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ABSTRACT

Mantle convection, a fundamental mechanism controlling the dynamics of the Earth’s surface and interior, shows
different behaviors caused by different factors such as viscosity variation, viscous dissipation, internal heating,
and so on. In this paper, the effects of temperature-dependent viscosity, temperature and pressure-dependent
viscosity and viscous dissipation on mantle convection are investigated in elongated and narrow cells. The
Rayleigh-Bénard convection model is solved numerically with the full form of the Arrhenius viscosity function
at a high Rayleigh number for viscosity contrasts up to 1030. The root mean square velocity and Nusselt
number are computed and tabulated. The thermal characteristics and flow dynamics inside the convection
cell are presented by temperature profiles and stream function contours. These simulated results indicate that
increasing viscosity contrasts with the incorporation of viscous dissipation weakens the convection vigour and
heat transfer in the mantle. The selected narrow cell remains stable for a very high viscosity contrast at different
viscous pressure number µ, whereas the selected elongated cell with temperature-dependent viscosity and strong
viscous dissipation becomes unstable and single-cell pattern breaks down at high viscosity variation.
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1 Introduction

For a long time, scientists have been ridiculed by the geological processes that led to the formation of ice
ages, earthquakes, volcanoes, mountain ranges, sea floor spreading, and sedimentary basins. The long-awaited
explanation to these queries has been provided by the concept of mantle convection and plate tectonics theory
[1, 2]. Arthur Holmes [3, 4] was the first to propose the idea of the convection in the mantle. Mantle convection
modifies the planetary surfaces and propels geological activity and for a long period of time, it has been the
driving mechanism of various physical phenomena [5].

The composition of mantle is very intricate and a number of factors influences the mantle. Viscosity is one
of the most distinctive and significant features of the mantle. According to standard parameter values relevant
to the Earth, there is a viscosity difference of order 1050 across the mantle depth of about 3000 km [6]. A recent
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study reveals that the viscosity of the upper mantle is around 2.8× 1022 Pa s [7]. Mantle viscosity is strongly
influenced by temperature, pressure and stress [2]. Turcotte and Oxburgh [8] did the first boundary layer
analysis for mantle convection with constant viscosity in 1967. Later mantle convection with variable viscosity
was investigated by many studies [9, 10, 11, 12, 13]. According to the investigation of Jain and Solomatov [14]
on convection with highly temperature-dependent viscosity, a high-viscosity stationary lid develops at the upper
surface as the viscosity gradient expands, leading to Rayleigh-Bénard-like convection in a sublayer underneath it.
Jain and Solomatov [15] used 2D numerical simulations to investigate convection with temperature-dependent
viscosity below the critical Rayleigh number. The concurrent effects of temperature- and pressure-dependent
rheology on convection and geoid above the plumes were studied by Shahraki and Schmeling [16] in a 2D axi-
symmetrical model. A few more significant 2D Cartesian geometry computational models that analyze mantle
convection are carried out by Gassmöller et al. [17], Agrusta et al. [18], Khaleque and Motaleb [19], Agarwal et
al. [20], Khaleque et al. [21], Capitanio et al. [22], Whitehead [23], Kameyama [24], Okuda and Takehiro [25],
Trim et al. [26]. For the first time, Blankenbach et al.[27] benchmarked the values of some significant physical
quantities of mantle convection. Recently, Trim et al. [28] studied a series of thermochemical mantle convection
problems in 2D and produced some benchmark values.

Viscous dissipation is another influential characteristic of mantle convection. According to Leng and Zhong
[29], for temperature-dependent viscosity, only less than 10% of the total dissipation is accounted for by bending
dissipation alone. Approximately 86% of the gravitational energy is converted into heat by viscous dissipation
when the slab subducts [30]. Goni et al. [31] showed that viscous dissipation reduces the intensity of convection,
but the addition of internal heating and an increased viscous pressure number strengthen it. A recent study
conducted by Islam et al. [32] shows that with increasing viscosity contrast and viscous dissipation number,
convection becomes weaker. In simulations of rotating, density-stratified flat strata of convection, Lance et
al. [33] offer the first comprehensive analysis of viscous dissipation. Regarding viscous dissipation in mantle
convection, some recent investigations done by Requilé et al. [34], Straughan [35], Knight et al. [36] are
particularly noteworthy.

For boundaries without stress, oscillatory convection begins at comparatively low Rayleigh numbers. Above
a particular Rayleigh number, single cells with aspect ratio of a = 2.5 remain stable at least upto a higher
Rayleigh number, but cells with an aspect ratio a = 4.0 split up into multiple short cells. Convection in the
Earth’s mantle is most likely to take the shape of long-wavelength cells [37]. In an enclosure with uniform and
sinusoidal temperatures, the effects of ratio of aspect and nonuniform temperature on mixed convection are
investigated. It displays notable variations in the sinusoidal localized thermal exchange rate and flow rate [38].

