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Interior Hölder Regularity and Infinite Time Extinction to a doubly

Nonlinear Degenerate Parabolic Equations of Signed Solutions

Md. Abu Hanif Sarkar *

Department of Mathematics, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh.

ABSTRACT

We study doubly nonlinear parabolic equation with sign changing solutions. We established the Hölder regularity
and the infinite time extinction of it within a parabolic domain.
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1 Introduction

Let Ω ⊂ RN and for T > 0 define the cylindrical doamin ΩT := Ω × (0, T ]. Consider the following doubly
nonlinear parabolic equation

∂t(|u|p−2u)− div(|Du|p−2Du) = 0 weakly in ΩT (1.1)

where ∆pu := div(|Du|p−2Du) is the p-Laplacian. For the case p = 2 then this operator transforms to well
known heat equation. In this manuscript, the weak solution u is unknown and assumed to be locally bounded,
real function which depends on both the time and space variables namely x and t in the cylindrical domain.

In our context, the term structural data indicates the parameters p and N . It is also assumed that the
constant γ > 0 , need to be evaluated quantitatively apriori in terms of the structural data.

1.1 Interior regularity

Denote ΓT := ∂ΩT − Ω̄ × {T} to be the parabolic boundary of the cylindrical domain ΩT , and for any
compact subset C of ΩT parabolic p-distance from C to Γ by

distp(C,ΓT )
def
= inf

(x,t)∈C
(y,s)∈ΓT

{
|x− y|+ |t− s|

1
p

}
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For ϱ > 0 denote the cube Kϱ(x0) with center at x0 ∈ RN and edge ϱ. For θ > 0, consider the following
backward cylinders of the form

(x0, t0) +Qϱ(θ) = (x0, t0) +Kϱ(0)× (−θϱp, 0] = Kϱ(x0)× (t0 − θϱp, t0].

For the case θ = 1, we will call it as Qϱ.

The conclusions to be derived from the discoveries presented in this article are summarized as follows.

Theorem 1.1. Let’s consider a bounded domain with a smooth boundary, denoted as ∂Ω. Given that u con-
stitutes a local weak solution bounded by (1.1) in ΩT , it follows that u exhibits local Hölder continuity within
ΩT . Precisely, there exist constants γ > 1 and β ∈ (0, 1), predetermined based on the data, such that for any
compact subset C ⊂ ΩT , the inequality

|u(x1, t1)− u(x2, t2)| ≤ γ∥u∥∞,ΩT

(
|x1 − x2|+ |t1 − t2|

1
p

distp(C,ΓT )

)β

,

holds true for any pair of points (x1, t1), (x2, t2) ∈ C.

Theorem 1.2. Assume that at the initial time t = 0, the function u has a value of u0, which is an element of
the Sobolev space W 1,p

0 (Ω). Additionally, u0 is non-negative, not constantly zero, and remains bounded within
the domain Ω. If we consider u as a local weak solution to equation (1.1), then it implies that eventually, as time
goes to infinity, the function u will completely vanish, meaning that u(·, t) approaches zero as time progresses
indefinitely.

The following oscillation decay will be demonstrated as part of the proof of the aforementioned theorem:

ess osc
(x0,t0)+Qr

u ≤ γ ess osc
(x0,t0)+Qϱ

u

(
r

ϱ

)β

,

for any pair of cylinders (x0, t0) +Qr ⋐ (x0, t0) +Qϱ ⋐ ΩT . A typical covering argument can be used to draw
the conclusion of Theorem 1.1 at the end. A weak solution is defined in Definition 2.2, and [20] examines the
weak solution’s global existence.

1.2 Originality and importance

The equation (1.1) is a standard equation and is known as Trudinger’s equation which is also famously
termed as a doubly nonlinear parabolic equation due to the non-linearity of both the solution and its spatial
gradient. It is of special interest to know why we are taking this type of equation for research as it has a
splendid mathematical structure and generate mixed types of degeneracy and/or singularity in partial differential
equations, and connection to physical models, including dynamics of glaciers [24], shallow water flows [1, 9, 12]
and friction dominated flow in a gas network [22]. The Trudinger equation is also naturally connected to the
non-linear eigenvalue problem −∆pu = λ|u|p−2u [23], which plays an essential role in the nonlinear potential
theory. The Hölder regularity of signed solutions studied by V. Bögelein, F. Duzzar and N. Liao in [2] for a
more general equations with structure conditions. The Hölder regularity of this equation is studied by Trudinger
[30, 31], via Moser’s iteration, to possess a Harnack inequality for non-negative weak solutions, resembling to heat
equation. The HÖlder regularity of nonnegative weak solutions is established by using this Harnack inequality
in [10, 18, 19]. Now its turn to mention our contribution here, we eradicate the restriction of non-negativity
of solutions instead we choose sign changing solutions to hold for the Hölder regularity. In our approach the
Harnack inequality is not applicable as this estimate is valid only for non-negative solutions. We establish our
desired goal using expansion of positivity.

