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ABSTRACT 

Complex fuzzy set (CFS) is an extension of the fuzzy set (FS) which can deal with ambiguity by allowing a 
complex-valued membership degree of an element of a universal set. A host of researchers studied the complex 
fuzzy sets in theoretical and practical due to their amplitude term and phase term membership degrees. At 
present, various applications of fuzzy correlation and correlation coefficients have emerged by numerous 
researchers. But most of the works are related to real fuzzy data. In this article, we introduce the concept of the 
correlation coefficient of the complex fuzzy sets and some of its related properties are described. Furthermore, 
an application of the correlation coefficient of the complex fuzzy sets in pattern recognition is illustrated. To 
show the reliability and validity of our technique, we explain a comparative study with the existing method. 
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1.   Introduction 

Many aspect of our real life, we face some problems where the data sets are imprecise. To describe such situation Zadeh 
[1] introduced Fuzzy Set (FS) theory which was an appropriate tool to describe imprecise data. Later a lot of 
generalization of FS has been done by a host of researchers and many applications of it have arisen over the years. One 
of the generalizations of FS is complex fuzzy set (CFS), proposed Ramot et al. [2] is also capable of dealing with 
ambiguity by allowing amplitude term and phase term membership degrees.  

On the other hand, Correlation coefficients are used to measure the strength and direction of the linear relationships 
between pairs of variables. When both variables are normally ambiguous, we use fuzzy correlation coefficient. In the 
FS theory, the concept of correlation coefficient was first introduced Gerstenkorn and Manko [3] in 1991. They defined 
the correlation coefficient for two intuitionistic fuzzy sets. Later a group of researchers studied the correlation 
coefficients for intuitionistic fuzzy sets in different trends and in other spaces such as [4-9]. In 1999, the correlation 
coefficient for fuzzy set was studied by Chiang and Lin [10]. The correlation coefficients for the FSs are also studied 
[11-14]. In the existing studies of correlation coefficient in FSs and their extension, the data are handled with the help of 
degree of membership which range are considered in the interval [0, 1]. But sometimes this may be insufficient and 
consequently, it may be affected our desire result. An alternative to these, CFS that can handle any data which range of 
membership degrees may be extended from real interval [0, 1] to the unit disc of a complex plane. Thus, the CFS can 
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handle the two-dimensional information in a single set. By motivating this, we develop a correlation coefficient of CFSs 
where the membership degree represents two-dimensional information for a single set. We also describe various 
properties of its. Finally, an application of the correlation coefficient of CFSs in pattern recognition is established. 

The article is organized as follows: In section 2, we describe some definitions which are essential to rest of the paper. In 
section 3, Correlation coefficients of complex fuzzy sets are discussed with some its properties. In section 4, an 
application is illustrated by using our proposed methods. In section 5, comparative studies are also discussed with some 
existing methods. Finally, concluding remarks are given. 

 

2.   Preliminaries 

Definition 1. [2] A complex fuzzy set (CFS), defined on a universal set	𝑋 is characterized by a membership function 
𝜇!(𝑥) that assigns a complex-valued grade of membership in	𝐴 to any element	𝑥 ∈ 𝑋 . By definition, all values of 
𝜇!(𝑥) lie within the unit circle in the complex plane, and are expressed of the form	𝑟!(#). 𝑒%&!(#), where	𝑖 = √−1, 𝑟!(#) 
and 𝜔!(𝑥) are both real-valued, and 𝑟!(𝑥) ∈ [0, 1]  and	𝜔!(𝑥) ∈ [0, 2𝜋]. The complex fuzzy set may be represented as 
the set of ordered pairs   

𝐴 = 89𝑥, 𝜇!(𝑥):: 𝑥 ∈ 𝑋< = 89𝑥, 𝑟!(𝑥). 𝑒%&!(#):: 𝑥 ∈ 𝑋<. 

Where ′. ′ denotes algebraic product. 

The complement of 𝐴 is denoted as	𝐴'and defined by 

𝐴' = (𝑥, 𝜇!' (𝑥): 𝑥 ∈ 𝑋), 

where, 𝜇!' (𝑥) = 𝑟!'(𝑥). 𝑒%&!
" (#) in which 𝑟!'(𝑥). 𝑒%&!

" (#) = 91 − 𝑟!(𝑥). 𝑒%(()*&!(#):. 

 

3. Correlation coefficient of complex fuzzy sets 

In this section, we propose correlation coefficients between two CFSs which are very important in various engineering 
problems where the amplitude term and phase term are used simultaneously.   

Definition 2. Let	𝐴 = 89𝑥, 𝑟!(𝑥). 𝑒%&!(#):: 𝑥 ∈ 𝑋< and	𝐵 = 89𝑥, 𝑟+(𝑥). 𝑒%&#(#):: 𝑥 ∈ 𝑋< be two CFSs on	𝑋. Then the 
correlation coefficient between 𝐴 and 𝐵 is denoted by		𝐾(𝐴, 𝐵), is defined as 

                                                      𝐾(𝐴, 𝐵) = ,(!,+)
./(!)./(+)

																																																																																																																		(1) 

where, 

𝐶(𝐴, 𝐵) = 1
(2
A∑ CD𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝜇+' 9𝑥3:F +

1
4)$

D𝜔!9𝑥3:𝜔+9𝑥3: + 𝜔!' 9𝑥3:𝜔+' 9𝑥3:FG2
351 H                                 (2) 

