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ABSTRACT

In this study, we explore the effectiveness of the Finite Element Method (FEM) employing linear shape
functions to address problems governed by Dirichlet, Neumann, and Robin boundary conditions. We use the
derived weak formulation of FEM to solve various types of partial differential equations (PDEs) with mixed
boundary conditions. Convergence and stability analyses are carried out to evaluate the performance of this
approach, and different types of errors, like absolute error, dissipation, dispersion, and total mean square error,
are investigated. This method is applied, and both the exact and approximate solutions are tabulated in three
distinct cases: a one-dimensional Burgers-Huxley equation with Dirichlet boundary conditions; a diffusion-
reaction equation with Neumann boundary conditions; and a uniformly propagating shock problem with Robin
boundary conditions. Approximate solutions are compared to exact ones through 2D and 3D graphical repre-
sentations, and tabular data offers a thorough error analysis. Additionally, error maps provide strong evidence
for the accuracy of the suggested approach, demonstrating its capacity to precisely and quickly solve challenging
problems with a variety of boundary conditions.
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1 Introduction

In many important fields, such as engineering, applied mathematics, and physics, the FEM is a powerful nu-
merical tool that is used to handle complicated problems that are very challenging to understand theoretically.
This renowned approach acts effectively for problems with complex geometries, a variety of boundary conditions,
and heterogeneous materials. In this study, we explore how to apply the FEM with linear shape functions to
Dirichlet, Neumann, and Robin boundary condition problems. When the value of the dependent variable, like
temperature or displacement, at the boundary is known, then it is specified as a Dirichlet boundary condition.
Conversely, when the value of the dependent variable’s normal derivative is known at the boundary, then it is
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specified as a Neumann boundary condition. Furthermore, a linear relationship between the dependent variable
and its normal derivative at the boundary and a combination of the Dirichlet and Neumann requirements is
specified as a Robin boundary condition. The piecewise polynomial interpolation theory, on which the whole
domain is divided into a finite number of elements and the behavior of each element is characterized by a system
of elementary equations, is the fundamental idea of the FEM. A detailed explanation of the FEM was provided
in [1], and a MATLAB solution for this method was covered in [2]. A weak Galerkin finite element technique
for Oseen equations in incompressible fluid flow was proposed by C. Zhangxin [3], employing weak gradient and
divergence operators for discontinuous functions. Numerical experiments demonstrated strong accuracy and
stability of the approach, together with reduced degrees of freedom and increased flexibility. The finite element
analysis approach, which is a tool used in the nuclear and aerospace industries to approximate challenging prob-
lem solutions, was thoroughly explained by the author of [4]. The study [5] included a detailed discussion of heat
transfer, fluid mechanics, structural mechanics, and other non-linear analytical concepts. For time fractional
PDEs, the authors of [6] examined the FEM using the Lax-Milgram Lemma to prove the existence and unique-
ness of solutions. They also proposed a time-based step approach and developed optimal convergence and error
calculations. In the framework of non-linear parabolic PDEs with Robin boundary conditions, H. Ali and M.
Kamrujjaman [7] explored the Galerkin Finite Element Method (GFEM) approximation of classical solutions.
They examined the convergence, uniqueness, and structural stability of a solution. Additionally, a comparison
between the exact and approximate solutions verified the accuracy and effectiveness of the method. [8] provided
examples of how it estimated convergence and stability, computed error, and resolved challenging problems
such as the Fisher, Newell-Whitehead-Segel, Burger, and Burgers-Huxley equations. These examples showed
its applicability, simplicity, accuracy, and efficiency. In [9], it was introduced four iterative methods for solv-
ing non-linear equations: Broyden’s method (BM), optimal fourth-order method (OFOM), optimal sixth-order
method (OSOM), and homotopy continuation method (HCM). The methods were compared using real-world
models, and their effectiveness was demonstrated by numerical analysis [9]. Which technique is better was
determined by the study [9] based on specific features. For the purpose of numerically solving the fractional-
order Bagley-Torvik equation of order (0, 2), the authors of [10] presented a new methodology that was based
on the currently used FEM. The approach was simple, generalizable, and provided clear, concise, and accu-
rate results. The methodology yielded the same solution path for comparable fractional-order boundary value
problems and beat current approaches that used a restricted set of quadratic functions. Using the GFEM, the
FitzHugh-Nagumo equation was numerically solved in [11]. A generalized Burgers’ and Fisher’s equation—an
advection-diffusion-reaction equation in two dimensions of space—was examined in the paper [12]. It produced
positive and limiting solutions by proposing an exact finite-difference discretization of the Burgers-Fisher model.
It was a positivistic, bounded, monotonic technique that converged with first order in time and second order
in space. [13] described a new algorithm for solving two-dimensional non-linear Burgers-Huxley equations. The
approach was precise and high-order compact, and it produced high-order precision within a smooth flow zone.
It was stable and accurate up to two orders in time and six orders in space. The efficiency was described in
terms of L2 and L∞ norms, and the proposed methods could be used to address real-world problems in sci-
ence and engineering. In [14], PDEs were presented and classified with a focus on their applications in science
and engineering. We also discussed the possible numerical methods for solving these equations. [15] provided
a mathematical framework for a posteriori error estimates of finite element solutions using bilinear forms on
Hilbert spaces. The primary theorem gave an optimal estimate with equal upper and lower error bounds. Fur-
thermore, the theory suggested adaptive mesh refinement strategies and performed well in numerical instances.
For finite element processes applied to boundary value problems (BVPs) using self-adjoint, non-self-adjoint,