Our proof’s of interior Hölder regularity evolve along two key instances such as when the solution is close to
zero or when it is away from zero, through comparisons between the oscillation and the supremum/infimum of
the solution. For the former case, we will take the advantage of the scaling invariant property of our equation
and obtain the expansion of positivity Proposition 3.1 without intrinsic scaling techniques [32] which parallels
the classical parabolic theory in [21]. Whereas in the latter case, the solution behaves like the one to the
parabolic p-Lalacian equation, i.e., ut = ∆pu. Therefore, this second case rely upon the possibility to treat
such a degenerate (p > 2) or singular (1 < p < 2) equation, for which we exploit the existing theory in
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[4, 5, 6]. The existence of weak solution to (1.1) is shown in [26]. The Hölder regularity for doubly nonlinear
equations has also been studied in [7, 13, 14, 15, 16, 33, 34]. The establishment of Hölder continuity for weak
solutions to Trudinger’s equation serves several visible objectives in the realm of mathematical analysis and
partial differential equations. Some of these objectives include:

� Understanding regularity properties: Hölder continuity is a measure of the smoothness or regularity of a
function. By proving Hölder continuity for weak solutions, mathematicians gain insights into the regularity
properties of solutions to Trudinger’s equation. This is crucial for understanding the behavior of these
solutions in various contexts.

� Existence and uniqueness of solutions: The study of Hölder continuity contributes to establishing the
existence and uniqueness of solutions to Trudinger’s equation. Regularity results often play a fundamental
role in proving the well-posedness of mathematical models, ensuring that solutions exist, are unique, and
depend continuously on the data.

� Applicability of Sobolev spaces: Hölder continuity within a Sobolev space signifies that solutions possess
a certain level of smoothness and fall within a well-defined function space. This is important for the
applicability of Sobolev spaces in describing the behavior of solutions, allowing for a systematic and
rigorous analysis of Trudinger’s equation.

� Behavior of solutions in bounded domains: The restriction to a bounded domain in the establishment
of Hölder continuity provides insights into the behavior of solutions within confined regions. This can
have implications for problems arising in specific physical or mathematical contexts where the domain of
interest is limited.

� Infinite-time extinction property: The observation of infinite-time extinction for nonnegative weak solu-
tions is a specific characteristic of interest. Understanding this property contributes to the knowledge of
the long-term behavior of solutions, which can be essential in applications where the evolution of certain
quantities over time is a critical consideration.

2 Preliminaries

We establish certain notations and tools for technical analysis that will be utilized subsequently.

2.1 Notation

2.1.1 Concept of local weak solution

Let u be a function belonging to

u ∈ C(0, T ;Lp
loc(Ω)) ∩ Lp

loc(0, T ;W
1,p
loc (Ω)) (2.1)

It is considered a local weak sub(super)-solution to (1.1) if, for every compact subset C of Ω and each sub-interval
[t1, t2] ⊂ (0, T ]

�
C

|u|p−2u ζ dx
∣∣∣t2
t1
+

�
C×(t1,t2)

[−|u|p−2uζt + |Du|p−2Du ·Dζ] dx dt ≤ (≥)0 (2.2)

holds for all non-negative test functions

ζ ∈ W 1,p
loc (0, T ;L

p(C)) ∩ Lp
loc(0, T ;W

1,p
0 (C)).

ensuring the convergence of all integrals in (2.2). A function u satisfying both the conditions of being a local
weak subsolution and a local weak supersolution to (2.2) is termed a local weak solution.
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2.1.2 Function Spaces on a time-space area

In this subsection materials are arranged from [3, 8, 28]. We define several function spaces that operate
in space-time domains. For 1 ≤ p, q ≤ ∞, Lq(t1, t2 ; L

p(Ω)) represents a collection of measurable real-valued
functions defined on Ω × (t1, t2), encompassing a finite-region in both space and time and characterized by a
norm that may not be bounded:

∥v∥Lq(t1,t2 ;Lp(Ω)) :=


(� t2

t1
∥v(t)∥qLp(Ω) dt

)1/q
if 1 ≤ q < ∞

ess supt1≤t≤t2 ∥v(t)∥Lp(Ω) if q = ∞

where

∥v(t)∥Lp(Ω) :=

{(�
Ω
|v(x, t)|p dx

)1/p
if 1 ≤ p < ∞

ess supx∈Ω |v(x, t)| if p = ∞

For simplicity, we use Lp(Ω × (t1, t2)) = Lp(t1, t2 ; L
p(Ω)) when p = q. For 1 ≤ p < ∞, the Sobolev Space

W 1,p(Ω) consists of weakly differentiable measurable real-valued functions whose weak derivatives are p-th
integrable on Ω, with the norm

∥w∥W 1,p(Ω) :=

(�
Ω

|w|p + |∇w|p dx
)1/p

where ∇w = (wx1
, . . . , wxn

) indicates, in a distribution sense, the gradient of w, and let W 1,p
0 (Ω) denote the

closure of C∞
0 (Ω) with the norm ∥ · ∥W 1,p . Additionally, we define Lq(t1, t2 ; W

1,p
0 (Ω)) as a function space of

measurable real-valued functions on a space-time region with a bounded norm:

∥w∥Lq(t1,t2 ;W 1,p
0 (Ω)) :=

(� t2

t1

∥w(t)∥qW 1,p(Ω) dt

)1/q

Consider Ω ⊂ Rn as a bounded domain. The truncation of a function v for a real number m can be expressed
as

(v −m)+ := max{(v −m), 0}; (v −m)− := −min{(v −m), 0}. (2.3)

For a measurable function v in L1(Ω) and real numbers m < n, we introduce the sets
Ω ∩ {v > n} := {x ∈ Ω : v(x) > n}
Ω ∩ {v < m} := {x ∈ Ω : v(x) < m}
Ω ∩ {m < v < n} := {x ∈ Ω : m < v(x) < n}.

2.2 Necessary tools

Let begin by recalling De Giorgi’s inequality (refer to [4]).