𝐸(𝐴) = 1
(2
A∑ CD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F +
1
4)$

D𝜔!(9𝑥3:+𝜔!'
$9𝑥3:FG2

351 H																																																																																													(3) 

𝐸(𝐵) = 1
(2
A∑ CD𝑟+(9𝑥3: + 𝑟+'

$9𝑥3:F +
1
4)$

D𝜔+(9𝑥3:+𝜔+'
$9𝑥3:FG2

351 H                                                                                 (4) 

 

Example 1. Let 𝑈 = {𝑥1, 𝑥(, 𝑥6, 𝑥4} be the universal set and 

𝐴 = 89𝑥1, 0.8𝑒%	()(8.9):, 9𝑥(, 0.7𝑒%	()(8.4):, 9𝑥6, 0.6𝑒%	()(8.6):, 9𝑥4, 0.9𝑒%	()(8.:):<	and 

𝐵 = 89𝑥1, 0.4𝑒%	()(8.9):, 9𝑥(, 0.8𝑒%	()(8.;):, 9𝑥6, 0.5𝑒%	()(8.4):, 9𝑥4, 0.3𝑒%	()(8.():<	be two  

CFSs on	𝑋. 

Then we have, 

𝐴' = C9𝑥1, 0.2𝑒%	()(8.9):, 9𝑥(, 0.3𝑒%	()(8.;):,
,

9𝑥6, 0.4𝑒%	()(8.<):, 9𝑥4, 0.1𝑒%	()(8.():G	and 

𝐵' = 89𝑥1, 0.6𝑒%	()(8.9):, 9𝑥(, 0.2𝑒%	()(8.4):, 9𝑥6, 0.5𝑒%	()(8.;):, 9𝑥4, 0.7𝑒%	()(8.:):<. 
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Now by equations (2), (3) and (4) we have 

 𝐶(𝐴, 𝐵) = 1
(2
A∑ CD𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝜇+' 9𝑥3:F +

1
4)$

D𝜔!9𝑥3:𝜔+9𝑥3: + 𝜔!' 9𝑥3:𝜔+' 9𝑥3:FG2
351 H 

           = 1
(×4

A(0.8 × 0.4 + 0.2 × 0.6) + 1
4)$

92𝜋(0.5) × 2𝜋(0.5) + 2𝜋(0.5) × 2𝜋(0.5): + (0.7 × 0.8 +

0.3 × 			0.2) + 1
4)$

92𝜋(0.4) × 2𝜋(0.6) + 2𝜋(0.6) × 2𝜋(0.4): + (0.6 × 0.5 + 0.4 × 0.5) + 1
4)$

92𝜋(0.3) ×
						2𝜋(0.4) + 2𝜋(0.7) × 2𝜋(0.6): + (0.9 × 0.3 + 0.1 × 0.7) + 1

4)$
92𝜋(0.8) × 2𝜋(0.2) + 2𝜋(0.2) ×

						2𝜋(0.8):H 

 															= 0.4675	

 

 𝐸(𝐴) = 1
(2
A∑ CD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F +
1
4)$

D𝜔!(9𝑥3:+𝜔!'
$9𝑥3:FG2

351 H 

          = 1
(×4

A(0.8)( + (0.2)( + 1
4)$

((2𝜋 × 0.5)( + (2𝜋 × 0.5)() + (0.7)( + (0.3)( +		 1
4)$

((2𝜋 × 0.4)( +

													(2𝜋 × 0.6)() + (0.6)( + (0.4)( + 1
4)$

((2𝜋 × 0.3)( + (2𝜋 × 0.7)() + (0.3)( + (0.7)( + 1
4)$

((2𝜋 × 0.8)( +

												(2𝜋 × 0.2)()H 

        	=0.58 

 

 𝐸(𝐵) = 1
(2
A∑ CD𝑟+(9𝑥3: + 𝑟+'

$9𝑥3:F +
1
4)$

D𝜔+(9𝑥3:+𝜔+'
$9𝑥3:FG2

351 H 

          = 1
(×4

A(0.4)( + (0.6)( + 1
4)$

((2𝜋 × 0.5)( + (2𝜋 × 0.5)() + (0.8)( + (0.2)( + 1
4)$

((2𝜋 × 0.6)( +

														(2𝜋 × 0.4)() + (0.5)( + (0.5)( + 1
4)$

((2𝜋 × 0.4)( + (2𝜋 × 0.6)() + (0.9)( + (0.1)( + 1
4)$

((2𝜋 × 0.2)( +

														(2𝜋 × 0.8)()H 

          =0.5925 

Hence from the equation (1), we have 

 𝐾(𝐴, 𝐵) = ,(!,+)
./(!)./(+)

 

                                                                                             = 8.4;<9
√8.9:×8.9?(9

 

                                                                                             = 0.797. 

Proposition 1.  Let 𝐴 and 𝐵 be two CFSs on	𝑋. Then, 

1. 0 ≤ 𝐶(𝐴, 𝐵) ≤ 1, 
2. 𝐶(𝐴, 𝐵) = 𝐶(𝐵, 𝐴),	
3. 𝐶(𝐴, 𝐴) = 𝐸(𝐴).	

Proof. Trivial. 

Theorem 1.  Let 𝐴 and 𝐵 be two CFSs on	𝑋. Then the correlation coefficient	𝐾(𝐴, 𝐵)satisfies the following properties: 

1. 0 ≤ 𝐾(𝐴, 𝐵) ≤ 1, 
2. 𝐾(𝐴, 𝐵) = 𝐾(𝐵, 𝐴),	
3. If	𝐴 = 𝐵, then	𝐾(𝐴, 𝐵) = 1. 

