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ABSTRACT

At the time of evacuation, placement of the facilities for the support of evacuees is an important
task. The proper allocation of the facilities in such a way that the reduction in the flow value due
to the placement of facilities on the arcs is minimal, is another important aspect of the problem.
In this paper, we introduce an evacuation planning problem with facility allocation by using bi-level
formulation. The upper level problem identifies the best possible location and lower level problem
finds the optimal solution in the network with facility allocation. We solve the problem with a naive
approach of combinatorial optimization and the Karush-Kuhn-Tucker (KKT) transformation.
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1 Introduction

Disasters, may be natural or human caused, are uncertain disruptions that may cause massive loss
of human lives and infrastructures. Pre-disaster evacuations can be possible only if pre-informations
are available. Otherwise, post-disaster evacuations with the shipment of the maximum amount of
evacuees from the disaster zones to the safe shelters in the minimum possible time are very essential.
In the meantime, settlement of the facilities to assist the evacuees at appropriate places is another
important task that can be a milestone for the saving of their lives.

In network optimization, a graphical representation of the physical scenario is represented by the
network where the demand point, supply point, and intersection of paths are considered as source,
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sink and intermediate nodes, respectively. Similarly, the links joining the pair of nodes are termed
as arcs. The maximum flow problem concerns with shifting of the maximum amount of flow from
the source node to the sink node without violating the capacity constraints on the arcs, [1, 2]. Many
researchers have presented their algorithms to improve the results such as the shortest augmenting
path algorithm of [3], the blocking flow algorithm of [4], the push-relabel algorithm of [5], and many
more. We refer to the book of [6], survey papers of [7, 8], and the references therein for detailed
illustrations of maximum flow problems and their solution strategies.

Network flow algorithms are applicable in evacuation planning, congestion minimization, distri-
bution management and facility allocation problems. One of the technique, known as flow with
intermediate storage, is introduced by Pyakurel and Dempe [9] focusing particularly on the holding of
flow at intermediate nodes which is unable to reach to the destination. Considering the flow of more
than one commodities, Khanal et al. [10] addressed the solution strategy associated with maximum
multi-commodity flow problem by incorporating the intermediate storage facilities, [11]. In abstract
network topology, Pyakurel et al. [12] proposed polynomial time solutions for maximum abstract flow
by considering intermediate storage. Recently, Dhamala et al. [13] presented an algorithm to solve
the generalized network flow problem with intermediate storage in lossy network. Different variant of
evacuation planning problems and their solution strategies by reversing the direction of arcs can be
found in [14, 15, 16, 17, 18] and the reference articles of [19].

The facility allocation problem concerns with allocation of the facilities at appropriate locations
and the optimization of flow value on the facilitated network. The placement of the facility at some
arcs reduces the capacity of the arc by the size of the facility and may reduce the total flow. The
first location flow theory with its application in industries is introduced in [20]. Different discrete
location models and algorithms with applications can be found in [21]. By incorporating the maximum
flow problem with location analysis, Hamacher et al. [22] introduced single and multi-facility flow
location problems. For single and multi-facility, they have presented polynomial time algorithms
and polynomial time heuristics, respectively. In two-way network, the maximum static and dynamic
contraflow problems with facility location are solved in [23]. The single and multiple quickest flow
location problems and their solution strategies can be found in Nath et al. [24]. Recently, Dhamala et
al. [25] introduced the single-source single-sink maximum static and dynamic flow location (FlowLoc)
problems with storage of excess flow at intermediate shelters.

Bi-level problems are two stage optimization problems in which the first stage optimizes the overall
system under the best possible decision of the second stage. It is also known as a leader-follower
optimization problem in game theory with successive iterations of two players where the leader first
decides a variable to optimize a given objective function and then the follower reacts optimally to
the leader’s decision. The first studies in bi-level optimization can be found in von Stackelberg [26].
The serious interest in this field of optimization rapidly increased after the 1970s. For more detailed
illustration, we refer to the papers of Anandalingam and Friesz [27], Wen and Hsu [28], Ben-Ayed [29],
Dempe and Zemkoho [30], survey papers of Colson et al. [31, 32], Dempe [33], and the books of
Bard [34], Dempe [35], Dempe and Zemkoho [36].

The bi-level formulation of the facility allocation problem is a major research gap in the literature
in which the allocation of facilities is made in such a way that the loss in optimal flow value due
to the best placement of facilities is minimal. To deal with this problem, we formulate an upper
level problem that declares the appropriate location for the facility and a lower level problem that
maximizes the flow on the facilitated network. We present the solution procedure in two ways. The
first is a naive approach with the combinatorial problem for selecting the arcs to allocate the facility
and finding the maximum dynamic flow on the network with facility allocation. The second one is the
KKT transformation approach.