Proposition 2.1 (Inequality of De Giorgi). Consider v ∈ W 1,1(B) and real numbers k,m ∈ R satisfying k < m.
Then there exists a positive constant C dependent solely on p as well as n in a way that

(k −m)
∣∣B ∩ {v > k}

∣∣ ≤ C
ρn+1∣∣B ∩ {v < m}

∣∣ �
B∩{k<v<m}

|∇v| dx. (2.4)

Following the approach in [4], we introduce the auxiliary function
A+(k, u) := +(p− 1)

� u

k

|s|p−2(s− k)+ ds

A−(k, u) := −
� u

k

|s|p−2(s− k)− ds

(2.5)



Sarkar / GANIT J. Bangladesh Math. Soc. 43.2 (2023) 75–91 79

for u, k ∈ R. In the special case of k = 0, we simplify as

A+(u) = A+(0, u) and A−(u) = A−(0, u).

It is evident that A± ⩾ 0. We introduce bold notation bα to represent the signed α-exponent of b, as defined
below

bα =

|b|α−1 b, b ̸= 0,

0, b = 0.

We present a known lemma; cf. ([1, 11, 25] for α > 1. This lemma is utilized in the proof of the subsequent
lemma:

Lemma 2.2. For each positive value of α, there exists a specific constant β, denoted as β(α), for which the
inequality below holds for any pair of real numbers a, b:

1

β
|bα − aα| ⩽ (|a|+ |b|)α−1|b− a| ⩽ β|bα − aα|.

Building upon the aforementioned lemma, we establish the following result.

Lemma 2.3. There exists a constant β = β(p) such that the following inequality holds for all w, k ∈ R and
α > 0:

1

β
(|w|+ |k|)p−2(w − k)2± ⩽ A±(k,w) ⩽ β(|w|+ |k|)p−2(w − k)2±

We introduce a type of time mollification for the solution u to enhance its time regularity:

[u]h(x, t)
def
=

1

h

� t

0

e
s−t
h u(x, s) ds for any u ∈ L1(ΩT ) (2.6)

Lemma 2.4. (Properties of mollification) [17]

(i) If u ∈ Lp(ΩT ), then ∥[u]h(x, t)∥Lp(ΩT ) ⩽ ∥u∥Lp(ΩT ) and

∂[u]h
∂t

=
u− [u]h

h
∈ Lp(ΩT ).

Moreover, [u]h → u in Lp(ΩT ) as h → 0.

(ii) If, additionally, ∇([u]h) = [∇u]h componentwise,

∥∇([u]h)∥LP (ΩT ) ⩽ ∥∇u∥Lp(ΩT )

and ∇[u]h → ∇u in Lp(ΩT ) as h → 0.

(iii) Furthermore, if uk → u in Lp(ΩT ), then

[uk]h → [u]h and
∂[uk]h
∂t

→ ∂[u]h
∂t

in Lp(ΩT ), and ∇[u]h → ∇u in Lp(ΩT ) as h → 0.

(iv) If ∇uk → ∇u in Lp(ΩT ), then also ∇[uk]h → ∇[u]h in Lp(ΩT ).

(v) Similar results hold for weak convergence in Lp(ΩT ).

(vi) Lastly, if φ ∈ C(Ω̄T ), then [φ]h(x, t) + e−
t
hφ(x, 0) → φ(x, t) uniformly in ΩT as h → 0.
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Moving forward, we will employ the following energy estimate (as found in [27]). We briefly outline the
estimate before proceeding with the main proof.

Proposition 2.5. Assume that u serves as a subsolution in a local sense for equation (1.1). In this context,
there exists positive constant γ(p) in a way that for any cylinders QR,S = KR(x0) × (t0 − S, t0) ⋐ ΩT , the
subsequent inequality is satisfied for every non-negative piecewise smooth cutoff function ζ that vanishes along
∂K(x0)× (t0 − S, t0), as well as for any k ∈ R:

ess sup
t0−S<t<t0

�
KR(x0)×{t}

ζpA±(k, u) dx+

�

QR,S

ζp|D(u− k)±|p dx dt

⩽ γ

�

QR,S

[|Dζ|p(u− k)± +A±(k, u)|∂tζp|] dx dt

+

�
KR(x0)×{t0−S}

ζpA±(k, u) dx (2.7)

3 Positivity expansion

Consider K ⊂ Rn and a cylinder Q def
= K × (t1, t2) ⊂ ΩT . Throughout this section, we will utilize the

following notations:
µ+ ≥ ess sup

Q
u, µ− ≤ ess inf

Q
u, ω = µ+ − µ−.

We also assume that (x0, t0) ∈ Q for defining the forward cylinder

K8ϱ(x0)× (t0, t0 + (8ϱ)p) ⊂ Q. (3.1)

In this context, we present the proposition regarding the extension of positivity. The complete proof can be
found in [25].

Proposition 3.1. Given that u is locally limited and acts as a sub(super)solution on a local scale for equation
(1.1) within the domain ΩT , and for a specific point (x0, t0) ∈ ΩT , as well as for constants M , α, and ϱ, where
M > 0, and α belongs to the interval (0, 1), while ϱ > 0 the ensuing conditions are met: (3.1) and

|{±(µ± − u(., t0)) ≥ M} ∩Kϱ(x0)| ≥ α|Kϱ|.

Subsequently, constants ξ, δ, and η all falling within the range of (0, 1), can be identified based solely on the
provided information and the value of α. This leads to either

|µ±| > ξM

or

±(µ± − u) ≥ ηM almost everywhere in K2ϱ(x0)× (t0 + δ(
1

2
ϱ)p, t0 + δϱp),

where

ξ =

2η, if p > 2,

8, if 1 < p ≤ 2.