and non-linear differential operators, the study [16] derived a priori and a posteriori error estimates. It placed
emphasis on local approximations and variational consistency in higher-order scalar product spaces, allowing for
precise convergence rate analysis and error computation regardless of the approximation technique. A two-step
Lax-Wendroff type detection scheme with phase characteristics and accuracy similar to third-order schemes was
derived by the author in [17]. The method was exactly third-order correct in time and space for uniform flow.
When it comes to simulating the advection of localized shocks with steep gradients, the suggested strategy
fared better than earlier methods. Originally designed for continuous flow, the plan was later extended to
include nonuniform two-dimensional flow. Nonstandard, Euler finite difference, and unconditionally positive
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schemes were numerically investigated in [18] to solve non-linear convection-diffusion-reaction equations. Von-
Neumann stability analysis was used to explore stability, consistency, and spectrum analysis. The effectiveness
of the different approaches was put to the test numerically. The collocation approach provided a numerical
solution to the Burgers-Huxley equation using the cubic B-spline as the basis function. The Crank-Nicolson
implicit methodology was used to discretize and quasi-linearize the procedure in [19]. The study [20] created
finite-dimensional dynamics for the classical Burgers-Huxley problem using evolutionary PDEs, and then they
created new precise solutions. The [21] study used the Padé Approximation approach to numerically solve the
Helmholtz equation, an issue that arose in a variety of domains. The equation was backed into power series
after being transformed into Padé series form. The Homotopy Perturbation Method (HPM) was used in [22]
to describe a one-dimensional heat equation with Neumann and Dirichlet starting boundary conditions. HPM
was a potent mathematical tool that yielded continuous replies and extremely accurate findings. The FEM was
used by S. A. Lima et al. [23] to study the numerical approximation of non-linear parabolic PDEs. By using
small time step sizes, it sought to determine the acceptability and correctness of the mentioned method by solv-
ing Fisher’s equation and the FitzHugh-Nagumo equation using regular and irregular geometrical shapes. The
convection-diffusion-reaction (CDR) equation’s numerical approximations were found in [24] using the FEM. It
analyzed the convergence and stability of non-linear PDEs and looked at both regular and irregular geometric
shapes. The study used dissipation error, dispersion error, and total error analysis to ensure technique validity
and efficiency. S. A. Lima and F. Khondaker [25] examined the FEM to assess 2D higher-order non-homogeneous
diffusion-reaction equations more precisely. To ensure the reliability and efficiency of the FEM, they employed
both regular and irregular geometric shapes in addition to absolute error analysis. In [26], GFEM was utilized
to address non-linear boundary value problems of second order. The accuracy, compatibility, and applicability
of the system were demonstrated by this study, which also provided a generalized formulation and discovered
approximations for a few problems.
The significance of FEM in the realm of numerical analysis may become clear to us after reading the comments
provided above. At each nodal point, the FEM may exhibit a good agreement with the properties of an exact
solution, making it a superior choice for obtaining a more accurate solution with stability and higher order
convergence. The authors of [23]–[26] employed a straightforward FEM formulation with two linear shape func-
tions, which can quickly and readily compute more accurate solutions for complex issues. They did not provide
a special formulation that works with both Neumann and Robin boundary conditions, instead concentrating on
solving both linear and nonlinear CDR equations with Dirichlet boundary conditions. In numerical simulations
and mathematical modeling, both the numerical value and the rate of change are essential to forming these
conditions. Because of this flexibility, the Robin boundary conditions are used for a huge number of problems,
which can be modeled exactly by applying FEM. Furthermore, the stability, exactness, and effectiveness of FEM
depend on different types of boundary conditions and also produce different types of errors and convergence of
different orders. Many real-life examples can be exhibited more accurately using Neumann and Robin conditions
rather than Dirichlet conditions. These types of conditions are also capable of representing various models with
complex situations perfectly, which cannot be demonstrated properly by using Dirichlet conditions. Hence, it
is very important to derive a simple, easier, and effective numerical method that is capable of solving such
problems with Neumann and Robin conditions with higher accuracy as well as low cost within a short period of
time. Consequently, in this study, we are interested in solving such PDEs with Neqmann and Robin boundary
conditions by applying the FEM. To achieve this, we primarily use the FEM with two linear shape functions
[23]–[26], which can handle this kind of problem faster and more accurately.
First, the generalized formulation of PDEs with mixed boundary conditions will be derived in this paper. The
convergence and stability analysis of our suggested methodology will be covered in the future. In addition, cal-
culations will be made for absolute error, dissipation error, dispersion error, and total mean square error. Three
examples utilizing Dirichlet, Neumann, and Robin boundary conditions will then be included in the findings and
discussion section. We’ll use the derived formulation to solve them all, tabulating the results and analyzing the
errors along the way. 2D and 3D graphical presentations will be added to understand the comparison between
the exact and approximate results, along with maps of errors. The increased accuracy of our method will be
guaranteed by this tabulated data, error analysis, and graphs. Eventually, we shall summarize our research in
the following.
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In the next section, we will develop the generalized formulation of PDEs with mixed boundary conditions.

2 Generalized Formulation of PDEs with Mixed Boundary Condi-
tions

In order to derive the generalized formulation of PDEs, let’s take into account a single non-linear PDE with
mixed boundary conditions that looks like this:

Wt + σWWx = δWxx + ρH(W (t, x)) + µf(x), t ∈ (0, T ] , x ∈ D ≡ [a, b],

W (0, x) = W0(x), x ∈ D,

α1W (t, a) + β1
∂W
∂x |x=a = Wa(t), (t, x) ∈ ∂D,

α2W (t, a) + β2
∂W
∂x |x=b = Wb(t), (t, x) ∈ ∂D.