Because of its complexity, full understanding of the movement of the Earth’s mantle and representing this
numerically in a fitting way is one of the most difficult challenges of the present day. Though several studies
have been carried out in the area of mantle convection to investigate its cell pattern under the effect of different
parameters and different cell size, for the particular rectangular cell size 1:2 (narrow) and 2:1 (elongated)
with high temperature-dependent viscosity variation as well as temperature-and pressure-dependent viscosity
variation with viscous dissipation effect have not been investigated before. In this paper, the aim is to search for
convection cell patterns by examining high Rayleigh number convection in the mantle in narrow and elongated
cells with variable viscosity and viscous dissipation. Very high viscosity contrast across the mantle layer is
considered here so that it closely represents the mantle viscosity. The governing equations together with the
relevant boundary conditions for mantle convection and the full form Arrhenius viscosity function are described
in section 2. Then non-dimensionalization of the equations are carried out and dimensionless parameters are
obtained. In section 3, the computation and simulation approach are explained and the process is validated
by comparing our computed results with benchmark values and earlier studies. Then in section 4 we solve
our specific Rayleigh-Bénard convection model in two cells of aspect ratios 1:2 (narrow) and 2:1 (elongated)
and present the simulated results using graphs and tables. Finally, a few conclusions drawn from the findings
are discussed in section 5. To the best of our knowledge, such high viscosity variation (up to 1030) due to
temperature-dependent viscosity and temperature- and pressure-dependent viscosity with viscous dissipation in
narrow and elongated convection cells has not been studied before.

2 Governing Equations

A classical two-dimensional Rayleigh-Bénard convection model is taken into consideration for this study. A
rectangular domain with boundaries extending horizontally across the cell are considered to have a constant
temperature contrast between them (Figure 2.1). In the corresponding infinite horizontal layer, this convection
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Figure 2.1: Schematic diagram of a basally heated elongated convection cell in mantle.

cell is regarded as a part of a periodic pattern.
The mass conservation can be represented by the incompressibility condition [6]. The inertial components in

the Navier-Stokes equations are disregarded by considering an infinite Prandtl number appropriate for mantle
convection [39]. As stated by Solomatov [40], the total mechanical work performed by thermal convection per
unit of time usually balances the overall viscous dissipation inside the layer. If the difference in viscosity is
significant, the dissipation occurring in the cold boundary layer can be similar to that observed in the internal
region. Hence, we consider the “extended Boussinesq approximation” to balance the energy equation where
the non-Boussinesq effect latent heat is taken into consideration and the fluid is regarded as incompressible
throughout, with the exception of the propelling buoyancy forces. So, in the energy equation, we incorporate
the non-Boussinesq effects of the frictional heating and adiabatic gradient [41]. Thus, conservation of mass,
momentum, and energy along with the equation of state form

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

∇p = ∇ · τ − ρgk̂, (2.2)

∂T

∂t
+ u.∇T − αT

ρCp

(
∂P

∂t
+ u.∇P

)
= κ

(
∇2T

)
+

τ2

2ηρCp
, (2.3)

ρ = ρ0 [1− α (T − Tb)] . (2.4)

Here, u = (u, 0, w) represents the velocity of the fluid, where the component of velocity in the x- and
z-directions are denoted by u and w, respectively, g stands for constant acceleration due to gravity (pointing
downwards), η for viscosity and τ for the deviatoric stress tensor. Moreover, T stands for the absolute temper-
ature, α for the thermal expansion coefficient, Cp for the specific heat at constant pressure, κ for the thermal
diffusivity, ρ0 for the basal density and Tb for the basal temperature, and P , t, ρ have their usual meaning. We
assume that basal heating is the primary source of convection for our study and exclude internal heating and
radiogenic heating.
The viscosity function in the Arrhenius form which relates temperature, pressure and stress dependency is
considered in this study which is given by [42]

η =
1

2A∗∥τ∥n−1
exp

[
E + pV

RT

]
. (2.5)

Here, A∗ stands for the pre-exponential factor; E for activation energy per mole; R for universal gas constant;
and V for activation volume per mole. ∥τ∥ is the square root of the second invariant of the deviatoric stress
tensor. Korenaga [43] investigates the superiority of Arrhenius rheology over linear-exponential rheology and
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shows how well it can assess top thermal boundary layer stability.
The deviatoric stress tensor τ can be representated as

τ = η
[
∇u+ (∇u)T

]
.

In this paper, Newtonian rheology with n = 1 is taken into consideration. Thus, the viscosity relation (2.5) can
be reduced as

η =
1

2A∗ exp

[
E + pV

RT

]
. (2.6)

The boundary conditions
We take into consideration a rectangular convection cell of depth d that has a boundary condition of free-slip
on all boundaries. We assume that the side walls are thermally insulated and the temperatures at the top and
the bottom walls are constant. The boundary conditions for the model equations are

w = 0, T = Tb, τ3 = 0 on z = 0,

w = 0, T = Ts, τ3 = 0 on z = d,

u = 0,
∂T

∂x
= 0, τ3 = 0 on x = 0, ad.

(2.7)

Table 2.1: Relevant values of parameters for the mantle convection of the Earth.