The proof of Proposition 3.1 follows directly from three lemmas presented in subsequent sections. Here, we
provide the statements of these lemmas, which collectively form the foundation for proving the expansion of
positivity. For detailed proofs, please refer to [27].
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3.1 Extension of Positivity in Measure

Lemma 3.2. Take any positive M and α ∈ (0, 1) into account. Consequently, there are δ and ε within the
range of (0, 1), and their values are exclusively determined by the provided information and the value of α. In
cases where u functions as a locally restricted sub(super)-solution to equation (1.1) within ΩT , adhering to the
condition

|{±(µ± − u(·, t0)) ≥ M} ∩Kϱ(x0)| ≥ α|Kϱ|,
we have either

|µ±| > 8M

or
|{±(µ± − u(·, t)) ≥ εM} ∩Kϱ(x0)| ≥

α

2
|Kϱ| for all t ∈ (t0, t0 + δϱp). (3.2)

3.2 Lemma of shrinking

Lemma 3.3. Given the assumptions in Lemma 3.2, the second option (3.2) is true. Let Q = Kε(x0)× (t0, t0+

δεp] denote the corresponding cylindrical domain, and let Q̃ = K4ε(x0)×(t0, t0+δϱp] ⊂ ΩT . A positive constant
γ, which is exclusively dependent on the given data and α, exists. This constant is such that for any positive
integer j∗, when 1 < p < 2, the following inequality is legitimate:∣∣∣∣{±(µ± − u) ≤ εM

2j∗

}
∩ Q̃

∣∣∣∣ ≤ γ

j
p−1
p

∗

|Q̃|,

Similarly, if p > 2, the same result holds when |µ±| < εM2−j∗ .

3.3 Lemma of the DeGiorgi type

Within this section, we introduce a Lemma resembling DeGiorgi’s lemma, but it pertains to cylinders in the
format of Qϱ(θ). In the scope of its application, the value of the parameter θ will be a constant universally
determined by the provided data. Remarkably, this constant θ remains unaffected by changes in the solution
and remains consistent.

Lemma 3.4. Examine a locally bounded function u, which serves as a local sub(super)-solution to equation
(1.1) within ΩT . Consider the set (x0, t0)+Qϱ(θ) = Kϱ(x0)× (t0− θϱp, t0] ⋐ ΩT . A constant ν ∈ (0, 1), relying
solely on the given data and θ, is present. If the condition holds that∣∣{±(µ± − u) ≤ M

}
∩ (x0, t0) +Qϱ(θ)

∣∣ ≤ ν|Qϱ(θ)|,

then either |µ±| > 8M , or

±(µ± − u) ≥ 1

2
M a.e. in (x0, t0) +Q 1

2ϱ
(θ).

4 Proof of the Theorem 1.1: Degenerate Case

4.1 Proof.

Here we fix (x0, t0) ∈ ΩT as well as A ⩾ 1 to be determined later and ϱ > 0 be so small that

Q0
def
= Kϱ(x0)× (t0 −Aϱp, t0] ⋐ ΩT .

Without sacrificing generality, we may presume that (x0, t0) = (0, 0). We proceed to define the following
symbols:

µ+ = ess sup
Q0

u, µ− = ess inf
Q0

u ω = µ+ − µ−.



Sarkar / GANIT J. Bangladesh Math. Soc. 43.2 (2023) 75–9182

Similar to the singular case, the proof of degenerate case unfolds along two main cases, such as{
when u is near zero: µ− ≤ ξω , and µ+ ≥ −ξω;

when u is away from zero: µ− > ξω or µ+ < −ξω.
(4.1)

4.2 Deduction of Oscillation Around Zero-1st Alternative

In this context, we assume that the first option described in 4.1 is active, and that u represents a super
solution in close proximity to its infimum. Suppose that for some t̄ ∈ (−(A− 1)ϱp, 0],

|{u ⩽ µ− +
1

4
ω} ∩ (0, t̄) +Qϱ| ⩽ ν|Qϱ|, (4.2)

where ν is the absolute constant as in Lemma 3.4. Choose M = 1
4ω, then applying Lemma 3.4, gives

u ⩾ µ− +
1

8
ω a.e. in (0, t̄) +Q 1

2ϱ
,

Applying Proposition 3.1 with 2pA instead of A gives ξ = ξ(A, data), η = η(A, data) ∈ (0, 1), such that either
|µ−| > ξω or

u > µ− + ηω a.e. in Q̃1
def
= K 1

2ϱ
×
(
−
(
1

2
ϱ

)p

, 0

]
. (4.3)

Then we immediately get the inequality
ess osc

Q̃1

u ⩽ (1− η)ω.

It remains to deal with the case µ− < −ξω. Since µ+ ≥ −ξω, we also have µ− > −2ω.Then we proceed further
with the assumptions {

−2ω < µ− < −ξω.

u(·, t̄− ( 12ϱ)
p) ⩾ µ− + 1

8ω a.e. in K 1
2ϱ
.

(4.4)

The next step is to establish pointwise propagation within the second alternative, extending it all the way up
to the upper limit of the cylinder Q0. This process is accomplished through the application of the following
lemma.

Lemma 4.1. If the hypotheses (4.4) holds true, then a constant η1 = η1(ξ, A, data) ∈ (0, 1) can be found in a
way that

u ⩾ µ− + η1ω a.e. in K 1
4ϱ

×
(
t̄−

(
1

2
ϱ

)p

, 0

]
. (4.5)

As a consequence, the reduction of oscillation is

ess osc
Q̂1

u ⩽ (1− η1)ω, where Q̂1 = K 1
4ϱ

×
(
−
(
1

2
ϱ

)p

, 0

]
.