(2.1)

W is the function of space (x) and time (t), or W (t, x). Here, the non-linear convection term is WWx with
the coefficient, σ ∈ R, the diffusion term is Wxx with diffusion coefficient, δ ∈ R, and the reaction function is
ρH(W (t, x)) + µf(x); ρ, µ ∈ R. Then, the equation (2.1) is a non-linear convection-diffusion-reaction equation
with the idea that ρH(W (t, x)) = W (W − 1)(β −W ), 0 ≤ β ≤ 1. A generalized version of equation (2.1) can
be obtained by declaring the trial solution (2.2).

W̃ (t, x) =

n∑
j=1

ℵj(t)θj(x), (2.2)

where ℵj(t) is the parameter representing the functions of t. Hence
W̃x =

n∑
j=1

ℵj(t)
dθj(x)

dx
,

W̃t =

n∑
j=1

dℵj(t)

dt
θj(x).

(2.3)

Next, the equation for the weighted residual is,∫
e

[Wt + σWWx − δWxx − ρH(W (t, x))− µf(x)] θi(x)dx = 0.

(2.4)

Upon integrating by parts of equation (2.4)’s second derivative, we now obtain,

δ

∫
e

[
W̃xxθi(x)

]
dx = δ[W̃x θi(x)]e − δ

∫
e

[
dθi
dx

W̃x

]
dx. (2.5)

Substitute equations (2.3) and (2.5) in equation (2.4) to write the necessary equation in the standard matrix
form as

Li,j
dℵj(t)

dt
+Mi,jℵj(t) = Ni, (2.6)

where Li,j =

∫
e

 n∑
j=1

θj(x)

 θi(x)dx, Mi,j = Pi,j +Ri,j ,

Pi,j = σ

∫
e

 n∑
j=1

ℵj(t)
dℵj

dx
θj(x)

 θi(x)dx+ σ

∫
e

 n∑
j=1

dθj
dx

dθi
dx

 dx,
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Ri,j = ρ

∫
e

 n∑
j=1

θj(x)θi(x)W̃
2

 dx− ρ(β + 1)

∫
e

 n∑
j=1

θj(x)θi(x)W̃

 dx+ ρβ

∫
e

 n∑
j=1

θj(x)θi(x)

 dx,

Ni = δ
[
θi W̃x

]
e
+ µ

∫
e

f(x)θi(x)dx.

In this context, Li,j is specified as a capacity matrix, and it is comparatively easy to evaluate each of the
above-mentioned matrices for each element by taking into account the two basis functions, B1(ς) and B2(ς),
where

B1(ς) =
(1− ς)

2
, B2(ς) =

(1 + ς)

2
, −1 ≤ ς ≤ 1. (2.7)

The first task is to divide the domain a ≤ x ≤ b into a finite number of elements and compute Li,j , Mi,j , Ni

for every element. The system that results from combining those matrices is then solved using an appropriate
technique to yield the solutions that are required. Now, take the n number of elements, and for the first element,

x1 = 0 and x2 =
1

n
and x = x1B1(ς) + x2B2(ς) = 0.

(1− ς)

2
+

1

n

(1 + ς)

2
= 0 +

(1 + ς)

2n
=

(1 + ς)

2n
⇒ dx =

1

2n
dς.

The system (2.6) can be described as follows using this relation:[
L1
11 L1

12

L1
21 L1

22

]
dℵj(t)

dt
+

[
P 1
11 +R1

11 P 1
12 +R1

12

P 1
21 +R1

21 P 1
22 +R1

22

]
ℵj(t) =

[
N1

1 (t)
N1

2 (t)

]
. (2.8)

Similarly, for second element, x1 =
1

n
and x2 =

2

n
and x = x1B1(ς) + x2B2(ς) =

1

n

(1− ς)

2
+

2

n

(1 + ς)

2
=

1− ς + 2 + 2ς

2n
=

3 + ς

2n
⇒ dx =

1

2n
dς. Consequently, the system (2.6) can be displayed again as[

L2
11 L2

12

L2
21 L2

22

]
dℵj(t)

dt
+

[
p211 +R2

11 P 2
12 +R2

12

P 2
21 +R2

21 P 2
22 +R2

22

]
ℵj(t) =

[
N2

1 (t)
N2

2 (t)

]
. (2.9)

Now, if we take two numbers of elements, n = 2, then by assembling equations (2.8) and (2.9), we obtain the
following:

L1
11 L1

12 0
L1
21 L1

22 + L2
11 L2

12

0 L2
21 L2

22

 dℵj(t)

dt
+

P 1
11 +R1

11 P 1
12 +R1

12 0
P 1
21 +R1

21 P 1
22 +R1

22 + P 2
11 +R2

11 P 2
12 +R2

12

0 P 2
21 +R2

21 P 2
22 +R2

22

ℵj(t)

=

 N1
1 (t)

N1
2 (t) +N2

1 (t)
N2

2 (t)

 .