Parameters Symbols Values

Basal temperature of the mantle Tb 3000K

Temperature at the upper surface of the mantle Ts 300K

Temperature difference ∆T 2700K

Gravitational acceleration g 10 ms−2

Reference density ρ0 4× 103 kgm−3

Mantle depth d 3× 106 m

Thermal conductivity K 4 Wm−1K−1

Thermal expansion coefficient α 2× 10−5 K−1

Thermal diffusivity κ 1× 10−6 m2s−1

Specific heat at constant pressure Cp 103 Jkg−1K−1

Gas law constant R 8.31 Jmol−1K−1

Activation volume V 6× 10−6 m3mol−1

Activation energy E 300− 525 kJmol−1

Viscous rate constant A∗ 105 MPa−1s−1

Viscous pressure number µ 1.2− 2.4

Viscous temperature parameter ϵ .042− .083

Dimensionless surface temperature θ0 0.1

Rayleigh number Ra 107 − 109

Boussinesq number B̄ 0.06

2.1 Dimensionless equations and parameters

We use the following dimensionless variables to non-dimensionalize the model equations and boundary
conditions [44, 45]:

u = κ
du

∗, t = d2

κ t∗, P = ρ0gd (1− z∗) + η0κ
d2 P ∗, ρ = ρ0ρ

∗, τ = η0κ
d2 τ ∗,

(x, z) = d (x∗, z∗) , η = e(1+µ)/ε

2A∗ η∗ = η0η
∗, T = TbT

∗.
(2.8)

This transformation produces the following dimensionless equations from equations (2.1), (2.2), (2.3), and
(2.6):

∇ · u = 0, (2.9)

∇p = ∇ · (η∇u)−Ra(1− T )k, (2.10)

∂T

∂t
+ u · ∇T +DTw −DT

B̄

Ra

∂P

∂t
−DT

B̄

Ra
u · ∇P = ∇2T +

D

Ra

τ2

2η
, (2.11)
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η = exp

[
(1− T )(1 + µ) + µB̄p/Ra− µz

εT

]
. (2.12)

The dimensionless parameters appeared in the transformed equations form

Viscous temperature parameter, ε = RTb

E ,

Boussinesq number, B̄ = αTb,

Viscous pressure number, µ = ρ0g dV
E ,

Rayleigh number, Ra = αρ0gTbd
3

η0κ
,

Dissipation number, D = αdg
Cp

.

(2.13)

From Table 2.1, we can see that Ra ≫ 1 and so, B̄
Ra ≪ 1, and hence we can neglect this ratio. Then the

non-dimensional equations (2.11) and (2.12) take the form as

∂T

∂t
+ u · ∇T +DTw = ∇2T +

D

Ra

τ2

2η
, (2.14)

η = exp

[
(1 + µ)(1− T )− µz

εT

]
, (2.15)

When the depth dependence, i.e, pressure dependence on viscosity function is neglected, the value of µ becomes
0. As a result, the constitutional relation (2.15) becomes

η = exp

[
1− T

εT

]
, (2.16)

where only temperature dependence is considered. The boundary conditions (2.7) in dimensionless form become

w = 0, T = 1, τ3 = 0 on z = 0,

w = 0, T =
Ts

Tb
= θ0, τ3 = 0 on z = 1,

u = 0,
∂T

∂x
= 0, τ3 = 0 on x = 0, a.

(2.17)

The dimensionless variable viscosity model includes the boundary conditions (2.17), with equations (2.9), (2.10),
(2.14), and (2.15).
In our investigation, we ignore isothermal compressiblity, internal heating and radiogenic heating. Activation
energy (E) is different in diffusion creep and in dislocation creep. That’s why, the viscous temperature parameter
(ϵ) and viscous pressure number (µ) are shown in a range in Table 2.1. It is very difficult to compute with the
very small values of the viscous temperature parameter ϵ, and hence, we try to use the value of ϵ as small as
possible. Similarly, with large viscous pressure number µ, the computation becomes very stiff. So, we try to
choose a relatively high µ.

Next we define three indicative quantities that will be utilized in the findings in the next section.
i. Nusselt number
One way to quantify the heat transfer between a convective fluid and a surface is by looking at the Nusselt
number. The Nusselt number, denoted by Nu, is a measure of the relative importance of convective and
conduction-only heat flows on a given surface. The calculation of the Nusselt number is determined by the
dimensionless relationship

Nu = − 1

a (1− θ0)

∫ a

0

∂T

∂z
(x, 1)dx. (2.18)

When it comes to conduction, the value of Nu is 1, but convection begins when it surpasses 1 [32].
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ii. Root mean square velocity
The non-dimensional root mean square velocity Vrms is a measurement to accurately describe the strength of
the flow that is circulating [21]. It is described as

Vrms =

[∫ 1

0

∫ a

0

(
u2 + w2

)
dx dz

]1/2
. (2.19)

Here, u represents the lateral velocity component and w represents the vertical velocity component.
iii. Viscosity variation
The viscosity variation, denoted by the symbol ∆η, is defined as the numerical value that represents the ratio
between the surface viscosity and the basal viscosity values. This contrast is defined as

∆η = exp

(
1− θ0 − µθ0

εθ0

)
. (2.20)

3 Methodology

3.1 Process of computation

We perform our numerical computation by solving the dimensionless equations with a commercial software
named ‘COMSOL Multiphysics 6.1’. This software is a PDE solver which is based on finite element method.
According to our model’s physics, the modules named creeping flow, heat transfer in fluids and Poisson’s
equation are selected. For meshing technique, the “extra fine” for free triangular meshing options is chosen.
Because of the boundary layers, in the vicinity of the boundaries of the cell, a refinement of 200 x 200 is applied.