Proof. For our convenience we set t̄−
(
1
2ϱ
)p

= 0. Introduce the parameters

kn, k̃n, ϱn, ϱ̃n,Kn, K̃n, , Qn,
−
Qn

kn = µ− + 2η1ω
2 + 2η1ω

2n+1 , k̃n = kn+kn+1

2 ,

ϱn =
1
2ϱ

2 +
1
2ϱ

2n+1 , ϱ̃n =
1
2ϱn+

1
2ϱn+1

2

Kn = K 1
2ϱn

, K̃n = K ˜1
2ϱn

(θ)

Qn = Q 1
2ϱn

(θ)
−
Qn = Q 1

2 ϱ̃n
(θ)

(4.6)
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where 0 < η1 < 1
8ξ and θ > 0 to be determined later. Here the forward cylinders are of the type Qϱn

(θ) =

Kn × (0, θϱpn] and Q̃n = K̃n × (0, θϱ̃pn]. Initiate a cutoff function ζ that satisfies the following conditions: It
ranges between 0 and 1, is not dependent on time t, disappears at the boundary of Kn, and takes on a value of
1 within the region K̃n. Additionally, this function should meet the requirement:

|Dζ| ≤ γ
2n

ϱ
.

The boundary component at the initial time t = 0 on the right side of the energy inequality disappears within
the domain Kn, as

u(·, 0) ⩾ µ− +
1

8
ω ⩾ µ− + 2η1ω ⩾ µ− + η1ω + η1

ω

2n
= kn

a.e. on K 1
2ϱ

which requires 2η1 < 1
8 . In this context, we can express the energy estimates as follows:

ωp−2 ess sup
0<t<θϱp

�
K̃n

(u− k̃n)
2
− dx+

�
Q̃n

|D(u− k̃n)−|p dx dt

≤ γ
2pn

ϱp
(η1ω)

p|An|,

where
An = {u < kn} ∩Qn.

Now treating ξ as a cutoff function that becomes zero along the parabolic boundary of Q̃n and equals one in
Qn+1, and then applying the Sobolev embedding as described in [4, Chapter I, Proposition 3.1] with q = pN+2

N
and m = 2 provides us

Mp−2

2p(n+3)
ess sup

−θϱ̃p
n<t<0

�
K̃n

(u− k̃n)
2
− dx+

�
−
Qn

|D(u− k̃n)−|p dx dt ≤ γ
2pn

ϱp
Mp|An|, (4.7)

Now, defining ϕ as a cutoff function that ranges between 0 and 1, vanishing along the parabolic boundary of
−
Qn while equaling 1 within Qn+1, we can apply the Hölder inequality and the Sobolev embedding [4, Chapter
I, Proposition 3.1] to derive the following result:

( η1ω

2n+2

)p
|An+1| ≤

�
Q̃n

|(u− k̃n)−ζ|p dx dt

≤
[�

Q̃n

[(u− k̃n)−ζ]
pN+2

N dx dt

] N
N+2

|An|
2

N+2

≤ γ

[�
Q̃n

|D[(u− k̃n)−ζ]|p dx dt

] N
N+2

×

[
ess sup
0<t<θϱp

�
K̃n

(u− k̃n)
2
− dx

] p
N+2

|An|
2

N+2

≤ γω
p(2−p)
N+2

(
2pn(η1ω)

p

ϱp

)N+p
N+2

|An|1+
p

(N+2)

Expressing the relationship using the variable Yn = |An|
|Qn| , we can rephrase this as:

Yn+1 ≤ γbn(ηp−2
1 θ)

p
N+2Y

1+ p
N+2

n ,
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the constant γ rely only on the data and with b ≡ 2p(1+
N+p
N+2 ). Therefore, as demonstrated in [4, Chapter I,

Lemma 4.1], there exists a positive constant ν0 = ν0(data) ∈ (0, 1) such that the condition for Yn to converge
to 0 as n approaches infinity is:

Y0 ≤ ν0
η2−p
1

θ
.

We fix θ = 2pA and consider η1 so small that

ν0
η2−p
1

θ
≥ 1

which in turn implies that ηp−2
1 < ν0

2pA . Aggregating the bounds on η1, we have to require that

η1 < min

{
1

16
,
1

8
ξ,
( ν0
2pA

) 1
p−2

}
which established the lemma.

4.3 Reduction of Oscillation Neighboring Zero-Continue

Here we consider u to function as a subsolution in the vicinity of its supreme by considering the first case of
4.1. We will assume that the opposite of (4.2) holds then

|{u ⩽ µ− +
1

4
ω} ∩ (0, t̄) +Qϱ| > ν|Qϱ|, for all t̄ ∈ (−(A− 1)ϱp, 0]. (4.8)

So, for these particular t̄ values, there is a presence of some s ∈ [t̄− ϱp, t̄− 1
2νϱ

p] with

|{u(·, s) ⩽ µ− +
1

4
ω} ∩Kϱ| >

1

2
ν|Kϱ|

If it does not satisfied then for any s in the given interval, we have

|{u ⩽ µ−+
1

4
ω}∩(0, t̄)+Qϱ| =

� t̄− 1
2νϱ

p

t̄−ϱp

|{u(·, s) ⩽ µ−+
1

4
ω}∩Kϱ|ds+

� t̄

t̄− 1
2νϱ

p

|{u(·, s) ⩽ µ−+
1

4
ω}∩Kϱ|ds <

1

2
ν|Kϱ|(ϱp−

1

2
νϱp)+

1

2
νϱp|Kϱ| < ν|Qϱ|,

which is a contradiction to (4.8). Since µ+ − 1
4ω > µ− + 1

4ω holds always, then

|{u(·, s) ⩽ µ+ − 1

4
ω} ∩Kϱ| >

1

2
ν|Kϱ|

By Proposition 3.1, there exists ξ, η2 ∈ (0, 1), such that either |µ+| > ξω or

u ⩽ µ+ − η2ω a.e. in Q̃1,

where Q̃1 is introduced in (4.3). This implies nothing but the reduction of oscillation

essoscQ̃1
u ⩽ (1− η2)ω.