Proof. Let	𝐴 = 89𝑥, 𝑟!(𝑥). 𝑒%&!(#):: 𝑥 ∈ 𝑋< and	𝐵 = 89𝑥, 𝑟+(𝑥). 𝑒%&#(#):: 𝑥 ∈ 𝑋< be two CFSs on	𝑋. Then we have, 

1. Since	𝐶(𝐴, 𝐵) ≥ 0, we need to only show that, 𝐶(𝐴, 𝐵) ≤ W𝐸(𝐴). 𝐸(𝐵). 

Now from the definition 2 we have, 

 𝐶(𝐴, 𝐵) = 1
(2
A∑ CD𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝑟+' 9𝑥3:F +

1
4)$

D𝜔!9𝑥3:𝜔+9𝑥3: + 𝜔!' 9𝑥3:𝜔+' 9𝑥3:FG2
351 H 
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              = 1
(2
X∑ 8𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝑟+'9𝑥3:< +2

351 ∑ YZ
&!@#%A

()
[ Z&#@#%A

()
[ + Z&!

" @#%A

()
[ Z&#

" @#%A

()
[\2

351 ] 

              = 1
(2
[𝐶1(𝐴, 𝐵) + 𝐶((𝐴, 𝐵)]    [Say]. 

And 

 𝐸(𝐴) = 1
(2
^∑ D𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F + ∑ _Z&!@#%A
()

[
(
+ Z&!

" @#%A

()
[
(
`2

351
2
351 a 

          = 1
(2
[𝐸1(𝐴) + 𝐸((𝐴)]      [Say], 

 𝐸(𝐵) = 1
(2
^∑ D𝑟+(9𝑥3: + 𝑟+'

$9𝑥3:F + ∑ _Z&#@#%A
()

[
(
+ Z&#

" @#%A

()
[
(
`2

351
2
351 a 

          = 1
(2
[𝐸1(𝐵) + 𝐸((𝐵)]    [Say]. 

Now, in order to prove	𝐶(𝐴, 𝐵) ≤ W𝐸(𝐴). 𝐸(𝐵), it is sufficient to prove 

𝐶1(𝐴, 𝐵) ≤ W𝐸1(𝐴). 𝐸1(𝐵)	and	𝐶((𝐴, 𝐵) ≤ W𝐸((𝐴). 𝐸((𝐵). 

First from the Schwarz inequality we have, 

 	D∑ D𝑟!(9𝑥3: + 𝑟!'
$9𝑥3:F2

351 ∑ D𝑟+(9𝑥3: + 𝑟+'
$9𝑥3:F2

351 F
&
$ ≥ ∑ XD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F
1/(

D𝑟+(9𝑥3: + 𝑟+'
$9𝑥3:F

1/(
]2

351  

                                                                       

                                                                                        = ∑ b
𝑟!(9𝑥3:𝑟+(9𝑥3: + 𝑟!'

$9𝑥3:𝑟+'
$9𝑥3:

+	𝑟!(9𝑥3:𝑟+'
$9𝑥3: + 	𝑟!'

$9𝑥3:𝑟+(9𝑥3:
c
1/(

2
351 . 

Second from, 

𝑟!(9𝑥3:𝑟+'
$9𝑥3: + 𝑟!'

$9𝑥3:𝑟+(9𝑥3: ≥ 	2𝑟!9𝑥3:𝑟!'9𝑥3:𝑟+'9𝑥3:𝑟+9𝑥3:. 

We can get 

𝑟!(9𝑥3:𝑟+(9𝑥3: + 𝑟!'
$9𝑥3:𝑟+'

$9𝑥3: + 𝑟!(9𝑥3:𝑟+'
$9𝑥3: + 𝑟!'

$9𝑥3:𝑟+(9𝑥3: ≥ 	 D𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝑟+'9𝑥3:F
(
. 

Then it follows that 

∑ D𝑟!(9𝑥3:𝑟+(9𝑥3: + 𝑟!'
$9𝑥3:𝑟+'

$9𝑥3: + 𝑟!(9𝑥3:𝑟+'
$9𝑥3: + 𝑟!'

$9𝑥3:𝑟+(9𝑥3:F
1/(

2
351 ≥ ∑ D𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝑟+' 9𝑥3:F2

351 . 

Hence 

 D∑ D𝑟!(9𝑥3: + 𝑟!'
$9𝑥3:F2

351 ∑ D𝑟+(9𝑥3: + 𝑟+'
$9𝑥3:F2

351 F
&
$ ≥ ∑ D𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝑟+' 9𝑥3:F2

351  

                                                                                        ≥ 𝐶1(𝐴, 𝐵). 

Thus 

𝐶1(𝐴, 𝐵) ≤ W𝐸1(𝐴). 𝐸1(𝐵). 

On the other hand, first from the Schwarz inequality we have, 

⎝

⎜
⎜
⎛ghi

𝜔!9𝑥3:
2𝜋 j

(

+ i
𝜔!' 9𝑥3:
2𝜋 j

(

k
2

351

ghi
𝜔+9𝑥3:
2𝜋 j

(

+ i
𝜔+' 9𝑥3:
2𝜋 j

(

k
2

351 ⎠

⎟
⎟
⎞

1/(

≥		g

⎣
⎢
⎢
⎢
⎢
⎢
⎡
bi
𝜔!9𝑥3:
2𝜋 j

(

+ i
𝜔!' 9𝑥3:
2𝜋 j

(

c

&
$

bi
𝜔+9𝑥3:
2𝜋 j

(

+ i
𝜔+' 9𝑥3:
2𝜋 j

(

c
1/(

⎦
⎥
⎥
⎥
⎥
⎥
⎤

2

351
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= ∑ bZ
&!@#%A

()
[ Z&#@#%A

()
[
(
+ Z&!