Even though we are interested with high Rayleigh number convection with extreme viscosity contrast,
COMSOL Multiphysics can not find a solution for Ra = 107 directly. For the convergence to a solution,
Newton’s method must start near a solution. For a nonlinear problem, the initial condition may not be in the
‘basin of attraction’ for the desired solution. That is why, we start by solving the system for a low Ra with
relatively large value of ϵ and then restart the simulation with a slightly larger value of Ra but this time we
use the solution of the low Ra convection as the initial condition. In this way, we gradually increase the value
of Ra by using the solution of the previous simulation as the initial guess. When we achieve the solution of
the high Ra convection, we decrease the value of temperature dependence parameter ϵ to increase the viscosity
ratio across the layer. The process can be termed as the ‘parametric continuation’. Because the solution at the
new parameter values is not expected to be much different than at the old parameter values, the Newton solver
should converge rapidly. We use implicit time-stepping method in time dependent solver and the MUMS solver
for both stationary and time dependent solvers as these ensure the smooth convergence to the desired solutions.

3.2 Validation and Comparison

To validate our model, at first we simulate the mathematical model for constant viscosity in a square cell
in the absence of viscous dissipation and internal heating. We set θ0 = 0 and η = 1 for this simulation. We
compute the Nusselt number (Nu) and RMS velocity (Vrms) for Rayleigh number (Ra) 104 to 107. We compare
these two values with the benchmark values given by Blankenbach et al. [27]a and Koglin Jr et al. [46]b in
Table 3.1. From Table 3.1, it can be observed that the relative error is extremely minimal and it is less than
0.1% in all cases. This validates the construction of our model.

Table 3.1: Nusselt number and RMS velocity comparison with benchmarks.

Ra Nu Vrms

This work Benchmark Error (%) This work Benchmark Error (%)

104 4.884410 4.884409a 0.000017 42.864971 42.864947a 0.000056

105 10.534068 10.534095a 0.000256 193.214111 193.21454a 0.000222

106 21.972616 21.972465a 0.000688 834.004668 833.98977a 0.001786

107 45.639494 45.62b 0.042732 3633.893493 - -
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Table 3.2: Comparison of the computed Nu and Vrms values from convection with full form viscosity function
with the values from convection with cut-off viscosity function [32] in a square cell with D = 0.0, µ = 0.0 at
θ0 = 0.1, Ra = 107.

µ ∆η ϵ Nu Vrms

This Previous Error (%) This Previous Error (%)

work work [32] work work [32]

1010 0.39 6.7623 6.76800 0.0842 752.8612 753.149 0.0382

1015 0.26 5.3573 5.36157 0.0796 594.7352 594.92 0.0311

0.0 1020 0.195 4.4529 4.45036 0.0571 484.1178 483.396 0.1493

1025 0.156 3.8031 3.8009 0.0579 398.9110 398.149 0.1576

1030 0.1303 3.2594 3.25696 0.0749 309.2087 308.093 0.3621

Table 3.3: Comparison of the computed Nu and Vrms values from convection with full form viscosity function
with the values from convection with cut-off viscosity function [32] in a square cell with D = 0.3 at different µ
and θ0 = 0.1, Ra = 107.

µ ∆η ϵ Nu Vrms

This Previous Error (%) This Previous Error (%)

work work [32] work work [32]

1010 0.369 4.46509 4.46772 0.0589 580.132 580.307 0.0302

1015 0.246 3.62604 3.62823 0.0604 468.416 468.522 0.0226

0.5 1020 0.1846 3.09281 3.09495 0.0691 388.036 388.104 0.0175

1025 0.1477 2.71437 2.71655 0.0802 324.924 324.978 0.0166

1030 0.123 2.40285 2.40512 0.0944 259.832 259.877 0.0173

1010 0.3474 5.22822 5.22977 0.0296 722.297 722.471 0.0241

1015 0.2316 4.58858 4.58926 0.0148 640.339 640.405 0.0103

1.0 1020 0.1737 4.18630 4.18656 0.0062 563.067 562.901 0.0295

1025 0.1389 3.89039 3.88971 0.0175 482.400 481.827 0.1189

1030 0.1158 3.64316 3.64133 0.0503 399.355 398.414 0.2362

Next we show the comparison with a previous study for a convection model with temperature-dependent
viscosity but without viscous dissipation effect (D = 0.0 ) in Table 3.2 and then, a comparison is shown for a
convection model with temperature-and pressure- dependent viscosity and viscous dissipation effect (D = 0.3 )
in Table 3.3. It can be observed that the percentage error for the values of Nusselt number is less than 0.1% and
for the values of root mean square velocity is less than 0.5%. It should be mentioned that in the reference paper
[32], a cut-off viscosity function was employed for computational work. Hence, a slight difference is expected,
but they still fall within an acceptable range. These comparisons further consolidate the robustness of our
proposed model.

4 Result and Discussion

In our study, we employ the previously discussed model structure to a rectangular cell with two different
aspect ratios: 2:1 (aspect ratio a = 2) and 1:2 (aspect ratio a = 0.5). We use the non-dimensional governing
equations (2.9), (2.10), (2.14) and (2.15) with boundary conditions (2.17) for our simulation. The typical
values of the parameters relevant to the Earth are given in Table I. These values suggest that the viscosity
contrast across the mantle is of order 1050 or more. However, simulation with such high viscosity variation
is computationally very expensive. Thus to tackle such computational complexity, in this study, we evaluate
thermal convection at viscosity contrasts, ∆η up to 1030 at Ra = 107 mostly. According to Jarvis and Mckenzie
[47], the value of D ranges from 0.25 to 0.8. Later, Leng and Zhong [29] claim the dissipation number to be
in between 0.5 to 0.7. In this study, the numerical computations are carried out mainly for dissipation number
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D = 0.3 ∼ 0.6.