As the case µ+ < −ξω does not hold due to the alternative (4.1)1, we handle the case µ+ > ξω. For the
following three sub sections, our assumptions are

ξω ⩽ µ+ ⩽ 2ω, (4.9)

and {
for all t̄ ∈ (−(A− 1)ϱp, 0] there exists s ∈ [t̄− ϱp, t̄− 1

2νϱ
p]

such that |{u(·, s) ⩽ µ+ − 1
4ω} ∩Kϱ ⩾ 1

2ν|Kϱ|.
(4.10)
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4.3.1 Dissemination of information through measure theory

Lemma 4.2. Assume (4.9) as well as (4.10) are satisfied. There is a specific value for ε within the range (0, 1)
, which relies solely on ν, ξ, and the given data. This value is such that

|
{
u(·, t) ≤ µ+ − εω

}
∩Kϱ| ≥

1

4
ν|Kϱ| for all t ∈ (s, t̄].

Proof. For convenient computational purpose assume s = 0. Utilizing the energy estimate from Proposition 2.5
within the cylinder denoted as Q := Kϱ × (0, δε2−pϱp], where k = µ+ − εω, with δ > 0 and 0 < ε ≤ 1

2ξ, which
will be determined later. It is worth noting that in this context, we must emphasize that k ≥ 1

2ξω. We will select
a standard non-negative, time-independent cutoff function ζ(x, t) ≡ ζ(x), which equals 1 within K(1−σ)ϱ, where
σ(0, 1), and becomes zero on ∂Kϱ, while also satisfying the condition |Dζ| ≤ (σϱ)−1. Under these conditions,
for all 0 < t < δε2−pϱp, we can deduce that:

�
Kϱ×{t}

� u

k

sp−2(s− k)+ ds ζp dx ≤
�
Kϱ×{0}

� u

k

sp−2(s− k)+ ds ζp dx+ γ

�
Q

(u− k)p+|Dζ|p dx dt.

Further estimation on the 1st term on the right can be made by using (4.10) yields

�
Kϱ×0

� u

k

sp−2(s− k)+ dsζp dx ≤ (1− 1

2
ν)|Kϱ|

� µ+

k

sp−2(s− k)+ ds

The right-hand side’s second term is limited by the following upper bound:

�
Q

(u− k)p+|Dζ|p dx dt ≤ γδ

σp
ε2−p(εω)p|Kϱ| ≤

γδ

σp
ε2ωp|Kϱ|.

Regarding the left-hand side, we approximate it with a lower bound of

�
Kϱ×{t}

� u

k

sp−2(s− k)+ dsζp dx ≥ |{u(·, t) > kε̃} ∩K(1−σ)ϱ|
� kε̃

k

sp−2(s− k)+ ds,

where kε̃ = µ+ − ε̃εω for some ε̃ ∈ (0, 1). Recalling ξω ≤ µ+ ≤ 2ω, we may get

� kε̃

k

sp−2(s− k)+ ds ≥ γωp−2(εω)2 = γε2ωp.

A further and similar application of Lemma 3.1 then gives

|{u(·, t) > kε̃} ∩K(1−σ)ϱ| ≤
� µ+

k
|s|p−2(s− k)+ ds� kε̃

k
|s|p−2(s− k)+ ds

(1− 1

2
ν)|Kϱ|+

γδ

σp
|Kϱ|

The fractional integral term on the right hand can be revised as

1 + Iε where Iε =

� µ+

k
|s|p−2(s− k)+ ds� kε̃

k
|s|p−2(s− k)+ ds

.

We can further approximate the integral Iε ≤ γε̃, with the aid of ξω ≤ µ+ ≤ 2ω and k ≥ 1
2ξω. Using the above

estimate provide a route to

|{u(·, t) > kε̃} ∩Kϱ| ≤ (1− 1

2
ν)(1 + γε̃)|Kϱ|+

γδ

σp
|Kϱ|+Nσ|Kϱ|.
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Now we select ε̃ so that

(1− 1

2
ν)(1 + γε̃) ≤ 1− 3

8
ν.

This determines ε̃ in relation to both p and ν. Next, we set σ to be ν
16N and pick a sufficiently small δ to ensure

that γδ
σp ≤ 1

16ν. Lastly, we select the parameter ε such that δε2−p ≥ 1. We reach the completion of the proof
by replacing ε̃ε as ε.

As t̄ is despotic in nature, we therefore acquire the measure theoretical information

|{u(·, t) ≤ µ+ − εω} ∩Kϱ| ≥
1

4
ν|Kϱ| for all t ∈ (−(A− 1)ϱp, 0]. (4.11)

4.3.2 Reducing the measure in the vicinity of the supremum

By ε = ε(data) ∈ (0, 1) in Lemma 4.2. We choose A in the form A = 2j∗(p−2) + 1 with some j∗ and define
Qϱ(θ) = Kϱ × (−θϱp, 0] with θ = 2j∗(p−2).

