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ABSTRACT

This study extends the classical Susceptible-Infected-Recovered (SIR) model by integrating adaptive behaviors
and policy interventions during epidemics through the Signal-SIR model. Here the susceptible population is
divided into two groups: individuals who adhere to health regulations (AD strategy) and those who do not
(NAD strategy). The model simulates the dynamic interaction between government signals and public behavior
where it utilizes replicator dynamics to explore how health warnings influence population responses. It also
introduces chicken game payoffs to analyze the redistribution of risks between compliant and non-compliant
individuals. To optimize model parameters and explain time-varying dynamics, deep neural networks (DNNs)
has been employed alongside Stochastic Gradient Descent. We establish a loss function that quantifies the
discrepancies between observed data and model predictions. Simulation results indicate that enhanced adaptive
behavior, driven by enhanced adherence to health regulations, significantly reduces the spread of infection.
Therefore, it leads to lower infection peaks and higher recovery rates. This paper highlights the critical role of
adaptive strategies in public health policy and provides a data-driven framework for effectively forecasting and
managing epidemic dynamics.
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1 Introduction

Mankind has long been struggling with the tragic consequences of various infectious disease that not only
threaten human lives but also impose an enormous economic burdens. Epidemic remains a constant menace
to development of human civilization, starting from the historical outbreak of Black Death and the plague
to contemporary challenges like the emergence of COVID-19 pandemic. Therefore, the prevention of globally
transmitted infectious disease is treated as a major concern that needs immediate attention in the modern
world [1,2]. Researchers of all time have repeatedly employed various methods for modeling, predicting, and
thereby investigating the root causes to control the rapid transmission of these epidemics. Due to the growing
rate of international travel, investigations on epidemics are facing significant challenges in recent years. In this
context, mathematical modeling has proven to be an extremely helpful tool that provides a strong theoretical
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foundation for executing relevant study. The practice of mathematical modeling in epidemiology originates from
the seminal work presented by Kermack and McKendrick back in 1927 [3]. They introduced the classical SIS
and SIR models, thereby shaped the concept of infectious disease thresholds. Relying on these classical epidemic
models, a large plethora of works has been dedicated to explore the characteristics of epidemic propagation,
where most of the existing studies considered the population being homogeneous and well-mixed. Thus, individ-
ual heterogeneity is often ignored in those models. Additionally, the epidemic modeling metaphor has been put
in place to narrate a wide variety of phenomena. Information dissemination, cultural norms, and social behav-
ior can conceptually be added to model a realistic contagion process [4]. Consequently, multiple attempts have
been made to incorporate more practical factors into epidemic models. More precisely, ODE-based modeling
approaches have been implemented to analyze the spread of various infectious diseases in populations exhibit-
ing homogeneous mixing. In the course of time, researchers started acknowledging the concept of homogeneity,
frequently used in modeling population structure, is incorrect. In reality, people who are socially proactive
usually have more contacts with others than those always maintain less social engagements. Likewise neuronal
system, interactions among individuals living in a society exhibit highly heterogeneous patterns. Therefore, it
is necessary to take population topology into consideration while modeling and analyzing disease transmission
behavior. To this end, complex social network particularly serves as a suitable tool for characterizing this
heterogeneity [5—9].

Recent advances in network system dynamics have paved the way to conduct a proliferation of studies which
are commonly based on numerous applications of complex networks in nonlinear science, sociology, biology, and
other fields of information technology. Over the past few decades we observed a second golden age in epidemic
modeling. Indeed, the real-world accuracy of the epidemic modeling has considerably been ameliorated by the
incorporation of large-scale data sets and the decisive simulation of entire population down to the scale of single
individuals. A bunch of recent studies has offered critical information regarding disease transmission model on
complex networks [4,10]. The theory of network topology has made a considerable progress over the past two
decades that comes up with some unified framework to examine the transmission patterns of several epidemics.
In particular, Pastor et al. revealed the fact that epidemic threshold of an SIS model tends to be 0 in scale-free
(SF) networks, which is quite different from the traditional epidemic threshold theory and leading to a large
volume of relevant studies [11,12]. Zhang et al. confirmed the existence of a unique global periodic solution if the
basic reproduction number is greater than one while a scale-free SIS epidemic model is employed [13]. Bacear
et al. developed a mathematical model that considers seasonality of the vector-borne population to estimate
the basic reproduction number [14]. A significantly large variation in seasonality of a vector-borne population
generates a periodic solution as demonstrated by London et al. [15]. Another interesting study pointed out the
occurrence of a sequence of periodic-doubling bifurcations when the amplitude of seasonal variations increases
considerably [16].