" @#%A

()
[
(
Z&#

" @#%A

()
[
(
+ Z&!@#%A

()
[
(
Z&#

" @#%A

()
[
(
+ Z&!

" @#%A

()
[
(
Z&#@#%A

()
[
(
c
1/(

2
351 . 

Second from, 

Z&!@#%A
()

[
(
Z&#

" @#%A

()
[
(
+ Z&!

" @#%A

()
[
(
Z&#@#%A

()
[
(
≥ 		2&!@#%A

()

&!
" @#%A

()

&#
" @#%A

()

&#@#%A

()
, 

we can get 

 iZ
&!@#%A

()
[
(
Z&#@#%A

()
[
(
+ Z&!

" @#%A

()
[
(
Z&#

" @#%A

()
[
(
+ Z&!@#%A

()
[
(
Z&#

" @#%A

()
[
(
+ Z&!

" @#%A

()
[
(
Z&#@#%A

()
[
(
j 

≥		 Z&!@#%A
()

&#@#%A

()
+ &!

" @#%A

()

&#
" @#%A

()
[
(
. 

Then it follows that 

 ∑ bZ
&!@#%A

()
[ Z&#@#%A

()
[
(
+ Z&!

" @#%A

()
[
(
Z&#

" @#%A

()
[
(
+ Z&!@#%A

()
[
(
Z&#

" @#%A

()
[
(
+ Z&!

" @#%A

()
[
(
Z&#@#%A

()
[
(
c

&
$

2
351  

≥ ∑ Z&!@#%A
()

&#@#%A

()
+ &!

" @#%A

()

&#
" @#%A

()
[2

351 . 

Hence, 

 i∑ _Z&!@#%A
()

[
(
+ Z&!

" @#%A

()
[
(
`2

351 ∑ _Z&#@#%A
()

[
(
+ Z&#

" @#%A

()
[
(
`2

%51 j

&
$
≥ ∑ Z&!@#%A

()

&#@#%A

()
+ &!

" @#%A

()

&#
" @#%A

()
[2

351  

                                                                                                         ≥ 𝐶((𝐴, 𝐵). 

Thus 

𝐶((𝐴, 𝐵) ≤ W𝐸((𝐴). 𝐸((𝐵). 

 

2. For any two CFSs 𝐴 and	𝐵, we have, 

 𝐾(𝐴, 𝐵) = 
!
"# !∑ #$𝑟$&𝑥%(𝑟&&𝑥%( + 𝑟$'&𝑥%(𝑟&' &𝑥%(* +

!
()!

$𝜔$&𝑥%(𝜔&&𝑥%( + 𝜔$' &𝑥%(𝜔&' &𝑥%(*,#
%*! -

. !
"# /∑ $𝑟$"&𝑥%( + 𝑟$'

!&𝑥%(* + ∑ 0$+",-#.
") *

"
+ $+"

$ ,-#.
") *

"
1#

%*!
#
%*! 2 . !"# /∑ $𝑟&"&𝑥%( + 𝑟&'

!&𝑥%(* + ∑ 0$+%,-#.
") *

"
+ $+%

$ ,-#.
") *

"
1#

%*!
#
%*! 2

 

=
!
"# !∑ #$𝑟&&𝑥%(𝑟$&𝑥%( + 𝑟&'&𝑥%(𝑟$'&𝑥%(* +

!
()!

$𝜔&&𝑥%(𝜔$&𝑥%( + 𝜔$&' &𝑥%(𝜔$' &𝑥%(*,#
%*! -

. !
"# /∑ $𝑟&"&𝑥%( + 𝑟&'

!&𝑥%(* + ∑ 0$+%,-#.
") *

"
+ $+%

$ ,-#.
") *

"
1#

%*!
#
%*! 2 ∙ !"# /∑ $𝑟$"&𝑥%( + 𝑟$'

!&𝑥%(* +∑ 0$+",-#.
") *

"
+ $+"

$ ,-#.
") *

"
1#

%*!
#
%*! 2

 

= 𝐾(𝐵, 𝐴). 

3.  If 𝐴 = 𝐵, then 	𝑟!9𝑥3: = 	𝑟+(𝑥3) and 	𝜔!9𝑥3: = 	𝜔+(𝑥3) for all 𝑗, then from the equation (2) and (3) we have 

𝐶(𝐴, 𝐴) = 1
(2
A∑ CD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F +
1
4)$

D𝜔!(9𝑥3:+𝜔!'
$9𝑥3:FG2

351 H, 

𝐸(𝐴) = 1
(2
A∑ CD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F +
1
4)$

D𝜔!(9𝑥3:+𝜔!'
$9𝑥3:FG2

351 H. 

Hence from (1), we have  

𝐾(𝐴, 𝐴) = ,(!,!)
./(!)./(!)