4.1 Convection with temperature-dependent viscosity η(T )

In this section, the results of elongated and narrow convection cells are presented, where the effect of the
temperature-dependent viscosity (η(T ), µ = 0) is considered with viscous dissipation.

Table 4.1: Nusselt number (Nu) and root mean square velocity (Vrms) values from convection with η(T ) in
elongated cell with aspect ratio a = 2 and narrow cell with aspect ratio a = 0.5 at θ0 = 0.1, µ = 0.0 and
Ra = 107.

∆η ϵ Elongated Cell, a = 2 Narrow cell, a = 0.5

Nu Vrms Nu Vrms

D = 0.3 D = 0.6 D = 0.3 D = 0.6 D = 0.3 D = 0.6 D = 0.3 D = 0.6

105 0.782 4.4935 2.9161 686.804 490.439 6.8237 4.0386 483.756 319.061

1010 0.39 3.0331 1.9570 470.797 306.056 4.4444 2.506 327.765 187.912

1015 0.26 2.4181 1.5904 354.683 210.461 3.3037 1.8858 239.132 121.544

1020 0.195 2.0426 1.3900 277.561 150.077 2.6414 1.5762 181.810 84.539

1025 0.156 1.7888 1.2586 221.075 106.165 2.2156 1.3993 141.566 61.913

1030 0.1303 1.6089 1.2510 177.696 91.560 1.9280 1.2906 112.285 47.300

Table 4.1 shows that in elongated cell as well as in narrow cell with temperature-dependent viscosity, for a
certain dissipation number D, Nu and Vrms decrease with the increase of viscosity contrast. As the parameter
∆η is only temperature-dependent, these results imply that convection weakens with higher viscosity gradients
across the mantle. Additionally, it can be observed that at a fixed viscosity contrast, the value of the Nusselt
number and Vrms decrease as the dissipation number D increases from 0.3 to 0.6. So, stronger influence of D
also weakens the convection.

(a) D = 0.3,∆η = 1010 (b) D = 0.3,∆η = 1020 (c) D = 0.3,∆η = 1030

(d) D = 0.6,∆η = 1010 (e) D = 0.6,∆η = 1020 (f) D = 0.6,∆η = 1030

Figure 4.1: Temperature distribution in a 2:1 convection cell for different viscous dissipation number at various
viscosity ratios ∆η with µ = 0.0, θ0 = 0.1 and Ra = 107.
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(a) D = 0.3,∆η = 1010 (b) D = 0.3,∆η = 1020 (c) D = 0.3,∆η = 1030

(d) D = 0.6,∆η = 1010 (e) D = 0.6,∆η = 1020 (f) D = 0.6,∆η = 1030

Figure 4.2: Stream function distribution in a 2:1 convection cell for different viscous dissipation number at
various viscosity ratios ∆η with µ = 0.0, θ0 = 0.1 and Ra = 107.

Figure 4.1 and 4.2 represent the temperature distribution and stream function contours, respectively at
various viscosity contrasts (∆η) at different viscous dissipation numbers (D) with µ = 0.0 in an elongated
cell. Temperature profiles are shown in figure 4.1 where a cold and a hot thermal boundary layer at the top
(blue) and at the bottom (red) of the cell, respectively are clearly visible. The fluid in the cold boundary layer
develops a stiff lid because of high viscosity. Panels (4.1a-4.1c) for D = 0.3 and panels (4.1d-4.1f) for D = 0.6
illustrate a gradual increase of the blue region. It can be concluded that the lid grows thicker with the rise of
the viscosity contrast. The blue area in panel 4.1f is greater than panel 4.1c, which means that the lid thickness
becomes larger when the dissipation becomes stronger. It can also be seen from the figure that the temperature
at the base of the cell continues to increase. The growing dark red area demonstrates this characteristics. So,
the temperature is greater in the vicinity of the core-mantle boundary layer, and it increases as the viscosity
contrast starts to increase.

In each panel of Figure 4.2, no streamlines can be found at the uppermost part of the convection cell. This
confirms the existence of a stagnant lid at the top of the mantle. It can also be seen that as the viscosity gradient
increases, a big portion at the upper part is free of streamlines. This also validates the growth of stagnant lid
thickness. In addition to this, it can also be observed that at a specific dissipation number D = 0.3, the single
cell convection pattern persists, regardless of the viscosity contrast. However, for D = 0.6, an obvious change
in convection pattern is visible for larger viscosity gradients. When ∆η becomes 1030, convection cell pattern
becomes unstable, single cell disappears. Here unstable means that the stationary solver does not converge
for this particular set of parameters. However, when the time-dependent solver is applied, the two-cell steady
pattern emerges (panel 4.2f). This can happen when the new parameter is close to a bifurcation point - in
which multiple solutions are possible. Therefore, for dissipation number D = 0.6, two square cell pattern is the
stable choice when ∆η is high enough. The mechanism adapts to increase viscosity sensitivity to temperature
by confining flow to progressively smaller convection cells.
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Figure 4.3: Temperature distribution with corresponding stream function distribution in a 1:2 convection cell
for different viscous dissipation number at various viscosity ratios ∆η with µ = 0.0, θ0 = 0.1 and Ra = 107.