Epidemic compartmental models classified the entire population into several compartments to investigate
the transmission dynamics of infectious diseases depending up the current health status, serving as an incredibly
powerful tool for detecting, understanding, and combating outbreaks. Since the onset of COVID-19 pandemic,
SIR compartmental model alongside its several variants have been the cutting-edge approach of investigating its
transmission behavior. These epidemic compartmental models are formulated by a system of ordinary differen-
tial equations (ODEs), which are then distinguished by a set of parameters that are not known prior to the study
and required to be identified from the relevant data set. These compartmental models thus require parameter
estimation to fix the flow rate from one compartment to other. Yet, most of the previous studies assume constant
values for the model parameters to minimize the complexity of epidemic modeling. Although numerous research
efforts deeply focus on parameter estimation employing several well-known techniques, these methods still suffer
from significant limitations which impede their diverse implementations. One such common limitation observed
in parameter estimation is that the computational cost of numerical simulations rises exponentially with the
complexity of parameters and models. Additionally, these parameter estimation methods are best suitable for
time-constant cases that in turn fail to comprehend the sophisticated dynamics of infectious diseases over time
in real-world contexts. Artificial intelligence(AT) based deep neural network (DNN) entailed with mathematical
epidemiology plays a crucial role in comprehending the intricate dynamics of infectious diseases, providing a
comprehensive framework for simulating diverse scenarios and thereby predicting the future trajectories of the
epidemic propagation in real-world cases [17,18]. Recently, deep learning has emerged as a new dimension of
machine learning, and since then has been examined and deployed in a wide variety of research topics. Deep
learning contains a series of machine learning algorithms delicately fed with inputs in the form of multi-layered
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models. The models are typically neural networks comprising of varying degree of nonlinear operations.The
machine learning algorithms used to learn from these deep neural networks by extracting distinct features and
information [19]. The integrated impact of these mechanisms has proven its worth in analyzing and fighting
against the transmission of COVID-19 epidemic [20]. Despite having its greater acceptability to data fitting as
well as facilitating short-term prediction, it still has some weaknesses that can hinder its practical implications.
First off, it is unable to find the disease transmission pattern and therefore, cannot suggest any reasonable
predictions due to its inherent limitations. In fact, these Al-backed models heavily rely on the quality and
quantity of the data set. At times, it might not be that much helpful given that the available data do not
capture the reality. Therefore, exploring how to combine compartmental models with the Al tools can enhance
their performance is a promising topic for contemporary research.

Besides, mathematical modeling dovetailed with evolutionary game theory has become a popular approach
in recent times to study the behavioral dynamics of recurring epidemics [21-23]. Identifying the transmission
patterns and fixing the social responses are crucial attempts with a view to containing the epidemic propaga-
tion and guiding policymakers to make timely decisions [24]. Proper implementation of game-theoretic models
help analyze the perceived risks and benefits of adopting a particular health intervention. A good number
of previous works have employed the concept of imperfect vaccination and defense against contagion to por-
tray the evolutionary consequences more prominently [25-27]. Compiling these fundamental concepts into a
single framework brings incredible behavioral responses on health interventions. Numerous precursor studies
have been dedicated to investigating human behaviors and transmission dynamics, relying on game-theoretic
approaches [28]. A complete eradication of epidemics using health provisions is quite challenging or sometimes
impossible without having additional incentives as suggested by previous studies [29]. To model human interac-
tions, most of the researchers relied on either structured or unstructured population [30]. Meanwhile, a couple
of contemporary studies illustrated defense against contagion with a reduced transmittance rate [10,31,32]. In
reality, strategy adoption is heavily influenced by individual decision-making, and has a deep interaction with
the spatial transmission pattern triggered by underlying mobility networks [33]. For successful implementation
of health interventions, it is of utmost importance to notify infections much earlier to limit its further expan-
sion [34]. Underlying networks, imitation dynamics, strategy selection, information propagation, public opinion,
and different optimization techniques also play crucial roles in model prediction [35]. In broader sense, tem-
poral population models having stochastic nature can illustrate intrinsic behaviors of epidemic propagation [36].