Therefore, carrying out this procedure for n number of elements and after combining them, we get the following
system (2.10),

LẆ +MW = N. (2.10)

At this stage, discretize Ẇ (= ℵ̇j) as Ẇ =
Wj+1 −Wj

△t
and employ a particular value of time step size, △t and

express equation (2.10) as

L
Wj+1 −Wj

△t
+MWj = N,

or, LWj+1 + (M △ t− L)Wj = N △ t. (2.11)

Afterwards, by imposing mixed boundary conditions in MATLAB programming and completing the row-column
operation, it is possible to calculate the nodal values, Wj+1, at (n + 1) number of nodal points. For the first
approximation, we will utilize the initial values that are derived from the initial condition.
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3 Convergence Analysis

Let introduce the functions Bi(ς) ∈ H1
2, i = 1, 2, 3, ..., n, where H1

2 stands for Hilbert space and Bi(ς) is
representing basis functions. Also, consider the diffusion coefficients, δi, i = 1, 2. Since σW (t, x), ρH(W (t, x)),
and µf(x) are continuous functions, equation (2.1) has a unique solution, as shown in [7, 14]. By using the
testing solution (2.2) into (2.1), the compatible matrix form (2.10) may be modified as (3.1),

dWj

dt
+ L−1

i,j Mi,jWj = L−1
i,j Ni. (3.1)

However, it appears that equation (3.2) is an initial value problem, as shown below.
dWj

dt
+ ϕjWj = ιj ,

Wj(0) = ζ(η).
(3.2)

Now, the integrating factor of equation (3.2) is

e
∫
ϕjdt = eϕjt. (3.3)

After that, multiply (3.2) by the integrating factor (3.3) to calculate Wj over (0, T ]. Next, we have

Wje
ϕjt =

∫ T

0

eϕjχιj(χ)dχ,

⇒ Wj =

∫ T

0

e−ϕj(t−χ)ιj(χ)dχ,

and

|Wj |2 ≤ 1

2ϕj

∫ T

0

|ιj(χ)|2dχ.

Thus, taking a stable independent variable t, the energy norm can be written as:

∥W̃ (t, x)∥2E ≤
n∑

j=1

1

2

(∫ T

0

|ιj(χ)|2dχ

)
.

The trial solution (2.2) is therefore convergent for a certain value of the independent variable t. The space of
(u − 1) times continuously differentiable functions on D, the closure of D, is denoted by Su,v. A polynomial
of degree at most v − 1, where v is the number of local nodes in each element, is the restriction to Dj ,

j = 0, 1, 2, ....., N − 1. For a given value of t, let W̃ ∈ Su,v be the finite element solution. Then, for any
ϱ ∈ Su,v, (

∂W̃

∂t
, ϱ

)
0

+ Γ
(
W̃ , ϱ

)
= (Υ, ϱ)0 , (3.4)

where Γ (., .) and (., .)0 denote the bilinear transformation and inner product, respectively, as demonstrated in
[14, 15]. In equation (3.4), the system of ordinary differential equations is substituted with an initial value
problem. It is well known that, for a given t, the result will converge to the exact solution of equation (2.1)
with decreasing increments in x. It is now easier to implement the iterative strategies if they show numerical
stability. The stability of the iterative process, which also shows the stability of the proposed approach, will be
discussed in the next section.

4 Stability Analysis

In this context, we do the stability analysis of our introduced approach since a numerically stable iteration
strategy is more efficient and user-friendly. This can be accomplished by reforming equation (2.11) into the
subsequent equation (4.1),

{W}j+1 = [E] {W}j +Q−1 {N}j . (4.1)
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This time, the solution at time t is denoted by {W}j , and the solution at the next generation, (t+1), is denoted
by {W}j+1, where the next generation solution, {W}j+1, depends on the current solution {W}j . Errors may
therefore be iterated. As a result of the iterative error’s infinite expansion, the iterative scheme then became
unstable and vice versa. The necessary and sufficient condition for the bounded error will also be

([E]− Λmax[I]) {W} = 0. (4.2)

For the eigenvalue problem (4.2), this is an unconditionally stable solution. In contrast, it will be conditionally
stable when Λmax ≤ 1 for any time step, ∆t. The following appropriate criteria are satisfied by our proposed
numerical approach, which is stable.

∆t <
2

(1− 2γ)Λmax
; γ <

1

2
.

5 Error Analysis

This part focuses on evaluating the errors of our offered numerical method, based on research by Takacs
(1985) [15]. Here, the analytical and numerical solutions are denoted by Ei and Ai, which are essential to
complete this calculation. Thus, the equation (5.1) provides the estimated absolute error.

Rabs = |Ek −Ak|. (5.1)

To determine the total mean square error, our next consideration is

Rtms =
1

m

m∑
k=1

(Ek −Ak)
2.

Additionally, δ2(E) and δ2(A) are used to represent the sample variance of the analytical and numerical
solution, respectively, represented by the equation (5.2),

δ2(E) =
1

m

m∑
k=1

(Ei − Ēi)
2, δ2(A) =

1

m

m∑
k=1

(Ai − Āi)
2. (5.2)

It is now more suitable to expand the sample variance and apply them to the concept of total mean square
error. Completing a simple computation, we arrive at

Rtms = (δ(E)− δ(A))2 + (Ē − Ā)2 + 2(1− ω)δ(E)δ(A), (5.3)

where

ω =
Cov(E,A)

δ(E)δ(A)
, Cov(E,A) =

1

m

∑
EiAi − ĒĀ.

For ω = 1,

Rtms = (δ(E)− δ(A))2 + (Ē − Ā)2.