= 1. 
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Definition 3. Let	𝐴 and	𝐵  be two CFSs on	𝑋  and 𝜌 = {𝜌1, 𝜌(, ⋯𝜌2}C  be the weighting vector of	𝑥3(𝑗 = 1, 2,⋯𝑛), 
where 	𝑥3  and∑ 𝜌3 = 12

351 . Then the weighted correlation coefficient between 𝐴 and 𝐵 is denoted by		𝑊𝐾(𝐴, 𝐵), is 
defined as 

                                                     𝑊𝐾(𝐴, 𝐵) = D,(!,+)
.D/(!).D/(+)

																																																																																																									(5) 

where, 

𝑊𝐶(𝐴, 𝐵) = 1
(2
A∑ 𝜌3 CD𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝜇+' 9𝑥3:F +

1
4)$

D𝜔!9𝑥3:𝜔+9𝑥3: + 	𝜔!' 9𝑥3:𝜔+' 9𝑥3:FG2
351 H                        (6) 

𝑊𝐸(𝐴) = 1
(2
A∑ 𝜌3 CD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F +
1
4)$

D𝜔!(9𝑥3:+𝜔!'
$9𝑥3:FG2

351 H                                                                          (7) 

𝑊𝐸(𝐵) = 1
(2
A∑ 𝜌3 CD𝑟+(9𝑥3: + 𝑟+'

$9𝑥3:F +
1
4)$

D𝜔+(9𝑥3:+𝜔+'
$9𝑥3:FG2

351 H                                                                         (8) 

 

Example 2. Consider the example 1. Let 𝜌 = {0.4, 0.2, 0.25, 0.15}C be the weighting vector of	𝑥3 	(𝑗 = 1, 2, 3, 4), then 
by the equations (6), (7) and (8) we have 

 𝑊𝐶(𝐴, 𝐵) = 1
(2
A∑ 𝜌3 CD𝑟!9𝑥3:𝑟+9𝑥3: + 𝑟!'9𝑥3:𝜇+' 9𝑥3:F +

1
4)$

D𝜔!9𝑥3:𝜔+9𝑥3: + 𝜔!' 9𝑥3:𝜔+' 9𝑥3:FG2
351 H 

               = 1
(×4

A0.4 × Z(0.8 × 0.4 + 0.2 × 0.6) + 1
4)$

92𝜋(0.5) × 2𝜋(0.5) + 2𝜋(0.5) × 2𝜋(0.5):[ + 0.2 ×

												Z(0.7 × 0.8 + 0.3 × 0.2) + 1
4)$

92𝜋(0.4) × 2𝜋(0.6) + 2𝜋(0.6) × 2𝜋(0.4):[ + 0.25 × Z(0.6 × 0.5 +

												0.4 × 0.5) + 1
4)$

92𝜋(0.3) × 2𝜋(0.4) + 2𝜋(0.7) × 2𝜋(0.6):[ + 0.15 × Z(0.9 × 0.3 + 0.1 × 0.7) +

												 1
4)$

92𝜋(0.8) × 2𝜋(0.2) + 2𝜋(0.2) × 2𝜋(0.8):[H 

                 = 0.116 

 

 𝑊𝐸(𝐴) = 1
(2
A∑ 𝜌3 CD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F +
1
4)$

D𝜔!(9𝑥3:+𝜔!'
$9𝑥3:FG2

351 H 

   = 1
(×4

A0.4 × Z(0.8)( + (0.2)( + 1
4)$

((2𝜋 × 0.5)( + (2𝜋 × 0.5)()[ + 0.2 × Z(0.7)( + (0.3)( + 1
4)$

((2𝜋 ×

									0.4)( + (2𝜋 × 0.6)()[ + 0.25 × Z(0.6)( + (0.4)( + 1
4)$

((2𝜋 × 0.3)( + (2𝜋 × 0.7)()[ + 0.15 ×

									Z(0.3)( + (0.7)( + 1
4)$

((2𝜋 × 0.8)( + (2𝜋 × 0.2)()[H 

             =0.1445 

 𝑊𝐸(𝐵) = 1
(2
A∑ 𝜌3 CD𝑟+(9𝑥3: + 𝑟+'

$9𝑥3:F +
1
4)$

D𝜔+(9𝑥3:+𝜔+'
$9𝑥3:FG2

351 H 

              = 1
(×4

A0.4 × Z(0.4)( + (0.6)( + 1
4)$

((2𝜋 × 0.5)( + (2𝜋 × 0.5)()[ + 0.2 × Z(0.8)( + (0.2)( + 1
4)$

((2𝜋 ×

															0.6)( + (2𝜋 × 0.4)()[ + 0.25 × Z(0.5)( + (0.5)( + 1
4)$

((2𝜋 × 0.4)( + (2𝜋 × 0.6)()[ + 0.15 ×

														Z(0.9)( + (0.1)( + 1
4)$

((2𝜋 × 0.2)( + (2𝜋 × 0.8)()[H 

             =0.141 

Hence from the equation (5), we have 

 𝑊𝐾(𝐴, 𝐵) = D,(!,+)
.D/(!).D/(+)

 

                 = 8.11;
√8.1449×8141

 

       = 0.83. 
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Theorem 2.  Let 𝐴 and 𝐵 be two CFSs on	𝑋. If 𝜌 = {𝜌1, 𝜌(, ⋯𝜌2}C is the weighting vector of	𝑥3(𝑗 = 1, 2,⋯𝑛), with 	𝑥3 
and	∑ 𝜌3 = 12

351 , then the weighted correlation coefficient 𝑊𝐾(𝐴, 𝐵)satisfies the following properties: 

1. 0 ≤ 𝑊𝐾(𝐴, 𝐵) ≤ 1, 
2. 𝑊𝐾(𝐴, 𝐵) = 𝑊𝐾(𝐵, 𝐴),	
3. If	𝐴 = 𝐵, then	𝑊𝐾(𝐴, 𝐵) = 1. 

Proof: Similar as the proof of the theorem 1. 