To this end, motivated by all these archetype studies, we propose a novel epidemic model equipped with
DNN-based computational simulations that help such global efforts to understand the disease dynamics, to es-
timate the associated key transmission parameters as well as to make further improvements for controlling the
rapid transmission of epidemics like COVID-19. Here, the epidemic spreading is studied using the Susceptible-
Infected-Recovered (SIR) model. In response to the rapid virus propagation, social and political responses to
such epidemics need to be dynamic. Majority of the earlier models assumed insignificant incubation periods,
where susceptible people become infectious and get recovered. Compartmental epidemic models can take a re-
alistic phenomenon like latent infection period into account as disease transmission largely depends on warning
indicators. Health officials and policymakers can warn people regarding the occurrence of epidemics. Accord-
ingly, individuals choose to follow the recommended health rules to avoid being infected. A chicken-type game
class is employed to estimate payoffs coming from strategy pair. Replicator dynamics help study the illness
status and warning indicators. The signal-SIR model loops pandemic announcements and infected population
responses. It redistributes risk between those who follow rules and those who do not during the course of pan-
demic. Finally, combining the replicator equations with SIR dynamics this paper presents a complete theoretical
investigation.

The remaining of this paper is outlined as follows. In section 2, we formulate the proposed framework of
the epidemic game model coupled with DNN structure, governed by a system of differential equations. Section
3 conducts a variety of computational experiments. We present the simulation results based on the estimated
parameters, and a detailed discussion is made on the obtained results focusing on the key aspects of evolutionary
game outcomes. Finally, section 4 draws a holistic summary of the proposed scheme and highlights some of the
crucial findings of the current study.
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2 Model formulation

2.1 Mathematical structure of the Signal-SIR model

An epidemic can quickly spread through a population in which susceptible, infected, and cured individuals
coexist. In this model, susceptible agents (S-agents) can adopt either an adherence (AD) or non-adherence
(NAD) strategy. The AD strategy helps prevent infection. The policymaker’s warnings and S-agents’ awareness
determine their choice of strategy. NAD agents are susceptible to infection by I agents, which may later recover
and transition to the R category. To slow down the transmission of an epidemic, people could choose to follow
the rule before each time step (for example, a day, week or month) without enforcement. This would be called
a time-step update in which higher adherence to health standards evolves without coercion. Throughout the
pandemic, policymakers should adjust epidemic signals in accordance with changing seasons. The propagation
of an illness during an epidemic season ¢ is modeled using time steps of length 7', starting from ¢ = i. Repeat
A(t) until ¢ = i+ 1. The pandemic scenario determines the policy cycle or time window for 7. The current state
of epidemic knowledge cannot be readily discarded by policymakers. Depending on how long the policymaker
release window is, the S-population may be able to switch strategies whenever it likes.

There are three key reasons why the signal-SIR Model is considered the optimal approach to address the
challenge of epidemic signal importation. Initially, it is imperative for the policymaker to effectively commu-
nicate precise indications in order to establish stability within the epidemic among the S-population, thereby
promoting self-interested decision-making. Furthermore, the implementation of S-population strategies, such as
AD or NAD tactics, will have an impact on the epidemic situation and may prompt policymakers to dissemi-
nate a new signal. Finally, the signal-SIR model solver can adjust its input parameters to achieve near-optimal
policy efficiency. The problem of addressing the epidemic change is mapped to the optimal policy signal prob-
lem. The current state of the signal-SIR model can be represented by the tuples (S, I, AD, NAD, R), where
S, I, and R denote the proportions of susceptible, infected, and recovered individuals, respectively. The input
to the system can be obtained by standardizing the initial value of the model state. Here, S+ 1+ R =1
and AD 4+ NAD = S. Also if z; denotes each decision then x; € {r, 3} where, 7 ={Severe, Common, Mild}
and 8 ={emission, outbreak, epidemic, pandemic}. The government formulates a signal based on epidemic
situations, selecting appropriate values of 7 and 3 for each time period. The initial assumption of the model
assumes that the AD/NAD strategies of the population are uniformly distributed within the S-population and
that the infected population (I) accurately represents real-world active cases. Susceptible individuals exhibit
an avoidance behavior proportion of z(t). According to research in Ref. [37], the vaccination decision-making
process follows a two-stage iterative framework. Initially, individuals decide whether to comply with health
standards, and they reassess their adherence in subsequent periods (see Figure 2.1).