After doing a mathematical inspection, we can summarize that the dispersion error and dissipation error in
equation (5.3) are 2(1−ω)δ(E)δ(A) = 0 and (δ(E)−δ(A))2+(Ē− Ā)2, respectively, and the following equation
is working as error rate with respect to L1 norm,

Rnum =
1

m

m∑
i=1

|Ei −Ai|.

6 Results and Discussion

The numerical solutions of some well-known parabolic PDEs with mixed boundary conditions are examined
in this section. Along with the exact solution, all findings are shown both numerically and visually. We are
using the following formula to determine absolute error [24],

R = |Eexact
j −AFEM

j |.
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Example 1. This Example 1 is presenting a convection-difffusion-reaction equation with Dirichlet boundary
conditions. Taking σ = −1 and δ = ρ = µ = 1 into consideration, equation (2.1) transfers into equation
(6.1) [13], also referred to as the Burgers-Huxley equation in one-dimensional space. In many sectors, such
as biological population dynamics, fluid mechanics, and traffic flow, this equation plays a vital role to simulate
convection, diffusion, and nonlinear responses in systems. It is applicable for modeling turbulence, predicting the
emergence of biological patterns, and simulating automobile traffic behavior. It is also helpful in understanding
complex biological and physical processes due to its ability to illustrate the balance between growth, movement,
and interaction. Now, the Dirichlet boundary conditions (6.2) [13] are obtained by considering α1 = α2 = 1
and β1 = β2 = 0 in equation (2.1).

Wt = W Wx +Wxx +W (W − 1)(β −W ); t ∈ (0, T ], x ∈ D ≡ [−1, 1] . (6.1)

Initial and Dirichlet boundary conditions are:
W (0, x) = P1 − P1 tanhP3x, x ∈ D,

W (t,−1) = P1 − P1 tanh (P3(−1− tP2)) , t > 0,

W (t, 1) = P1 − P1 tanh (P3(1− tP2)) , t > 0,

(6.2)

where P1 = β−1
2 ; P2 = β+1

2 and P3 = β−1
4 . In this Example 1, take β = 0.00001 and the theoretical solution

corresponding to (6.1) [13] can be written as

W (t, x) = P1 − P1 tanh (P3(x− tP2)) ; t ∈ (0, T ], x ∈ D.

Applying the weak formulation of FEM with linear shape functions (2.7), derived in Section 2, we now
obtain the compatible matrix form (2.6). The following exhibit the capacity matrix, Lij , stiffness matrix, Mij ,
and load vector, Ni(t): 

Li,j =

∫
e

 n∑
j=1

θj(x)

 θi(x)dx,

Mi,j = Pi,j −Ri,j , Pi,j =

∫
e

dθi
dx

 n∑
j=1

dθj(x)

dx

 dx,

Ri,j =

∫
e

 n∑
j=1

(
1.00001W̃ 2 − 0.00001W̃ − W̃ 3

) θi(x)dx,

Ni(t) = [W̃xθi(x)]e.

After carrying out a fundamental calculation, the required final system is

LWj+1 + (M △ t− L)Wj = N △ t.

Taking two linear shape functions (2.7) and a limited number of elements (n = 10) with n+1 = 11 nodal points,
we proceed to the last step. The estimated solution, Wj+1, is then obtained from this system by using the row-
column operation. Here, we have applied initial and Dirichlet boundary conditions (6.2) [13] in MATLAB
programming to finish this numerical computation. Table 6.1 then provides the necessary outcomes.
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Table 6.1: FEM and theoretical solution of equation (6.1) at various time steps, h = ∆t.
x h = ∆t = 10−4 h = ∆t = 10−3 h = ∆t = 10−2

FEM Exact Error FEM Exact Error FEM Exact Error
-1.0 -0.3776 -0.3775 1.0× 10−04 -0.3779 -0.3775 1.0× 10−03 -0.3808 -0.3770 1.0× 10−02

-0.8 -0.4013 -0.4013 6.3× 10−06 -0.4012 -0.4012 6.3× 10−05 -0.4005 -0.4007 6.3× 10−04

-0.6 -0.4256 -0.4255 2.0× 10−05 -0.4256 -0.4255 2.0× 10−04 -0.4258 -0.4249 2.0× 10−03

-0.4 -0.4502 -0.4502 1.3× 10−05 -0.4502 -0.4501 1.3× 10−04 -0.4501 -0.4495 1.2× 10−03

-0.2 -0.4750 -0.4750 1.4× 10−05 -0.4750 -0.4750 1.4× 10−04 -0.4750 -0.4744 1.4× 10−03

0.0 -0.5000 -0.5000 1.3× 10−05 -0.4999 -0.4999 1.3× 10−04 -0.4999 -0.4994 1.3× 10−03

0.2 -0.5250 -0.5250 1.2× 10−05 -0.5250 -0.5249 1.2× 10−04 -0.5250 -0.5244 1.2× 10−03

0.4 -0.5498 -0.5498 1.2× 10−05 -0.5498 -0.5498 1.2× 10−04 -0.5450 -0.5492 1.2× 10−03

0.6 -0.5744 -0.5744 6.3× 10−06 -0.5744 -0.5744 6.3× 10−05 -0.5742 -0.5738 6.3× 10−04

0.8 -0.5987 -0.5987 2.4× 10−05 -0.5988 -0.5986 2.4× 10−04 -0.5995 -0.5981 2.4× 10−03

1.0 -0.6224 -0.6224 4.3× 10−05 -0.6221 -0.6224 4.3× 10−04 -0.6192 -0.6219 4.3× 10−03

Table 6.2: Error analysis of FEM solutions of equation (6.1).
h Enum Dissipation Error Dispersion Error Total Error

10−4 2.4117 ×10−05 9.7959×10−11 1.4938×10−10 2.4734×10−10

10−3 2.4120×10−04 9.7823×10−09 1.495×10−08 2.4734×10−08

10−2 2.4148×10−03 9.6458×10−07 1.5087×10−06 2.4732×10−06

Figure 6.1: Comparative analysis of theoretical and FEM approximations of equation (6.1) at different time
steps, h = ∆t.