The paper is organized as follows. Basic notations used throughout the paper are presented in
Section 2. In Section 3, we formulate the facility allocation problem by using bi-level programming,
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and the solution procedures are presented in Section 4. The paper is concluded in Section 5.

2 Notations

Consider a network K = (V,A, u, s, t), where V represents a set of n nodes (i.e., |V | = n) and
A ⊆ V × V represents a set of m arcs (i.e., |A| = m). Here, s ∈ V and t ∈ V are the source (origin)
and sink (destination) nodes, and I = V \ {s, t} represents the set of intermediate nodes. Each arc
a = (v, w) ∈ A with head(a) = w and tail(a) = v has a capacity function u : A → R+ that limits
the flow on arc. Similarly, let L ⊆ A be a set of feasible locations and d : L → R+ is the size of
the facility that is to be placed in some arc. We denote the set of outgoing arcs from node v and
incoming arcs to node v by δout(v) and δin(v), respectively. In the case of a dynamic network, two
additional parameters are to be considered, one transit time function τ : A → R+ that measures the
transmission time from v to w and another T = {0, 1, ..., T} to represent time horizon T in discrete
time settings. Thus the dynamic network is of the form K = (V,A, u, s, t, τ, T ).

3 Bi-level Problem Formulation with Facility Allocation

Let x be a static flow on a network K = (V,A, u, s, t) which is defined as a non-negative arc flow
function x : A → R+. The static flow model is the network flow satisfying the conditions (3.1 - 3.4).
The mathematical formulation of the maximum static flow as a linear programming problem is as
follows.

max f∗ (3.1)

such that, ∑
a∈δout(s)

xa = f∗ =
∑

a∈δin(t)

xa (3.2)

∑
a∈δin(v)

xa −
∑

a∈δout(v)

xa = 0 ∀v ∈ I (3.3)

0 ≤ xa ≤ ua ∀a ∈ A (3.4)

Equation (3.1) is an objective function that is to maximize the total flow. The total outflow
from the source is presented in Equation (3.2) which must be equal to the inflow at the sink. Here,
f∗ denotes the total value of static s − t flow that is to be maximized. The flow conservation at
intermediate nodes is represented by Equation (3.3) and Equation (3.4) represents the boundedness
of the flow on each arc by its capacity.

The dynamic flow within the time horizon T can be obtained by temporal repetition of the static
flow along the paths as

Tf∗ − τaxa.

Here τa is the traversal time of the flow along the arc a = (v, w) so that any flow starting from the
tail node v at time Θ ∈ T reaches the head node w at Θ + τa.

Bi-level programming problem is a hierarchical optimization problem of two levels in which the
lower level problem is among the constraints of the upper level problem. If γ and x are two variables,
then the lower level problem is of the form

max
γ

{h(γ, x) : g(γ, x) ≤ 0} (3.5)

which depends on the upper level variable x. Here, h is a real valued function defined as h : Rp×Rq → R
and g = (g1, . . . , gl) is a vector valued function defined as g : Rp×Rq → Rl. Similarly, if Ψ : Rp → 2R

q
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be a solution set mapping such that x ∈ Ψ(γ), then the upper level optimization problem is of the
form

max
γ,x

{H(γ, x) : G(γ, x) ≤ 0, x ∈ Ψ(γ)}, (3.6)

where H : Rp × Rq → R and G : Rp × Rq → Rk with G = (G1, . . . , Gk). Here, Ψ(γ) equals the
set of (global) optimal soloutions of problem (3.5) for fixed x. We refer to Dempe [35, 37] and
references therein for detailed illustrations. With the help of these formulations, we introduce the
bi-level formulation of the maximum dynamic flow problem with the allocation of facility at the arcs
hereafter.

At the time of disasters, proper allocation of the emergency facilities for the support of evacuees
is very important. Let d represent the size of a facility that is to be placed at an appropriate arc in
L. The upper level problem in network K is

max F (γ, x) (3.7)

s.t. 0 ≤ d · γa ≤ ua ∀a ∈ L (3.8)∑
a∈L

γa = 1 (3.9)

γa = 0 ∀a ∈ A \ L (3.10)

γa ∈ {0, 1} ∀a ∈ L (3.11)

x solves the lower level problem depending on γ (3.12)

where γ = (γa)a∈L and x = (xa)a∈L. Constraint in (3.8) represents that the facility is allocated at an
arc with sufficient capacity. The single facility location is assured by Equation (3.9). Non-selection of
arc outside of L for the facility allocation is represented by Equation (3.10), where (3.11) represents
the binary variable. The upper level objective function in (3.7) is to maximize F defined by

F (γ, x) = Tf −
∑
a∈A

τaxa +
∑
a∈L

γa · wa

where for a ∈ L, wa is a predefined reward for locating the facility on arc a. Thus, the objective of
the upper level problem is to maximize the flow out from the source by appropriate allocation of the
facility on the arc. Here, f is the value of static flow induced by x after placement of the facility that
is to be maximized in static flow computation.