Stage One: whether
to follow AD or .
NAD strategy Stage Two: Epidemic’ Process |

Infected Recovered
Population Population

Susceptible
Population

Total population
participating in
the game

Next fime t ‘ Re-seleced AD or NAD
‘ strategy of population

Figure 2.1: Health regulations are determined on a case-by-case basis. The right box provides an explanation of
the process by which the epidemic spreads when the S-population with AD strategy either increases or decreases.
The bottom section details the re-selected AD or NAD approach, which is established by consideration of the
user’s risk preferences.
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Figure 2.2: Time evolution of the Signal-SIR model.

The cost of any protective measures or income loss due to compliance with the AD strategy is denoted
by cap. The widespread adoption of the AD strategy within the S-population plays a dominant role in con-
trolling the epidemic during its second stage. To keep things simple, we will suppose that people are given
the opportunity to participate in the decision-making process before an epidemic breaks out, and those who
comply with health regulations (AD strategy) contribute to infection prevention. The dynamics of disease
can be described using the SIR model, where the daily transmission is represented by the parameter 3, and
the recovery rate is denoted by ~. Initial proportions of susceptible, infected, and recovered individuals are
denoted by Sp, Iy, and Ry, respectively. A risk payout matrix in a chicken game is used to determine the
cost parameters, including c4p and ¢y, which fall within the range (0,1) [38]. The option p represents the
disease awareness of the warning indicator and is defined as y = “42, where 0 < p < 1. Additionally, the
severity of epidemic spread is indicated by 7, which is related to the ratio of payoffs o to ¢; within the range
0 < 7 < 1. In this context, the government issues public health advisories in anticipation of potential outbreaks.

The payoff matrix for the proposed model can be shown in the following table:

Table 2.1: Payoff Matrix

AD NAD
AD —CAD —
NAD 0 —Cy

The AD strategy fraction of the S-population is represented as x4, , while the NAD strategy fraction is
given by xyap = 1 —x4,. The following items provide the well-mixed anticipated risk payoffs for the two
different strategies:

pap(t) = S(t)zap(—cap) + S(t)(1 —zap)(—a) (2.1)

pnap(t) =S5(t)(1 —zap)(—cr)
Individuals with NAD who are at risk of contracting infections should take into account the affected
component between the times (¢,t+1). According to Glaubitz et al. [39], this factor is expressed as 1 — e~ At

where 3 represents the seasonal transmission rate. As a result, we may restate the expected value of risk for
AD or NAD players as-

map(t) =pap (2.3)
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TNAD(t) = pnap(l — e PT1) (2.4)
Replicator dynamics yields the following equations:

PAD _ G ap(t)(1 — 2ap (1) S(E)tanh(sT (1) (2

D(t) = —capzap(t) + (1 —zap(t))(cr(1 — e PTH) — ) (2.6)

where the responsiveness parameter @ regulates the rate at which the health regulation behaviour is up-
dated. the rationality parameter x determines the likelihood of switching strategies in response to risk-reward
perceptions. A higher x indicates a greater tendency to switch strategies based on observed payoffs. For our
simulations, we set x = 1 and @ = 0.5. In game theory, the dynamics depend on perceived rather than ac-

tual risks and rewards [40]. The dynamics of our model are described by these ordinary differential equations
(ODEs):

% = Bl — wap(t)SHI() (2.7)
A B0~ 2an)SOID) (1) (2:8)
‘;if — I(t) (2.9)
PAD — Gaap(t)(1 ~ 2ap()S(E)tanh(T (1) (2.10)