Figure 6.2: Theoretical solutions and FEM approximations of equation (6.1) at h = 10−4.
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Figure 6.3: Comparison between theoretical and approximate solutions of equation (6.1) at h = 10−4 with error
map.

Table 6.1 shows that, by considering different time steps (h = ∆t) for the equation (6.1), our numerical
scheme that we developed performs more accurately over the spatial domain x. Interestingly, we find good
agreement between the properties of the theoretical and approximation solutions. Additionally, Table 6.2
illustrates many error types, including total mean square error, dissipation error, and dispersion error. They’re
all more accurate than our thought-out strategy. Graphical representations of the data acquired using our
developed formulation are shown in Figure 6.1 at different time steps (h = ∆t). This image shows the correctness
and acceptability of our numerical scheme by clarifying the correspondence between the exact and approximation
solutions at various time steps (h = ∆t). Observing the tabulated data and graphical presentation, we have
found that the result will be more accurate for smaller time steps. Figure 6.2 is showing the three-dimensional
surface plots of equation (6.1) at the time step h = 10−4, which is more transparent to understand the accuracy
of our introduced method. Also, Figure 6.3 is presenting the comparative study between exact and approximate
solutions through 3D surface plots and error analysis at h = 10−4. This comparative study and error map
ensure the acceptance and efficacy of this method, highlight the fast convergence and stability of the FEM, and
validate its application in solving different PDEs with Dirichlet boundary conditions as well as nonlinear CDR
equations with Dirichlet boundary conditions.

Example 2. In this instance, let introduce a diffusion-reaction equation with Neumann boundary conditions.
Take σ = 0, δ = ρ = µ = 1 in equation (2.1) to deduce this desired equation. As a result, we obtain the equation

(6.3) [22] that has H(W (t, x)) = π2

2 e
−π2

2 t cos(πx) and f(x) = x − 2. Equation (2.1) yields this equation (6.3)
with Neumann boundary conditions (6.4) [22] by considering α1 = α2 = 0, β1 = β2 = 1,W0(t) = t,W1(t) = 2+t,
and so forth.

Wt = Wxx +
π2

2
e

−π2

2 t cos(πx) + x− 2; t ∈ (0, T ], x ∈ D ≡ [0, 1] . (6.3)

Initial and Neumann boundary conditions are:
W (0, x) = x2 + cos(πx), x ∈ D,
∂W
∂x |x=0 = t, t > 0,
∂W
∂x |x=1 = 2 + t, t > 0,

(6.4)

The corresponding exact solution is W (t, x) = x2 + xt+ e−
π2

2 t cos(πx), t ∈ (0, T ], x ∈ D.

Similar to Example 1, we utilize the expanded FEM formulation for the PDEs with Neumann boundary
conditions, using linear shape functions. Therefore, it is possible to obtain the appropriate matrix form (2.6)
where 

Li,j =

∫
e

 n∑
j=1

θj(x)

 θi(x)dx, Mi,j =

∫
e

 n∑
j=1

dθj
dx

dθi
dx

 dx,

Ni =
[
θi(x)

∂W̃
∂x

]
e
+

∫
e

π2

2
e

−π2

2 t cos(πx)θi(x)dx+

∫
e

(x− 2)θi(x)dx.
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After completing the above mentioned simplification, we get the following system,

LWj+1 + (M △ t− L)Wj = Ni △ t.

We now employ row-column operation to get the estimated FEM solutions, Wj+1, from this system by applying
initial and Neumann boundary conditions in MATLAB programming. Here, n = 10 number of elements with 11
nodal points and two linear shape functions (2.7) are utilized. Therefore, Table 6.3 tabulates the approximate
solutions that are produced.

Table 6.3: FEM and precise solution of equation (6.3) at different time steps, h = ∆t.
x h = ∆t = 10−4 h = ∆t = 10−3 h = ∆t = 10−2

FEM Exact Error FEM Exact Error FEM Exact Error
0.0 1.0000 0.9990 1.0× 10−03 1.0000 0.9902 9.8× 10−03 0.9998 0.9060 9.3× 10−02

0.1 0.9611 0.9601 9.0× 10−04 0.9610 0.9518 9.2× 10−03 0.9609 0.8727 8.8× 10−02

0.2 0.8490 0.8482 8.0× 10−04 0.8490 0.8413 7.7× 10−03 0.8489 0.7750 7.3× 10−02

0.3 0.6778 0.6772 5.0× 10−04 0.6778 0.6723 5.5× 10−03 0.6777 0.6255 5.2× 10−02

0.4 0.4690 0.4688 3.0× 10−04 0.4690 0.4664 2.6× 10−03 0.4690 0.4440 2.5× 10−02

0.5 0.2500 0.2501 0.0× 10−04 0.2500 0.2505 5.0× 10−04 0.2501 0.2550 5.0× 10−03

0.6 0.0510 0.0513 4.0× 10−04 0.0510 0.0546 3.6× 10−03 0.0511 0.0860 3.5× 10−02

0.7 -0.0978 -0.0971 6.0× 10−04 -0.0978 -0.0913 6.4× 10−03 -0.0976 -0.0355 6.2× 10−02