For convection with η(T ) at different D and ∆η, the temperature profiles and the streamlines in a narrow
cell are presented in Figure 4.3. Like elongated cell, there is a gradual increase in cold blue zone and decrease of
warm yellow zone as the viscosity gradient advances to higher values in the narrow cell. So, it can be concluded
that when the viscosity variation becomes larger at a fixed dissipation number, the convection in the mantle of
the Earth becomes less intense. Figure 4.3 shows that the single-cell pattern of 1:2 narrow convection cell with
η(T ) remains stable even at higher values of D and ∆η.

The horizontally average temperature distribution as a function of depth is presented in Figure 4.4. The
horizontally average temperature at mid-depth [48] is defined as

T̄z=d/2 =
1

a

∫ a

0

T (x, z = d/2)dx (4.1)

where z represents the depth of the cell.
The Figures 4.4a and 4.4b show that the increase of viscous dissipation number and viscosity contrast lead

to lower horizontally averaged temperature T̄ in the mantle. From the figures, it can be seen that the narrow
cell has higher T̄ than the elongated cell. It can be inferred from the plots that the interior of the mantle is
not isothermal. When the dissipation number is higher (D = 0.6), implying a greater dissipation effect, the
inside of both types of cells experience a significant temperature difference. For D = 0.3, there is a remarkable
difference in the average temperature between the lid region and core of the mantle. However, for D = 0.6, the
difference in the two regions is not that distinguishable. It is also evident that the hot thermal boundary layer
at the bottom is significantly thinner than the cold upper boundary layer.

Figure 4.5 shows the variation of Nu with Ra for different values of ϵ in different aspect ratio convection
cells. At a fixed ϵ, as Ra increases from 106 to 108, the value of Nu also increases and this indicates that
stronger convection occurs in the mantle. This trend can be seen for different values of D and in both elongated
and narrow cells. At a certain D in both cells, as ϵ decreases, i.e. ∆η becomes larger, Nu decreases and
the convection becomes weaker. Also Nu values decrease as dissipation gets stronger which implies viscous
dissipation dampens heat transfer efficiency in the mantle convection.

4.2 Convection with temperature-and pressure-dependent viscosity η(T, z)

In this section, the simulation results for convection with temperature- and pressure-dependent viscosity
η(T, z) will be analyzed. For viscous pressure number, µ = 0.5 and µ = 1, Nu and Vrms values along with the
thermal distributions and corresponding streamlines are presented in this section in Figures 4.6 - 4.9. Here, we
vary ∆η and dissipation number D to find their effect on convection cells with aspect ratio a = 2 and a = 0.5.
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(a) Elongated cell (2:1) (b) Narrow cell (1:2)

Figure 4.4: Horizontally average temperature T̄ for different viscosity contrasts at various viscous dissipation
numbers in two convection cells with η(T ) (µ = 0.0, θ0 = 0.1, and Ra = 107).

Table 4.2: Nusselt number (Nu) and root mean square velocity (Vrms) values from convection with η(T, z) in
elongated and narrow cell at θ0 = 0.1, and Ra = 107.

µ ∆η ϵ Elongated Cell, a = 2 Narrow cell, a = 0.5

Nu Vrms Nu Vrms

D = 0.3 D = 0.5 D = 0.3 D = 0.5 D = 0.3 D = 0.6 D = 0.3 D = 0.6

105 0.738 4.7358 3.5341 757.931 601.606 7.3822 4.3119 544.169 349.314

1010 0.369 3.4219 2.4753 575.561 423.356 5.278 2.8259 423.828 232.024

0.5 1015 0.246 2.8527 2.0246 469.830 320.062 4.2315 2.1531 352.775 162.886

1020 0.185 2.4872 1.7473 396.497 249.054 3.5754 1.7797 302.795 118.478

1025 0.148 2.2293 1.5605 342.826 196.777 3.1194 1.5518 264.484 88.445

1030 0.123 2.0353 1.4269 301.813 155.974 2.7804 1.4040 233.437 67.523

105 0.694 4.9572 3.6748 839.444 666.174 7.9117 4.5695 611.358 393.232

1010 0.3474 3.8896 2.7486 710.808 517.712 6.2000 3.2178 520.312 293.266

1.0 1015 0.2316 3.4532 2.3411 629.831 424.274 5.3823 2.5589 457.351 229.682

1020 0.1737 3.1914 2.0821 572.421 359.411 4.8657 2.1534 398.424 183.891

1025 0.1389 3.0230 1.8988 539.997 312.672 4.4749 1.8750 337.149 148.350

1030 0.1158 2.9041 1.7601 531.394 277.046 4.1354 1.6733 274.042 119.746

From Table 4.2, we observe that at a specific value of D, there is a decrease in the value of Nu and Vrms

with the increase of viscosity ratio ∆η in the elongated cell as well as in the narrow cell for both µ = 0.5 and
µ = 1.0. Again, it shows that at a particular ∆η, Nu and Vrms decrease as D is increased. This provides
the evidence that higher dissipation effect and viscosity contrast weaken the strength of the temperature- and
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(a) Elongated cell (2:1) (b) Narrow cell (1:2)

Figure 4.5: Rayleigh vs Nusselt number plot for different viscosity contrasts with different viscous dissipation
number in different convection cells (µ = 0.0, θ0 = 0.1, and Ra = 107).

pressure-dependent viscous convection in both types of cells considered. However, at a fixed viscosity contrast,
Nu and Vrms values increase as µ changes from 0.5 to 1.0. This implies stronger influence of pressure in the
viscosity function boosts the convection vigour as viscous temperature parameter ϵ decreases.