Lemma 4.3. For any positive integer j∗, there exists a positive constant γ = γ(data) in such a way that the
following holds: ∣∣∣{u ≥ µ+ − εω

2j∗

}
∩Qϱ(θ)

∣∣∣ ≤ γ

j
p−1
p

∗

|Qϱ(θ)|

provided that (4.9) and (4.11) hold.

Proof. We utilize the energy estimate from Proposition 2.5 within the cylinder K2ϱ × (−θϱp, 0] using levels
kj = µ+−2−jεω for j = 0, 1, 2, · · · , j∗−1. Additionally, we employ a time free cutoff function ζ(x, t) ≡ ζ(x) with
specific properties: it takes the value 1 in Kϱ, becomes zero on the boundary of K2ϱ, and satisfies |Dζ| ≤ 2ϱ−1.
Consequently, we obtain:

�
Qϱ(θ)

|D(u− kj)+|p dx dt

≤
�
K2ϱ×{−θϱp}

ζpA+(kj , u) dx+ γ

�
K2ϱ×(−θϱp,0]

(u− kj)
p
+|Dζ|p dx dt.

Let’s now analyze the components on the right-hand side individually, starting with the first one. Leveraging
Lemma 2.3 and considering the inequality ξω ≤ µ+ ≤ 2ω, we can establish that:

�
K2ϱ×{−θϱp}

ζpA+(kj , u) dx ≤ γωp−2(
εω

2j
)2|K2ϱ| ≤

γ

ϱpεp−2
(
εω

2j
)p|Qϱ(θ)| ≤

γ

ϱp
(
εω

2j
)p|Qϱ(θ)|.

The parameter ε = ε(data) is already fixed earlier. Therefore, we can summarize the aforementioned manipu-
lation as follows: �

Qϱθ

|D(u− kj)+|p dx dt ≤ γ

ϱp
(
εω

2j
)p|Qϱ(θ)|

For each t within the interval (−θϱp, 0], we employ [4, Chapter I, Lemma 2.2] to analyze u(·, t) separately within
the cube Kϱ, considering ascending levels kj+1 > kj . This allows us to explore the following details:∣∣{u(·, t) ≤ µ+ − εω} ∩Kϱ

∣∣ ≥ 1

4
ν|Kϱ| for all t ∈ (−θϱp, 0].

This take us to

(kj+1 − kj)|{u(·, t) < kj+1} ∩Kϱ| ≤
γϱN+1

|{u(·, t) < kj} ∩Kϱ|

�
{kj<u(·,t)<kj+1}∩Kϱ

|Du(·, t)| dx
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≤ γϱ

ν

[�
{kj<u(·,t)<kj+1}∩Kϱ

|Du(·, t)|p dx

] 1
p

|{kj < u(·, t) < kj+1} ∩Kϱ|1−
1
p

=
γϱ

ν

[�
{kj<u(·,t)<kj+1}∩Kϱ

|D(·, t)|p dx

] 1
p

[|Aj(t)| − |Aj+1(t)|]1−
1
p .

In the final line, we employed the shorthand notation Aj(t) := {u(·, t) < kj}∩Kϱ. Moving forward, we integrate
the last inequality with respect to t over the interval (−δϱp, 0] and utilize Hölder’s inequality in the time domain.
Using the abbreviation Aj = {u < kj} ∩Qϱ(θ), this process leads us to:

εω

2j+1
|Aj+1| ≤

γϱ

ν

[�
Qϱ(θ)

|D(u− kj)−|p dx dt

] 1
p

[|Aj | − |Aj+1|]1−
1
p

≤ γ
(εω
2j

)
|Qϱ(θ)|

1
p [|Aj | − |Aj+1|]1−

1
p .

Taking p
p−1 th power on both sides implies

|Aj+1|
p

p−1 ≤ γ|Qϱ(θ)|
1

p−1 [|Aj | − |Aj+1|].

To wrap up the proof, we follow the same steps as we did in the proof of Lemma 3.3. Aggregating above
estimates to j from 0 to j∗ − 1 and obtain

j∗|Aj∗ |
p

p−1 ≤ γ|Qϱ(θ)|
p

p−1 .

This leads to the conclusion of the assertion, i.e.

|Aj∗ | ≤
γ

j
p−1
p

∗

|Qϱ(θ)|.

This concludes the demonstration.

4.3.3 A lemma similar to DiGiorgi

The symbol ε ∈ (0, 1) as earlier in Lemma 4.2.

Lemma 4.4. Given that (4.9) and (4.10) are satisfied, let there be a constant ν1 = ν1(data) lies between 0 and
1 such that if, for a certain j∗ > 1, the measure condition

|{µ+ − u ≤ ε

2j∗
} ∩Qϱ(θ)| ≤ ν1|Qϱ(θ)|,

is met, where θ = 2j∗(p−2), then it follows that

µ+ − u ⩾
εω

2j∗+1
almost everywhere in Q 1

2ϱ
(θ).

Proof. Assume M := 2−j∗ϱω as well as

kn := µ+ − M

2
− M

2n+1
.

In a manner analogous to the proof of Lemma 3.4, we establish the definitions of kn, k̃n, ϱn, ϱ̃n,Kn, K̃n, Qn, and
−
Qn. Define a cutoff function ζ that becomes zero at the boundary of Qn and equals 1 within Q̄n, satisfying the
condition:

|Dζ| ≤ γ
2n

ϱ
and |ζt| ≤ γ

2pn

θϱp
.
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The energy inequality can be computed using ξω ≤ µ+ ≤ 2ω and similar to the way of proof to Lemma 3.4 and
obtain

ωp−2 ess sup
−θϱ̃p<t<0

�
K̃n

(u− k̃n)
2
+ dx+

�
Q̄n

|D(u− k̃n)+|p dx dt

≤ γ
2pn

ϱp
Mp

(
1 +

ωp−2

θMp−2

)
|An| = γ

2pn

ϱp
Mp(1 + ε2−p)|An|,

where the following is used
An = {u > kn} ∩Qn.

