb = Mγe2 by 
Theorem 4.1(b). Hence M = Mγe1 ⊕ Mγ(1 − e1) = Mγe2 ⊕ Mγ(1 − e2), and  

Mγe1 = AnnM[(1 − e1)γM] = {x∈M | xγ(1 − e1)γM = 0}, 

Mγe2 = AnnM[(1 − e2)γM] = {x∈M | xγ(1 − e2)γM = 0}. 

Indeed obviously Mγe1 ⊆ AnnM[(1 − e1)γM]. 

     Conversely, if x∈M and xγ(1 − e1) = 0, writing x = a1γe1 + b1γ(1 − e1), a1, b1∈M, we 
have  

 a1γe1γ(1 − e1) + b1γ(1 − e1)γ(1 − e1) = 0,  and so 

 b1γ(1 − e1) = 0, hence x = a1γe1∈Mγe1. 

Thus, Mγe1 ∩ Mγe2 = AnnM[(1 − e1)γM + (1 − e2)γM]. Now, there exists e3∈M such that 
(1 − e1)γM + (1 − e2)γM = (1 − e3)γM, and from Mγe3 = AnnM[(1 − e3)γM] we deduce that 
Mγe1 ∩ Mγe2 = Mγe3. Thus, Mγe1 ∩ Mγe2 = Mγa ∩ Mγb is a principal ideal. ■ 
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Semihereditary: A Γ-ring M is said to be semihereditary if every finitely generated right 
ideal of M is projective M-module. 

 

Nonsingular Γ-ring: An ideal I of a Γ-ring M is called essential if for every nonzero ideal 
A in M, I ∩ A ≠ 0. Let φ(M) be the class of all essential ideals in M and Zr(M) = 
{x∈M│xΓI = 0 for some I∈ φ(M)}. M is called a nonsingular Γ-ring if Zr(M) = 0. For 
the case of a classical ring R, we define Zr(R) = {x∈R│xI = 0  for some I∈ φ(R). Then R 
is called a non-singular if Zr(R) = 0. 

Theorem 4.3. Let M be a p-Γ-ring with unity 1. Then 

a) The Jacobson radical Ј(M) of M is zero. 

b) M is a semisimple ring if and only if it is a Noetherian   p-Γ-ring. 

c) The centre of M is also a p-Γ-ring. 

d) The p-Γ-ring M without zero divisor is a field. 

e) Every ideal of M is nonsingular. 

f) For any idempotent element e of M, (1 − e)γMγe = 0. 

g) If (Mi)i∈I  is a family of p-Γ-rings then ∏ Mi is a p-Γ-ring. 

h) M is semihereditary. 

 

Proof. a) Let a∈Ј(M). Then Mγa ⊆ Ј(M). Since Mγa = Mγe, where e = xγa is an 
idempotent with a = (xγ)p -2x,  so e∈Ј(M). It follows that (1 − e) is inevitable. So there 
exists y∈M such that 1 = yγ(1 − e) = y − yγe. Hence e = yγe − yγeγe = yγe − yγe = 0 and therefore a 
= 0. Thus, Ј(M) = 0.  

b) First suppose that M is finitely generated. Then every ideal of M is finitely generated 
and hence a direct summand. So M is a semi-simple. 

      Conversely, let M be a semisimple ring. Then every principal ideal of M is a direct 
summand of M and hence M is a p-Γ-ring by Theorem 4.1(d). Since Jacobson radical 
Ј(M) is the largest ideal of M and since in a p-Γ-ring, Ј(M) = 0, so any ascending chain 
of ideals of M must be finite. Hence M is Noetherian. 

c) Since p-Γ-ring is abelian, so centre of M is M itself, i.e. C(M) = M. 

d) Let a∈M with a ≠ 0. Then (aγ)pa = a for some prime p. Then (aγ)pa − a = 0 ⇒ 
aγ{(aγ)p-1a − 1} = 0. Since a ≠ 0, so  (aγ)p-1a −1 = 0 and so (aγ)p-2a  is the inverse of a. 
Since p-Γ-ring M is abelian, so M is a field. 

e) Suppose that xγI = 0 for some x∈M and I ⊆ M is an ideal of M. Let   
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Mγx be a principal ideal of M. Then there is an idempotent e∈M such that Mγx = Mγe. 
Now, since MγeγI = MγxγI = 0, we see that I ⊆ Mγ(1 − e). Then I ∩ eγM = 0, whence 
Mγe = 0 and consequently x = 0. Thus, M is nonsingular. 

f) Since Mγe is a two-sided ideal, so (1 − e)γMγe = Mγe − Mγeγe = Mγe − Mγe = 0. 

g) Proof is obvious 

h) Since a finitely generated ideal of M is a direct summand of M and 

so is projective. Hence M is semihereditary. ■ 
 
REFERENCES 
 
1. S. A. Amitsur, A general theory of radical I, Amer. P. Math. 74(1952), 774 – 776 
2 S. A. Amitsur, A general theory of radical II, Amer . P. Math. 76(1954) 100 -125. 
3. J. L. Booth, A general type of regularity for gamma rings, Quationes Mathematics, 1991(14), 453 – 469.  
4. W. E. Barnes, On the gama rings of Nobusawa, Pacific J. Math. 18,(1966) 411 –  422. 
5. W.E. Coppage and Luh: “Radicals of gamma rings”, J. Math. Soc.Japan, Vol.23, No. 1(1971), 40-52. 
6. N. P. Divinsky, Rings and radicals, George Allen and Unwin, London, 1965. 
7. N. H. McCoy, The theory of rings, Macmillan Co. N. Y. (1964).  
8. N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1,(1964), 81- 89. 
9. Paulo Ribenboin, Rings and modules. Phon wiley & sons, New York.                     
10. Hiram Paley and Paul M. Weichsel, A first course in abstract algebra, Holt, Rinehart and Winston, Inc., 

USA, (1966). 