The lower level problem is to obtain the maximum flow after the reduction of the capacity at the
facility allocated arc by the size of the facility as follows.

max
f,x

Tf −
∑
a∈A

τaxa (3.13)

s.t.
∑

a∈δin(v)

xa −
∑

a∈δout(v)

xa =


−f for v = s

0 ∀v ∈ I

f for v = t

(3.14)

0 ≤ xa ≤ ua − d · γa ∀a ∈ A (3.15)

Here, the objective of lower level problem (3.13) is to maximize the dynamic flow obtained by temporal
repetition of static flow. The flow conservation at intermediate nodes and non-conservation of the flow
at source and sink are represented by Equation (3.14) and the boundedness of the flow on each arc is
represented in (3.15).
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In case of multiple facility allocation, say r facilities of size di, i = 1, . . . , r with r ≤ |L|, the upper
level constraint in (3.9) is to be replaced by

∑r
i=1 γ(a,i) = 1 for all a ∈ L (i.e., each facility is placed on

exactly one arc) and
∑

a∈L γ(a,i) = 1, i = 1, ..., r (i.e., each facility is located at some arc). Similarly,
lower level constraint in (3.15) is to be replaced by 0 ≤ xa ≤ ua − diγ(a,i). The objective function and
the rest of the constraints remain the same with replacement of γa to γ(a,i).

The dual formulation of the lower level problem is as follows.

min
∑
a∈A

θa(ua − d · γa) (3.16)

s.t. λv − λw + θa ≥ −τa ∀a = (v, w) ∈ A (3.17)

λs − λt ≥ T (3.18)

θa ≥ 0 ∀a ∈ A (3.19)

λv ∈ R (unrestricted) (3.20)

4 Solution Procedure

In this section, we present two approaches to solve the facility allocation problem. The first one is
a naive approach which selects an arc with some strategy to place the facility, finds the maximum dy-
namic flow over the time horizon, and continues the process until the best solution is obtained. Another
approach is the conversion of a bi-level problem to a single level one by using the Karush-Kuhn-Tucker
(KKT) transformation and solving the problem by replacing the complementarity condition by big-M
method with mixed-integer reformulation.

4.1 Solution by Naive Approach

For a given subset L ⊆ A of possible locations, our concern here is to present a simple procedure
to solve the facility allocation problem. The basic idea for this approach is from the Stackelberg
leadership model of a strategic game in which the leader makes the first move and then the follower
reacts sequentially for the optimal output. The leader (upper level) iteratively chooses an arc for the
allocation of a facility unless the best optimal solution from the follower (lower level) is produced.

Here, we present the pseudo codes of an algorithmic framework to solve the maximum dynamic
flow problem with facility allocation (see Algorithm 1). The first and second steps inside the ‘for loop’
of the algorithm are obtained by the upper level problem and the third one by the lower level problem.
This loop runs over all arcs a′ ∈ A with ua′ ≥ d to obtain the best optimal flow MDFopt.

The time complexity of the algorithm depends on the number of iterations over the arcs in L
and the complexity of the maximum dynamic flow, that is, |L| × O(MDF ), where O(MDF ) is the
time complexity of maximum dynamic flow problem. As |L| ≤ m and maximum dynamic flow can
be computed in polynomial time, the overall time complexity of the algorithm with single facility
allocation is polynomial, [22]. However, solving multiple (i.e., r) facility allocation problem is a
combinatorial optimization problem with complexity |L|Pr × O(MDF ), where |L|Pr represents the
permutation of |L| locations taken r at a time. Thus, it’s time complexity is not the polynomial but
exponential.

4.2 Solution by KKT Transformation

The Karush-Kuhn-Tucker (KKT) condition is one of the most commonly used approaches to solve
the bi-level programming problem which is only applicable if the lower level problem is a convex
optimization problem. It transfers the problem into a single level optimization problem. It is to be
noted that an optimization problem where all of the constraints are convex functions, and the objective
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Algorithm 1: Naive algorithm for maximum dynamic flow with facility allocation

Input : Given a dynamic network K = (V,A, u, s, t, τ, T ).
Output: MDFopt = Maximum dynamic flow with facility allocation.

L = Set of feasible locations (L ⊆ A).

d = Size of facility.

γ = {0, 1}, a decision variable.

for a′ ∈ L with ua′ ≥ d:

Assign γa′ = 1 and γa = 0 ∀a ∈ L \ {a′}.

Assign ua′ = ua′ − d.

MDF(a′) = Maximum dynamic flow after placement of facility at a′.