If an additional compartment is introduced, the equations take the following form:

0 B0~ 2an()SWI() (2.11)
% = B(1 — zap(£)SHI(E) — oI(t) (2.12)
% = oBE(t) —vI(t) (2.13)
% A (2.14)
df”df:D = oz ap(t)(1 = zap(t)S(t)tanh(kT(t)) (2.15)

Furthermore, the term I'(¢) in the equations above is reformulated with §(¢) as:
1
(1) = (—pzan(t) + (1 - 2ap(1)) (T<1 . 1) (2.16)

The parameter 7 represents a strategic measure to prevent an epidemic, with policymakers adjusting it
to increase player payoffs and encourage AD strategy adoption within the S-population. For instance, if the
epidemic reaches a critical level, policymakers may reduce 7 to enhance risk perception and promote preventive
behavior. p is also a helpful indicator for understanding psychological reactions in the AD population. A lower
1 suggests that an AD player is more concerned about his opponent’s NAD option and has an subjective belief
that it poses a high risk if his opponent chooses NAD. It is evident that health regulations play a crucial role in
controlling disease outbreaks. However, in many Western countries, social complexities make adherence volun-
tary rather than mandatory [41,42]. Compliance in voluntary health programs is influenced by factors such as
disease severity, transmission rates, and individual perceptions of risk. Furthermore, adherence to health regu-
lations not only protects individuals but also helps safeguard their communities from potential infections [43].

2.2 An overview of the Signal-SIR coupled with DNNs

Deep neural networks (DNNs) can be utilized to model the dynamics and parameters in the Signal-SIR
system. In this context, the neural networks serve as data-driven approximations for the time-varying parameters
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in the system, such as § and 7. These parameters will be represented as O, the set of learnable weights in
the DNN [44-48]. To guide the DNN to learn the optimal parameters, a loss function is defined based on the
difference between the observed data and the model’s predictions. The loss combines multiple components for
the Susceptible, Infected, Recovered, and Adherence populations:

Loss = wy - Lossg + wy - Lossy + wg - Lossg + wp - Lossg + wap - Lossap + A ||(9||2 (2.17)

where w; - Lossg, wy - Lossy, wg-Lossg and wap - Losssp represent the squared error between the predicted
and the observed values of S(t), I(t) and x 4p respectively. For instance, the loss for the susceptible population

could be written as:
N-1

Lossg = % > " [Sut1 = Sn — F(Sns I, O(tn)))? (2.18)

n=0

Here, © = {63, 0,,0,,} are time-varying parameters that have been learned by the DNN. Each part of the loss
function measures how well the model predicts the dynamics of the epidemic under the current parametrization
[42]. To find the optimal parameters ©, we use optimization algorithms such as Stochastic Gradient Descent
(SGD). The parameters are updated iteratively as:

o+l — @F _ Vo L(t; OF) (2.19)

where ay, is the learning rate at the k-th iteration, and L(¢; ©) is the loss function at time .

Algorithm for the DNN-based Signal-SIR Model

Below is the high-level algorithm for training the DNN-based Signal-SIR model.
Input: Simulated data for S(¢), I(t), R(t) and zap(t), initial values for 5(t), v(¢), and 7(t).

1. Build the model:

e Use DNN to approximate the parameters f§(t), v(t), and 7(¢), which are represented as © =
{95,97,97-}.
e Solve the Signal-SIR model using the Runge-Kutta method.

e Define the loss function.
2. For each epoch in max_epoch:

e Compute the forward pass: Calculate S(t), I(t), R(t), and zap(t) using the current values of ©.

e Update © using gradient descent or other optimization techniques.

Output: Time-varying parameters 5(t), v(t), 7(t), and xap(t).
Deep neural networks (DNNs) can be utilized to model the dynamics and parameters in the Signal-SIR system.
In this context, the neural networks serve as data-driven approximations for the time-varying parameters in the
system, such as 3 and «y. These parameters will be represented as ©, the set of learnable weights in the DNN.