Definition 4.Let	𝐴 = 89𝑥, 𝑟!(𝑥). 𝑒%&!(#):: 𝑥 ∈ 𝑋< and	𝐵 = 89𝑥, 𝑟+(𝑥). 𝑒%&#(#):: 𝑥 ∈ 𝑋< be two CFSs on	𝑋. Then the max 
correlation coefficient between 𝐴 and 𝐵 is denoted by	𝐾1(𝐴, 𝐵), is defined as 

                                                𝐾1(𝐴, 𝐵) =
,(!,+)

EF#{/(!),/(+)}
                                                                                                   (9) 

where,𝐶(𝐴, 𝐵), 𝐸(𝐴) and 𝐸(𝐵) are as the definition 1. 

Example 3.Considering the examples 1, then we have 

 	𝐾1(𝐴, 𝐵) =
,(!,+)

EF#{/(!),/(+)}
 

                    = 8.11;
EF#{8.1449×8.141}

 

  = 8.11;
8.1449

 

    = 0.806. 

Theorem 3.  Let 𝐴 and 𝐵 be two CFSs on	𝑋. Then the max correlation coefficient	𝐾1(𝐴, 𝐵)satisfies the following 
properties: 

1. 0 ≤ 𝐾1(𝐴, 𝐵) ≤ 1, 
2. 𝐾1(𝐴, 𝐵) = 𝐾1(𝐵, 𝐴),	
3. If	𝐴 = 𝐵, then	𝐾1(𝐴, 𝐵) = 1. 

Proof. Let	𝐴 = 89𝑥, 𝑟!(𝑥). 𝑒%&!(#):: 𝑥 ∈ 𝑋< and	𝐵 = 89𝑥, 𝑟+(𝑥). 𝑒%&#(#):: 𝑥 ∈ 𝑋< be two CFSs on	𝑋. Then we have, 

1. Since	𝐶(𝐴, 𝐵) ≥ 0, we need to only show that 

𝐶(𝐴, 𝐵) ≤ max	{𝐸(𝐴). 𝐸(𝐵)}. 

In the proof of theorem 1, we have already proof that	𝐶(𝐴, 𝐵) ≤ W𝐸(𝐴). 𝐸(𝐵), but by Schwarz inequality we have  

𝐶(𝐴, 𝐵) ≤ W𝐸(𝐴). 𝐸(𝐵) ≤ max	{𝐸(𝐴). 𝐸(𝐵)}. 

Thus 

	𝐶(𝐴, 𝐵) ≤ max{𝐸(𝐴). 𝐸(𝐵)}. 

2. For any two CFSs 𝐴 and	𝐵, we have, 
𝐾!(𝐴, 𝐵)

=
!
"# !∑ #$𝑟$&𝑥%(𝑟&&𝑥%( + 𝑟$'&𝑥%(𝑟&'&𝑥%(* +

!
()!

$𝜔$&𝑥%(𝜔&&𝑥%( + 𝜔$' &𝑥%(𝜔&' &𝑥%(*,#
%*! -

max0 !"# /∑ $𝑟$"&𝑥%( + 𝑟$'
!&𝑥%(* + ∑ 0$+",-#.

") *
"
+ $+"

$ ,-#.
") *

"
1#

%*!
#
%*! 2 , !

"# /∑ $𝑟&"&𝑥%( + 𝑟&'
!&𝑥%(* + ∑ 0$+%,-#.

") *
"
+ $+%

$ ,-#.
") *

"
1#

%*!
#
%*! 21

 

=
!
"# !∑ #$𝑟&&𝑥%(𝑟$&𝑥%( + 𝑟&'&𝑥%(𝑟$'&𝑥%(* +

!
()!

$𝜔&&𝑥%(𝜔$&𝑥%( + 𝜔$&' &𝑥%(𝜔$' &𝑥%(*,#
%*! -

max0 !"# /∑ $𝑟&"&𝑥%( + 𝑟&'
!&𝑥%(* + ∑ 0$+%,-#.

") *
"
+ $+%

$ ,-#.
") *

"
1#

%*!
#
%*! 2 , !"# /∑ $𝑟$"&𝑥%( + 𝑟$'

!&𝑥%(* + ∑ 0$+",-#.
") *

"
+ $+"

$ ,-#.
") *

"
1#

%*!
#
%*! 21

 

= 𝐾1(𝐵, 𝐴). 

3.  If 𝐴 = 𝐵, then 	𝑟!9𝑥3: = 	𝑟+(𝑥3) and 	𝜔!9𝑥3: = 	𝜔+(𝑥3) for all 𝑗, then from the equation (2) and (3) we have 

𝐶(𝐴, 𝐴) = 1
(2
A∑ CD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F +
1
4)$

D𝜔!(9𝑥3:+𝜔!'
$9𝑥3:FG2

351 H, 



Md. Yasin Ali, Abedul Hadi / GANIT J.  Bangladesh Math. Soc.44.2 (2024) 028–038 

35 

 

𝐸(𝐴) = 1
(2
A∑ CD𝑟!(9𝑥3: + 𝑟!'

$9𝑥3:F +
1
4)$

D𝜔!(9𝑥3:+𝜔!'
$9𝑥3:FG2

351 H. 

Hence from (1), we have  

𝐾1(𝐴, 𝐴) =
,(!,!)

IJK{/(!)./(!)}
= 1. 