(a) D = 0.3,∆η = 1010. (b) D = 0.3,∆η = 1020. (c) D = 0.3,∆η = 1030.

(d) D = 0.5,∆η = 1010. (e) D = 0.5,∆η = 1020. (f) D = 0.5,∆η = 1030.

Figure 4.6: Thermal distributions in a 2:1 convection cell for different viscous dissipation number (D = 0.3, 0.5)
at various viscosity ratios (∆η = 1010, 1020, 1030) with µ = 0.5, θ0 = 0.1 and Ra = 107.
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(a) D = 0.3,∆η = 1010. (b) D = 0.3,∆η = 1020. (c) D = 0.3,∆η = 1030.

(d) D = 0.5,∆η = 1010. (e) D = 0.5,∆η = 1020. (f) D = 0.5,∆η = 1030.

Figure 4.7: Stream function contours in a 2:1 convection cell for different viscous dissipation number (D =
0.3, 0.5) at various viscosity ratios (∆η = 1010, 1020, 1030) with µ = 0.5, θ0 = 0.1 and Ra = 107.

(a) D = 0.3,∆η = 1010. (b) D = 0.3,∆η = 1020. (c) D = 0.3, ∆η = 1030

(d) D = 0.5, ∆η = 1010. (e) D = 0.5,∆η = 1020. (f) D = 0.5, ∆η = 1030.

Figure 4.8: Thermal distributions in a 2:1 convection cell for different viscous dissipation number (D = 0.3, 0.5)
at various viscosity ratios (∆η = 1010, 1020, 1030) with µ = 1.0, θ0 = 0.1 and Ra = 107.
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(a) D = 0.3,∆η = 1010. (b) D = 0.3,∆η = 1020. (c) D = 0.3, ∆η = 1030.

(d) D = 0.5, ∆η = 1010. (e) D = 0.5,∆η = 1020. (f) D = 0.5,∆η = 1030.

Figure 4.9: Stream function contours in a 2:1 convection cell for different viscous dissipation number (D =
0.3, 0.5) at various viscosity ratios (∆η = 1010, 1020, 1030) with µ = 1.0, θ0 = 0.1 and Ra = 107.

In Figures 4.6 - 4.9, the temperature distributions and streamfunction contours in a 2:1 elongated cell are
displayed at two different viscous pressure numbers µ = 0.5 and µ = 1.0 for convection with η(T, z). In each
of Figures 4.6 to 4.9, thermal distributions and streamlines at various viscosity ratios (∆η = 1010, 1020, 1030)
and dissipation numbers (D = 0.3, 0.5) are showed. We observe that the blue zone progressively rises in both
figure 4.6 and 4.8, which is the indicator of the increase of the cold area in the mantle as viscosity variation
gets larger. The cold boundary layer thickness, that is, the stagnant lid thickness, is higher for D = 0.5 than
D = 0.3 for both values of µ (Figures 4.6d, 4.6e, 4.6f and 4.8d, 4.8e, 4.8f). The orange region in the convection
cell starts to shrink as ∆η becomes higher, and at the same time, the dark red area begins to occupy more and
more area at the bottom of the cell. This outcome of the simulation suggests an increase in temperature in the
lower mantle which is also similar to the Figure 4.2 where the value of µ was 0.0.

Stream function contours for µ = 0.5 and µ = 1.0 are shown in Figures 4.7 and 4.9, respectively. An
increasing empty area at the top of the cell can be seen as ∆η becomes larger. We can also observe from these
streamlines that single-cell pattern remains stable in a 2:1 convection cell even if the viscous pressure number
µ, dissipation effect D, and viscosity ratio ∆η are increased significantly.
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µ = 0.5

(b) ∆η = 1020. (c) ∆η = 1030. (d) ∆η = 1010.

µ = 1.0

(e) ∆η = 1020. (f) ∆η = 1030.
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(g) ∆η = 1010. (h) ∆η = 1020. (i) ∆η = 1030. (j) ∆η = 1010. (k) ∆η = 1020. (l) ∆η = 1030.

Figure 4.10: Temperature distribution in a 1:2 convection cell for different viscous dissipation number D and
viscous pressure number µ at various viscosity ratios ∆η with θ0 = 0.1 and Ra = 107.
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(a) ∆η = 1010.

µ = 0.5

(b) ∆η = 1020. (c) ∆η = 1030. (d) ∆η = 1010.

µ = 1.0

(e) ∆η = 1020. (f) ∆η = 1030.
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=

0
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(g) ∆η = 1010. (h) ∆η = 1020. (i) ∆η = 1030. (j) ∆η = 1010. (k) ∆η = 1020. (l) ∆η = 1030.