0.8 -0.1690 -0.1681 9.0× 10−04 -0.1690 -0.1603 8.7× 10−03 -0.1689 -0.0850 8.4× 10−02

0.9 -0.1410 -0.1400 1.0× 10−03 -0.1410 -0.1308 1.0× 10−02 -0.1403 -0.0427 9.7× 10−02

1.0 -0.0000 0.0011 1.1× 10−03 -0.0001 0.0108 1.1× 10−02 -0.0014 0.1040 1.0× 10−01

Table 6.4: Error analysis of FEM solutions of equation (6.3).
h Enum Dissipation Error Dispersion Error Total Error

10−4 6.8725 ×10−04 5.4826×10−07 3.1559×10−08 5.7981×10−07

10−3 6.8000×10−03 5.4316×10−05 3.1764×10−06 5.7492×10−05

10−2 6.5600 ×10−02 4.9000×10−03 3.4110×10−04 5.3000×10−03

Figure 6.4: FEM and precise solutions of equation (6.3) at three different time steps, h = ∆t.
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Figure 6.5: Precise and FEM solutions of equation (6.3) at h = 10−3.

Figure 6.6: Correlation between precise and FEM solutions of equation (6.3) at h = 10−3 and an error map.

At this point, we can make sure that there is a well-ordered harmony between the exact and approximate
solutions of equation (6.3) at various time steps, h = ∆t, by looking at Tables 6.3 and 6.4. Table 6.3 shows the
tabulated data, while Table 6.4 shows the various kinds of errors. Figure 6.4 exhibits the comparative analysis
of precise and approximate solutions graphically. For getting a transparent idea, surface plots of exact and
approximate solutions are presented in Figure 6.5 at the time step, h = 10−3 . The error map and correlative
study in 3D between the exact and approximate solutions of equation (6.3) are displayed in Figure 6.6. After
completing a careful review, we may summarize that the combined tabular data and graphical displays verify
the convergence, stability, accuracy, and acceptance of our approach for solving a class of parabolic PDEs with
Neumann boundary conditions as well as CDR equations.

Example 3. In this study, our main goal is to solve parabolic PDEs as well as CDR equations with mixed bound-
ary conditions. Two cases involving Dirichlet and Neumann boundary conditions have already been resolved. The
remaining criteria are now Robin boundary conditions, and we use the uniformly propagating shock problem with
Robin boundary conditions in this case. Uniformly propagating shock problems have importance in the field of
aerospace engineering, where they aid in the design of supersonic aircraft, and in the field of medical procedures
like lithotripsy, which breaks kidney stones using shock waves. Predicting natural calamities such as tsunamis
and streamlining high-energy reaction-based industrial operations both are dependable on an understanding of
shock dynamics. Shock propagation also facilitates innovations in technology, safety, and public health, which
also develop numerical methodologies. Now, consider σ = 1, δ = 1

Re where 1 ≤ Re ≤ 105, ρ = 0, µ = 0 and
α1 = α2 = β1 = 1, β2 = −1 in equation (2.1), which converts equation (2.1) into a convection-diffusion
equation named as the uniformly propagating shock problem (6.5) [7],

Wt +WWx =
1

Re
Wxx; t ∈ (0, T ] ≡ (0, 1] , x ∈ D ≡ [−1, 1]. (6.5)
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Initial and Robin boundary conditions [7] are:
W (0, x) = x−4

x−2 , x ∈ D,

W (t,−1) + ∂W
∂x |x=−1 = W1(t), t > 0,

W (t, 1) + ∂W
∂x |x=1 = W2(t), t > 0,

(6.6)

with Re = 104,W1(t) =
t2+8T+13
(t+3)2 and W2(t) =

t2+4T+5
(t+1)2 and the analytical solution is W (t, x) = 1− 2

x−t−2 , t ∈
(0, T ] , x ∈ [−1, 1].

The FEM approximation for equation (6.5) [7] is obtained by applying the generalized formulation derived in
Section 2, just like in the preceding two examples. Hence, the matrix form (2.6) is obtained with the following:

Li,j =

∫
e

 n∑
j=1

θj(x)

 θi(x)dx, Mi,j = Pi,j +Ri,j ,

Pi,j = ℵ1(t)

∫
e

 n∑
j=1

θj(x)

 θi(x)
dθ1
dx

dx+ ℵ2(t)

∫
e

 n∑
j=1

θj(x)

 θi(x)
dθ2
dx

dx,

Ri,j =
1
Re

∫
e

 n∑
j=1

dθj
dx

 dθi
dx

dx, Ni =
1

Re

[
θi(x)

∂W̃

∂x

]
e

.

Simplify the above mentioned computation to obtain the suitable system that follows:

LWj+1 + (M △ t− L)Wj = Ni △ t.

Using the row-column operation with n = 10 number of elements, the approximate solution, Wj+1, is now
obtained from this system. It is important to note that the row-column operation and above simplification in this
study were carried out by imposing initial and Robin boundary conditions (6.6) [7] in MATLAB programming.
There is a tabulation of the approximate solutions generated in Table 6.5.