Definition 5: Let	𝐴 and	𝐵 be two CFSs on	𝑋 and 𝜌 = {𝜌1, 𝜌(, ⋯𝜌2}C  be the weighting vector of	𝑥3(𝑗 = 1, 2,⋯𝑛), 
where 	𝑥3 and	∑ 𝜌3 = 12

351 . Then the weighted max correlation coefficient between 𝐴 and 𝐵 is denoted by		𝑊𝐾1(𝐴, 𝐵), 
is defined as 

                                                       𝑊𝐾1(𝐴, 𝐵) =
D,(!,+)

EF#{D/(!),D		/(+)}
                                                                               (10) 

where,𝑊𝐶(𝐴, 𝐵),𝑊𝐸(𝐴) and 𝑊𝐸(𝐵) are as the definition 3. 

Example 4. Consider the example 2, and then we have 

 	𝑊𝐾1(𝐴, 𝐵) =
D,(!,+)

EF#{D/(!),D/(+)}
 

                 = 8.4;<9
EF#{8.9:,8.9?(9}

 

    = 8.4;<9
8.9:

 

      = 0.806. 

Theorem 4. Let 𝐴  and 𝐵  be two CFSs on 	𝑋 . Then the correlation coefficient 	𝑊𝐾1(𝐴, 𝐵)satisfies the following 
properties: 

1. 0 ≤ 𝑊𝐾1(𝐴, 𝐵) ≤ 1, 
2. 𝑊𝐾1(𝐴, 𝐵) = 𝑊𝐾1(𝐵, 𝐴),	
3. If	𝐴 = 𝐵, then	𝑊𝐾1(𝐴, 𝐵) = 1. 

Proof: Similar as the proof of the theorem 3. 

 

4.   Application 
In this section, we propose the application of our proposed correlation coefficient in pattern recognition problem.  

 

4.1 Pattern Recognition 
The main object of pattern recognition is to decide how closely related some unknown patterns to an ideal pattern. We 
use correlation coefficient to find a closely related pattern from some unknown pattern to an ideal pattern. 

Suppose there is an ideal pattern which is expressed as a complex fuzzy set 

𝐴 = CD𝑥3 , 𝑟!9𝑥3:. 𝑒%&!@#%AF : 𝑥3 ∈ 𝑋G (𝑗 = 1, 2,⋯𝑛). 

Let 𝐵L = CD𝑥3 , 𝑟!9𝑥3:. 𝑒%&!@#%AF : 𝑥3 ∈ 𝑋G (𝑗 = 1, 2,⋯𝑛), 𝑟 = (1, 2,⋯𝑚)  be some unknown patterns that to be 
recognized. Let  𝜌 = (𝜌1, 𝜌(, ⋯ , 𝜌2)C  be the weighting vector of 	𝑥3(𝑗 = 1, 2,⋯ , 𝑛)  such that 	𝜌3 ∈ [0, 1] , (𝑗 =
1, 2,⋯ , 𝑛) and	∑ 𝜌3 = 12

351 .The objective is one of the patterns of 𝐵1, 𝐵(, ⋯𝐵E is closely related to ideal pattern	𝐴 with 
the help of proposed correlation coefficient methods.  

Example 5. We consider a simple pattern recognition problem concerning six digital images. The aim of the problem is 
to determine which one of the sample images belongs to ideal image. Let 𝑋 = {𝑥1 = 𝑠𝑚𝑎𝑙𝑙, 𝑥( = 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑥6 =
𝑙𝑎𝑟𝑔𝑒, 𝑥4 = 𝑣𝑒𝑟𝑦	𝑙𝑎𝑟𝑔𝑒} be the set of universe. Let a complex fuzzy set 𝐴 on 𝑋 as an ideal pattern and complex fuzzy 
sets	𝐵L; 𝑟 = 1, 2,3, 4, 5on 𝑋 as unknown patterns. In these complex fuzzy sets, the amplitude and phase terms represent 
the degree of belongingness and the timestamp of the images. The complex of fuzzy sets of an ideal pattern 𝐴 and 
unknown patterns	𝐵L; 𝑟 = 1, 2,3, 4, 5on 𝑋 is given in the table 1. 
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Table 1: The data sets of ideal pattern and unknown patterns 

 𝐵1 𝐵( 𝐵6 𝐵4 𝐵9 𝐴 

𝑥1 0.6𝑒%	()(8.<) 0.4𝑒%	()(8.() 0.7𝑒%	()(8.<) 0.7𝑒%	()(8.;) 0.2𝑒%	()(8.:) 0.7𝑒%	()(8.9) 

𝑥( 0.9𝑒%	()(8.:) 0.5𝑒%	()(8.6) 0.4𝑒%	()(8.;) 0.4𝑒%	()(8.?) 0.7𝑒%	()(8.6) 0.4𝑒%	()(8.;) 

𝑥6 0.5𝑒%	()(8.4) 0.6𝑒%	()(8.4) 0.7𝑒%	()(8.<) 0.7𝑒%	()(8.<) 0.6𝑒%	()(8.9) 0.5𝑒%	()(8.9) 

𝑥4 0.6𝑒%	()(8.4) 0.8𝑒%	()(8.;) 0.6𝑒%	()(8.9) 0.5𝑒%	()(8.6) 0.6𝑒%	()(8.9) 0.8𝑒%	()(8.<) 

The weight vector of 𝑥3(𝑗 = 1, 2, 3, 4) is:	𝜌	 = 	 (0.30, 0.35, 0.15, 0.20). 

The correlation coefficient between 𝐴 and	𝐵L; 𝑟 = 1, 2,3, 4, 5 by applying proposed methods is given in the table 2. 