3 Result and discussion

After conducting an epidemiological study, health officials will be able to determine whether the pandemic
virus poses a threat or not. Epidemic evaluations are performed based on the degrees of risk. The propagation
is classified as emission, outbreak, epidemic, or pandemic (8=0.1, 0.5, 0.7, 0.9) is related to the infectious rate
(see Ref. [49]). In order to make an epidemic announcement based on an epidemiological survey, the param-
eters a and ¢y in the risk payoffs matrix are merged and presented. This helps ensure that our findings are
as accurate as possible. In a similar fashion, the other value of p will be determined by the matrix of risk
payoffs. When the parameters are normalized, the signal-SIR epidemic model has been expressed with the
constraints S = Sg,I = Ip, R = Ry, and Sy + Ip + Rp = 1 at t = 0, with Sy = 0.99,1 = 0.01, and R = 0.
It is anticipated that within a city, only certain individuals will be severely affected, while others may remain
susceptible but eventually recover. Furthermore, we assume x4p = 0.5, considering that the strategy selection
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among vulnerable individuals follows a normal distribution of AD (adaptive) and NAD (non-adaptive) behaviors.

We incorporate evolutionary game behavior dynamics into the compartmental epidemic model. Figure 3.1
shows the percentage of affected people throughout time. Warning indications reduce the fraction of infected
individuals in the model. In Figure 3.1, increasing 7 spreads the virus. 7=1 suggests an outbreak under normal
conditions.

Signal-SIR Model: Infected Population vs Time
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Figure 3.1: Time evolution of the Signal-SIR model.

Figure 3.2 illustrates the effect of different 7 values (0.002, 0.01, 0.5) on the progression of an epidemic
within the Signal-SIR model, which includes Susceptible (), Infected (1), Recovered (R), and Adaptive (Xap)
populations. Lower 7 values (e.g., 7 = 0.002) result in slower transitions to adaptive behavior, leading to higher
peaks in infections and slower containment of the epidemic. Conversely, higher 7 values (e.g., 7 = 0.5) indicate
stronger adherence to adaptive strategies, significantly reducing the peak of infections, increasing recovery rates,
and suppressing the epidemic more effectively.
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Figure 3.2: Different values of 7 for w = 0.25, 8 = 0.14, v = 0.075.

As expected, the lowest T emergency sign works best. The final equilibrium epidemic size (FES), shown
by R(c0) in Figure 3.3, is plotted against warning signs. According to the graphs, all of the models eventually
settle into a steady state. In Figure 3.4, the evolution of infected individuals over time is presented for varying
values of # (0.1, 0.3, 0.5, 0.7, 0.9) and 7 (0.05, 0.1, 0.3). These values reflect the impact of adherence to health
guidelines. In Figure 3.4a, low transmission rates result in a gradual increase in infections. For small 7 (0.05),
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growth is moderate, while larger 7 values (0.1, 0.3) significantly flatten the curve, indicating that the number
of infected individuals starts to become more constant throughout the time. In Figure 3.4b, as § increases,
infection peaks become more pronounced, with higher 7 values reducing the peak and flattening the curve,
mitigating outbreak severity. In Figures 3.4c-3.4e, high transmission rates gradually lead to quick, sharp peaks
in infections. Larger 7 values demonstrate a flattening effect, but the disease spreads faster initially, especially
when the value of 7 is smaller. Overall, higher adherence to health guidelines (larger 7) particularly reduces

peak infections and delays outbreak progression, especially at high transmission rates.
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Figure 3.3: R(c0) vs warning signs. Results are shown for 5 =0.7,7 = 0.3, and @ = 0.8.
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Assuming realistic human behavior, the policymaker expects individuals to follow healthy rules and obtain
higher-risk benefits over time, despite the costs associated with adaptive behavior. In an adverse epidemic sce-
nario, it is imperative for policymakers to adjust their policies in order to decrease the value of 7. Alternatively,
they may opt to regulate it to a higher value in order to create a more relaxed environment. The utilization of
a reference value, denoted as 7*, could potentially provide valuable insights for policy formulation within the
context of game theory. In chicken game, an estimation for the value of 7* can be obtained by equating 74 p
to Ty ap. The given information is provided by the following equation:

 1—eBI
- IroEE (3.1)
TN AD

When dealing with a severe illness, it is advantageous to have a higher ratio of xap to zy 4p in order to
limit the spread of the epidemic to a specific extent, particularly when the value of 7* is reduced. Moreover,
Equation 3.1 can be expanded into an alternative mathematical expression in the way that follows:

1_e*ﬁ1(t)
TAD - — (3.2)
INAD 1—w

It is evident that a larger portion of the S-population adopts the AD strategy when the value of w increases.