Figure 4.11: Stream function distribution in a 1:2 convection cell for different viscous dissipation number D and
viscous pressure number µ at various viscosity ratios ∆η with θ0 = 0.1 and Ra = 107.

Next the temperature and stream function distributions for convection with η(T, z) for µ = 0.5 and µ = 1.0
in a 1:2 narrow convection cell are presented in Figures 4.10, 4.11. There is a significant change in temperature
in the interior of the convection cell. For D = 0.3, the interior temperature decreases significantly when µ is
increased from 0.5 to 1.0 (Figure 4.10 a-f). The stagnant lid thickness increases with the increase of viscosity
variation and dissipation number. Overall, the figures show a similar pattern in temperature and streamline as
we observed in an elongated cell. A stable one-cell convection pattern persists in a narrow cell with temperature-
and pressure-dependent viscosity at higher D and ∆η.
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(a) Elongated cell (2:1) (b) Narrow cell (1:2)

Figure 4.12: Horizontally average temperature T̄ for different viscosity contrasts at various viscous dissipation
numbers in two convection cells with η(T, z) (µ = 1.0, θ0 = 0.1 and Ra = 107).

(a) Elongated cell (2:1) (b) Narrow cell (1:2)

Figure 4.13: Rayleigh vs Nusselt number plot for different viscosity contrasts with different viscous dissipation
number in different convection cells at µ = 1.0, θ0 = 0.1, and Ra = 107.

In Figure 4.12 horizontally average temperature profiles are displayed for both elongated and narrow cell for
viscous pressure number µ = 1.0. The most significant difference that can be seen is the increase of horizontally
average temperature T̄ as dissipation number D is increased from 0.3 to 0.5 in the elongated cell. Previously
for temperature-dependent viscosity case (η(T ), µ = 0.0), T̄ decreased as D is increased. The only exception
is found in the case for elongated cell with η(T, z), µ = 1.0. The narrow cell for η(T, z) with µ = 1.0 shows a
similar trend like Figure 4.4b. As the temperature gradient is high in the boundary layers, this figure reveals
that the cold upper thermal boundary layer in the elongated cell is much more thicker than in the narrow cell.
Also for D = 0.3, the hot thermal boundary layer is quite prominent in both cells.
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The Nu vs Ra plots for elongated and narrow convection cells at µ = 1.0 are shown in Figure 4.13. From
this figure a similar conclusion can be drawn as we did earlier from Figure 4.5.

5 Conclusion

The main purpose of this paper is to study the thermal convection in the mantle with significant temperature-
dependent viscosity η(T ) and temperature and pressure-dependent viscosity η(T, z) under the effects of viscous
dissipation at a high Rayleigh number in basally heated convection cells of particular aspect ratios of 2:1
(elongated cell) and 1:2 (narrow cell). The simulation results are presented through thermal distribution and
stream function contours. The heat transfer efficiency and vigour of convective motion are estimated by the
Nusselt Number Nu and root mean square velocity Vrms, respectively. This study reveals that

• Nu and Vrms values decrease with the increase of dissipation number D and viscosity ratio ∆η for both
convection with η(T ) and convection with η(T, z) in different aspect ratio cells.

• Nu and Vrms values increase with the increase of viscous pressure number µ.

• In the elongated (aspect ratio 2:1) cell and the narrow (aspect ratio 1:2) cell a stable single-cell pattern
persists at a high viscosity contrast at different dissipation numbers in both types of viscous convection.
However, for D = 0.6 and µ = 0.0 in an elongated cell, a tendency of cell break is observed at ∆η = 1030.

• In both aspect ratio cells, with the increase in dissipation number and viscosity contrasts, the rigid lid
thickness at the top of the mantle increases, and the convection in the mantle becomes weaker.

• From the figures, it can be noted that in both elongated and narrow cells, the fluid is neither isothermal
nor isoviscous.

• The Nu vs. Ra plots indicate that the strength of the convection in both types of convection cells with
η(T ) and η(T, z) weakens at higher Ra, D and ∆η.

In this study, we investigated convection with very high viscosity contrast. It is mentioned that the usual
parameters suggest that the viscosity ratio for the Earth’s mantle is 1050 or more. Similarly, the viscosity ratio
is of order 1020 for Venus and 1050 or more for Mars according to the relevant parameter values. Without
extreme viscosity contrasts, it is quite impossible to obtain a proper asymptotic structure of mantle convection
for the Earth and other terrestrial planets. Thus, it is believed that the analysis of the convection cells in this
study will provide important clues for deciphering the dynamics of the Earth’s interior and other similar planets
with strong variable viscosity and high viscosity contrasts.
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[18] Roberto Agrusta, A Morison, Stéphane Labrosse, R Deguen, T Alboussière, PJ Tackley, and F Dubuffet.
Mantle convection interacting with magma oceans. Geophysical Journal International, 220(3):1878–1892,
2020.

[19] Tania S. Khaleque and S. A. Sayeed Motaleb. Effects of temperature- and pressure-dependent viscosity
and internal heating on mantle convection. GEM - International Journal on Geomathematics, 12(1), 2021.

[20] Siddhant Agarwal, Nicola Tosi, Pan Kessel, Doris Breuer, and Grégoire Montavon. Deep learning for
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