 

Table 2: The Correlation coefficients between 𝐴	and	𝐵L; 	𝑟 = 1, 2,3, 4, 5 

Correlation 
coefficients 

(𝐴, 𝐵1) (𝐴, 𝐵() (𝐴, 𝐵6) (𝐴, 𝐵4) (𝐴, 𝐵9) 

𝐾(𝐴, 𝐵L) 0.880 0.9428 0.9604 0.9269 0.8430 

𝑊𝐾(𝐴, 𝐵L) 0.8513 0.9316 0.9703 0.9399 0.8150 

𝐾1(𝐴, 𝐵L) 0.8603 0.9411 0.9500 0.9269 0.8340 

𝑊𝐾1(𝐴, 𝐵L) 0.8101 0.9279 0.9598 0.9354 0.7944 

Ranking of 𝐵L(	𝑟 = 1, 2, 3, 4, 5) in accordance with the maximum values of the correlation coefficients are given by the 
table 3. 

 

Table 3: Ranking of 𝐵L(	𝑟 = 1, 2, 3, 4, 5) 

Operators                        Ranking                Best  alternatives 

𝐾(𝐴, 𝐵L) 𝐵6 ≻ 𝐵( ≻ 𝐵4 ≻ 𝐵1 ≻ 𝐵9 𝐵6 

𝑊𝐾(𝐴, 𝐵L) 𝐵6 ≻ 𝐵( ≻ 𝐵4 ≻ 𝐵1 ≻ 𝐵9 𝐵6 

𝐾1(𝐴, 𝐵L) 𝐵6 ≻ 𝐵4 ≻ 𝐵( ≻ 𝐵1 ≻ 𝐵9 𝐵6 

𝑊𝐾1(𝐴, 𝐵L) 𝐵6 ≻ 𝐵( ≻ 𝐵4 ≻ 𝐵1 ≻ 𝐵9 𝐵6 

Therefore, it can be concluded that sample 𝐵6 should belong to image	𝐴. 

 

5.    Comparison Studies 
Since there is no other existing correlation coefficient method of complex fuzzy sets, so in this section, we discuss some 
comparative analysis with distance measure of complex fuzzy sets, as proposed by Zhang [15] and Alkouri [16]. The 
detailed analysis are given as below: 

Let𝐴 = 89𝑥, 𝑟!(𝑥). 𝑒%&!(#):: 𝑥 ∈ 𝑋<  and 	𝐵 = 89𝑥, 𝑟+(𝑥). 𝑒%&#(#):: 𝑥 ∈ 𝑋<  be two CFSs on 	𝑋 . Then distance measure 
proposed by Zhang [15] and Alkouri [16] are given respectively as  
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𝐷M(𝐴, 𝐵) = 𝑚𝑎𝑥 Zsup
#∈O

|𝑟!(𝑥) − 𝑟+(𝑥)|,
1
()
sup
#∈O

|𝜔!(𝑥) − 𝜔+(𝑥)|[                                                                      (11) 

𝐷P!(𝐴, 𝐵) =
1
(
D∑ �𝑟!9𝑥3: − 𝑟+(𝑥3)� +

1
()
∑ �𝜔!9𝑥3: − 𝜔+(𝑥3)�2
351

2
351 F                                                                          (12) 

𝐷QP!(𝐴, 𝐵) =
1
(2	
D∑ �𝑟!9𝑥3: − 𝑟+(𝑥3)� +

1
()
∑ �𝜔!9𝑥3: − 𝜔+(𝑥3)�2
351

2
351 F                                                                      (13) 

 

Table 4: The distance measures between 𝐴	and	𝐵L; 	𝑖 = 1, 2,3, 4, 5 

Distance 
Measures 

(𝐴, 𝐵1) (𝐴, 𝐵() (𝐴, 𝐵6) (𝐴, 𝐵4) (𝐴, 𝐵9) 

𝐷M(𝐴, 𝐵) 0.5 0.3 0.2 0.4 0.5 

𝐷P!(𝐴, 𝐵) 0.8 0.65 0.5 0.9 0.95 

𝐷QP!(𝐴, 𝐵) 0.2 0.1625 0.125 0.225 0.2375 

Ranking of 𝐵L(	𝑟 = 1, 2, 3, 4, 5) in accordance with the minimum values of the distance measures are given by the table 
5. 

 

Table-5: Ranking of 𝐵L(	𝑟 = 1, 2, 3, 4, 5) 

Operators                        Ranking Best               
alternatives 

𝐷M(𝐴, 𝐵) 𝐵6 ≻ 𝐵( ≻ 𝐵4 ≻ 𝐵1 = 𝐵9 𝐵6 

𝐷P!(𝐴, 𝐵) 𝐵6 ≻ 𝐵( ≻ 𝐵1 ≻ 𝐵4 ≻ 𝐵9 𝐵6 

𝐷QP!(𝐴, 𝐵) 𝐵6 ≻ 𝐵( ≻ 𝐵1 ≻ 𝐵14 ≻ 𝐵9 𝐵6 

Therefore, we can conclude that sample 𝐵6again should belong to image	𝐴. 

From these comparative studies, it is concluded that the best alternative obtained from our proposed method coincides 
with the existing methods. 

 

6.  Conclusions 

This article intense on developing some properties and the notions of correlation coefficient for the Complex fuzzy set 
(CFS). This study extended the work of Chiang and Lin [10] concerning the correlation coefficient of FSs in a new 
context of CFSs, which were exposed to be better of modelling real-life applications than the FSs. Theoretical 
exploration of correlation coefficient for CFSs were pointed out. These give the better to understand about the 
behaviour of correlation coefficient of CFSs which are helpful to select proper settings for applications. The last section 
in this article, the concept of correlation coefficient of CFSs applied in pattern recognition.  
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