Figure 3.5 portrays the 7 — 8 phase diagram, showing the final ratio of recovered individuals, R(oc0), for
different levels of disease awareness parameter w (0.4, 0.7, and 0.9). Each panel corresponds to a specific value
of w: (a) w=04, (b) w=0.7, and (c) w = 0.9. As shown, the final epidemic size (FES) increases significantly
with higher transmission rates (3) and lower adaptive behavior (7). For low w (Figure 3.5a), adaptive strategies
have limited impact, resulting in higher recovery ratios, which indirectly indicate more widespread infections.
In contrast, with moderate w (Figure 3.5b), adaptation slightly suppresses the FES. For large w (Figure 3.5¢),
stronger reliance on adaptive behavior substantially reduces infection spread, as seen by the lower R(co) values.
These results demonstrate that increasing 7 and w enhances the effectiveness of adaptive strategies in controlling
the epidemic. Policymakers can leverage these findings to promote public health interventions, emphasizing
awareness campaigns and adaptive behavior to mitigate the outbreak’s impact.
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Figure 3.5: The 7 — 8 phase diagram shows disease awareness parameter values of 0.4, 0.7, and 0.9.

The results presented in Figures 3.6 and 3.7 highlight the capability of the deep neural network (DNN)
model in simulating and analyzing infection dynamics. Figure 3.6 demonstrates the DNN training process,
showing a consistent decline in both Root Mean Square Error (RMSE) and the loss function over 500 iterations.
The decreasing RMSE and loss values reflect the model’s convergence toward an optimal solution, ensuring
improved prediction accuracy. This trend also indicates the model’s stability, as evidenced by the shrinking
confidence intervals, which affirm its ability to generalize well to unseen scenarios. Figure 3.7 illustrates the
predicted infection spread over 100 days for different values of transmission rate 8 and emission severity 7. For
lower 7 values (e.g., 7 = 0.05), higher S leads to rapid infection spread with sharp peaks, while lower 3 results
in slower, flatter curves. As 7 increases (e.g., 7 = 0.30), the infection dynamics become more controlled, with
reduced peaks and delayed spread even for higher 5. These findings emphasize the critical role of adherence to
public health policies and the effectiveness of mitigation strategies in flattening infection curves and reducing



Ishrat Shoily / GANIT J. Bangladesh Math. Soc. 45.1 (2025) 001-015

the epidemic’s overall impact.
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Figure 3.6: DNN training progress.
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4 Conclusion

In this study, we have demonstrated that integrating warning mechanisms, modeled through chicken games,
into the traditional Susceptible-Infected-Recovered (SIR) model results in more complex epidemic dynamics.
By incorporating key parameters such as 7, w, 3, and -y, the S-population can be guided effectively, adapting
their behavior based on the evolving epidemic situation. In the context of a severe outbreak, these adaptive
strategies—supported by timely and clear signals—can significantly reduce the transmission of the virus. Simu-
lation results validate the effectiveness of these measures, showing that they facilitate the redistribution of risk
payoffs between affected and unaffected populations, which in turn encourages the adoption of various strate-
gies at different stages of the epidemic. Our findings underscore the importance of incorporating adaptable and
flexible policy responses into epidemic models, as they can help control the spread of infectious diseases. The
Signal-SIR, Model offers a unique perspective by combining adaptive behavior with traditional epidemic dynam-
ics, revealing that public adherence to health guidelines and an understanding of the severity of the epidemic
are crucial for controlling infection rates. The use of deep neural networks enhances the model’s predictive
capabilities, showing that higher adaptive behavior leads to lower infection rates and better recovery outcomes.
Future research should focus on applying this model to real-world data, refining parameter estimations, and
validating its effectiveness in guiding public health responses during future outbreaks.
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