MDFopt = max{MDF(a′) : a′ ∈ L and γa′ = 1}

is a convex function if minimizing, or a concave function if maximizing, is a convex optimization
problem. In case, for non-convex lower level problems under some regularity condition, the lower level
problem is replaced by the KKT conditions, the feasible set of the original problem is enlarged, we
add local optima and stationary solutions. This, in general, implies that global optimal solutions of
the transformed problem do not need to be feasible for the original problem, [38].

As both lower and upper level problems in our facility allocation model are linear, KKT transfor-
mation is possible. For this, consider the Lagrangian function of lower level problem as

L(γ, x, λ, θ) = Tf −
∑
a∈A

τaxa +
∑
v∈I

λv

 ∑
a∈δin(v)

xa −
∑

a∈δout(v)

xa

+
∑
a∈A

θa · (ua − d · γa − xa).

The objective function for KKT condition is the objective of upper level problem and the KKT
constraints are the constraints for lower level problem (3.14)- (3.15) together with dual constraints
(3.17)-(3.20) and the complementarity constraint

θa · (ua − d · γa − xa) = 0 ∀a ∈ A.

This yields the mathematical model with the complementarity constraints (MPCC) as follows.

max
γ,x,λ,θ

F (γ, x) (4.1)

s.t. 0 ≤ d · γa ≤ ua ∀a ∈ L (4.2)∑
a∈L

γa = 1 (4.3)

∑
a∈δin(v)

xa −
∑

a∈δout(v)

xa =


−f for v = s

0 ∀v ∈ I

f for v = t

(4.4)

0 ≤ xa ≤ ua − d · γa ∀a ∈ A (4.5)

λv − λw + θa ≥ −τa ∀a = (v, w) ∈ A (4.6)
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λs − λt ≥ T (4.7)

θa · (ua − d · γa − xa) = 0 ∀a ∈ A. (4.8)

θa ≥ 0 ∀a ∈ A (4.9)

λv ∈ R (non-restricted) (4.10)

The complementarity constraints in (4.8) can be replaced by the mixed-integer reformulation using
sufficiently large big-M constants M ′ and M ′′ as follows.

ua − d · γa − xa ≤ M ′(1− βa), θa ≤ M ′′βa, βa ∈ {0, 1}, ∀a ∈ A.

This reformulation was introduced by Fortuny-Amat and McCarl [39] so that resulting model of single
level problem can be solved by standard mixed-integer solvers. However, a major concern here is to
approximate the value of big-M . Pineda and Morales [40] have shown that choosing too small big-M
can result in a sub-optimal solution. Similarly, too large values of big-M may cause an infeasible
solution for the original bi-level problem, [41]. As M ′ is an upper bound of the primal variable xa
on arcs, without loss of generality, we can set M ′ = max{ua : a ∈ A}. However, M ′′ is an upper
bound of the dual variable θa, and tuning such a large enough constant for the dual variable is a more
challenging task. The trial-and-error tuning procedure is most commonly used in literature for the
upper bound of the dual variable.

Due to the linear constraints in lower level problem, an ε bound method can be used to reformulate
the complementarity constraint (4.8) and solve with relaxation in the sense of Scholtes [42]. The
reformulation of complementarity constraint is

θa · (ua − d · γa − xa) ≤ ε ∀a ∈ A,

where locally optimal solution of the problem is obtained for ε ↓ 0, (see also in [43]). According to
Scholtes [42], the idea of ε bound method is as follows: Replace constraint (4.8) as mentioned with
positive ε and solve this problem. Now, decrease ε by replacing it with ε/2 and solve the resulting
problem starting with the optimal solution in the previous step. Then, repeat the process. Here,
the objective (4.1) with constraints (4.2)–(4.10) is irregular, the Mangasarian-Fromovitz constraint
qualification (MFCQ) is violated. The result is that solution algorithms can in general not solve the
problem (they often cannot compute a starting point).

Similarly, we can also use Lagrange duality approach of Dempe and Mehlitz [44] to reduce bilevel
problem to single level. There are other approaches which are described in [33] and the ideas to replace
constraint (4.8) are given and compared in [45].

Not only for a single facility allocation, KKT transformation solves the multiple facility allocation
problem at the same pace.

5 Conclusions

In network optimization, the maximum flow and facility location problems have been studied in
the literature. In this paper, we introduced a bi-level formulation of the maximum dynamic flow
problem with facility allocation in which the upper level problem finds the best possible arc for facility
allocation and the lower level problem finds the optimal flow on the facilitated network. We solved the
problem one with a naive approach of combinatorial optimization and another by KKT transformation
using big-M and ε bound methods. To the best of our knowledge, formulation of maximum dynamic
flow with facility allocation using bi-level programming is for the first time.
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