Table 6.5: FEM and analytical solutions of equation (6.5) at various time steps, h = ∆t.
x h = ∆t = 10−4 h = ∆t = 10−3 h = ∆t = 10−2

FEM Exact Error FEM Exact Error FEM Exact Error
-1.0 1.6667 1.6666 1.8×10−05 1.6666 1.6664 2.0×10−04 1.6663 1.6645 1.8×10−03

-0.8 1.7143 1.7143 2.1×10−05 1.7142 1.7140 2.0×10−04 1.7139 1.7117 2.1×10−03

-0.6 1.7692 1.7692 2.5×10−05 1.7692 1.7689 3.0×10−04 1.7688 1.7663 2.5×10−03

-0.4 1.8333 1.8333 3.0×10−05 1.8333 1.8330 3.0×10−04 1.8329 1.8299 3.0×10−03

-0.2 1.9091 1.9090 3.6×10−05 1.9090 1.9087 4.0×10−04 1.9086 1.9050 3.7×10−03

0.0 2.0000 2.0000 4.5×10−05 2.0000 1.9995 5.0×10−04 1.9995 1.9950 4.5×10−03

0.2 2.1111 2.1110 5.6×10−05 2.1111 2.1105 6.0×10−04 2.1106 2.1050 5.6×10−03

0.4 2.2500 2.2500 7.3×10−05 2.2499 2.2492 7.0×10−04 2.2495 2.2422 7.2×10−03

0.6 2.4286 2.4285 9.6×10−05 2.4285 2.4276 1.0×10−03 2.4280 2.4184 9.6×10−03

0.8 2.6667 2.6665 1.3×10−04 2.6666 2.6653 1.3×10−03 2.6660 2.6529 1.3×10−02

1.0 3.0000 2.9998 1.9×10−04 2.9999 2.9980 1.9×10−03 2.9993 2.9802 1.9×10−02

Table 6.6: Error analysis of FEM solutions of equation (6.5).
h Enum Dissipation Error Dispersion Error Total Error

10−4 6.62289×10−05 7.0552 ×10−09 6.1322 ×10−11 7.1165×10−09

10−3 6.6183×10−04 7.0440 ×10−07 6.1178 ×10−09 7.1052×10−07

10−2 6.6000×10−03 6.9337×10−05 5.9723×10−07 6.9935×10−05
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Figure 6.7: An analysis comparing the analytic and FEM solutions of equation (6.5) at various time steps,
h = ∆t.

Figure 6.8: Analytic and FEM solutions of equation (6.5) at h = 10−4.

Figure 6.9: Correlation between analytic and FEM solutions of equation (6.5) at h = 10−4 with error map.



Sadia Akter Lima, Kamrunnesa Mayeda, ... / GANIT J. Bangladesh Math. Soc. 44.2 (2024) 047–064 61

Figure 6.10: Analytic and FEM solutions of equation (6.5) at h = 10−3.

Figure 6.11: Correlation between analytic and FEM solutions of equation (6.5) at h = 10−3 and an error map.

Figure 6.12: Analytic and FEM solutions of equation (6.5) at h = 10−2.
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Figure 6.13: Correlation between analytic and FEM solutions of equation (6.5) at h = 10−2 and an error map.

The accuracy of our approach method for the uniformly propagating shock problem with Robin boundary
conditions is comparatively good for smaller time increments h = ∆t, according to a detailed study of the data
in Table 6.5. The analysis of different kinds of errors, including dissipation error, dispersion error, total mean
square error etc., is displayed in Table 6.6. The FEM solutions and the analytical solutions of equation (6.5)
have been shown to be closely related. These outcomes further validate the precision and effectiveness of our
methodology. Furthermore, we have included a graphical comparison in Figure 6.7 between the numerical and
analytic solutions of equation (6.5). For a deeper comprehension of the accuracy of this approach, 3D surface
plots of both solutions to equation (6.5) are then provided here (see Figures 6.8, 6.10, and 6.12). Additionally,
Figures 6.9, 6.11, and 6.13, which offer a correlative study between both solutions of equation (6.5) and error
map at various time steps, illustrate the convergence, stability, and correctness of our methodology for solving
PDEs as well as convection-diffusion equations with Robin boundary conditions.

7 Conclusion

There are numerous significant fields in which non-linear PDEs and CDR equations with mixed boundary
conditions are used. In this study, we focused on using FEM with linear shape functions to obtain more accurate
numerical solutions for them. Initially, we reviewed some literature to understand the research significance of
this topic. Then, we formulated the weighted residual equation and derived the generalized weak formulation
of our approach for non-linear PDEs with Dirichlet, Neumann, and Robin boundary conditions. After that, we
included two effective sections: convergence analysis and stability analysis of this method in our study, which
explain the convergence and stability of our approach. To understand the accuracy of this approach, the error
analysis section has also been added, where the absolute error, dissipation error, dispersion error, and total
mean square error are discussed. The next result and discussion section has contained three examples. Among
them, the first is a nonlinear CDR equation with Dirichlet boundary conditions, the second is a diffusion-reaction
equation with Neumann boundary conditions, and the last is a uniformly propagating shock problem with Robin
boundary conditions. The accuracy and effectiveness of this approach have been proven by tabulated data, a
graphical depiction of each case at different time steps h = ∆t, and omittable errors presented by Tables 6.2, 6.4,
and 6.6. Based on the reasoning above, our method is convergent, stable, and offers higher-order accuracy. In
conclusion, our method’s affordability, simplicity, ease of formulation, time-saving qualities, and compatibility
with the actual solution in the whole one-dimensional space make it effective, accurate, and generally recognized
for both PDEs and CDR equations with mixed boundary conditions.
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