Consider a cutoff function ζ that becomes zero on the parabolic boundary of Q̄n and equals 1 in Qn+1. Utilizing
the Sobolev embedding from [4, Chapter I, Proposition 3.1] and the previous estimate, we can infer that:(

M

2n+2

)p

|An+1| ≤
�

−
Qn

|(u− k̃n)
p
+ζ

p dx dt

≤

[�
−
Qn

[(u− k̃n)+ζ]
pN+2

N dx dt

] N
N+2

|An|
2

N+2

≤ γ

[�
−
Qn

|D[(u− k̃n)+ζ]|p dx dt

] N
N+2

×

[
ess sup

−θϱ̃p
n<t<0

�
K̃n

(u− k̃n)
2
− dx

] p
N+2

|An|
2

N+2

≤ γω
p(2−p)
N+2

(
2pnMp

ϱp

)N+p
N+2 (

1 + ε2−p)
)N+p

N+2 |An|1+
p

N+2 .

Setting Yn = |An|
|Qn| , we arrive at

Yn+1 ≤ γbn
(
θMp−2

ωp−2

) p
N+2 (

1 + ε2−p)
)N+p

N+2 |Yn|1+
p

N+2

≤ γbnε
p(p−2)
N+2

(
1 + ε2−p)

)N+p
N+2 |Yn|1+

p
N+2

where b = 4p and γ = γ(data). According to [4, Chapter I, Lemma 4.1], we can identify a constant ν1 =
ν1(data) ∈ (0, 1), ensuring that Yn converges to 0 when we impose the condition that Y0 ≤ ν1. Now, we can
proceed to conclude the reduction of oscillation near the supremum in the remaining scenario where (4.9) and
(4.10) are met. We use the constants ε ∈ (0, 1), γ > 0, and ν1 ∈ (0, 1) as defined in Lemmas 4.2, 4.3, and 4.4.
Subsequently, we select a positive integer j∗ in the following manner:

γ

j
p−1
p

∗

≤ ν1.

Successively applying Lemmas 4.2, 4.3, and 4.4 results in the following:

µ+ − u ≥ εω

2j∗+1
a.e. in Q̄1,

where Q̄1 is defined in (4.3). Here we used the fact Q̄1 ⊂ Q 1
2ϱ
(θ), since θ > 1. This signifies a decrease in

oscillation, That is to say, we possess

ess osc
Q̄1

u ≤
(
1− ε

2j∗+1

)
ω.
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4.3.4 Ending of the reduction of oscillation around zero

Firstly, define the following quantities

λ = min

{
1

4
,

1

2A
1
p

}
, η̄ = min

{
η, η1, η2,

ε

2j∗+1

}
.

We proceed by induction. For this, assume up to i = 1, 2, · · · , j − 1, we have constructedϱi = λϱi−1, ωi = (1− η̄)ωi−1, Qi = Kϱi
× (−ϱpi , 0],

µ+
i = ess supQi

u, µ−
i = ess infQi u, ess oscQi u =≤ ωi.

For i = 1, 2, · · · , j − 1, we considered the initial scenario in (4.1), i.e.

µ+
i ≥ ξωi and µ−

i ≤ ξωi

where ξ is established in Proposition 3.1. By applying the reasoning presented in the preceding sections repeat-
edly, we obtain the following for every i = 1, 2, · · · , j

ess osc
Qi

u ≤ (1− η̄)ωi−1 = ωi.

Hence, by repeating this recursive inequality, we derive the following for each i = 1, 2, · · · , j,

ess osc
Qi

u ≤ (1− η̄)
i
ω = ω

(
ϱi
ϱ

)β0

where β0 =
ln(1− η̄)

lnλ
. (4.12)

4.3.5 Reduction of oscillation off from zero

At first, suppose that j is the earliest index for which the second scenario in (4.1) is met, i.e.,

either µ−
j > ξωj or µ+

j < −ξωj .

We treat the either case, for instance, µ−
j > ξωj , The other scenario is similar or equivalent in nature. We

notice that because j is the initial index at which this occurs, it implies that µj−1 < ξωj−1. Furthermore,

µ−
j ≤ µ−

j + ωj−1 − ωj ≤ (1 + ξ)ωj−1 − ωj =
ξ + η̄

1− η̄
ωj .

Therefore, we obtain,

ξωj ≤ µ−
j ≤ ξ + η̄

1− η̄
ωj . (4.13)

The inclusion of condition (4.13) indicates that, starting from point j, equation (1.1) adopts the characteristics
of a parabolic equation with a p-Laplacian type behavior in the region Qj . Similar to the situation in the
singular case when 1 < p < 2, the subsequent effort to minimize oscillations closely follows the strategy detailed
in [29, section 5.2] where we have used intrinsic scaling explained in [32].

5 Existence of infinite extinction

Proof of Theorem 1.2: In this section we will assume that the solution to (1.1) is non-negative. Assuming
this we will prove that there are infinite time extinction to the equation (1.1). Now its turn to prove our second
Theorem 1.2.
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Proof. Multiplying (1.1) by u we have

(p− 1)

�
Ω

up−1∂tu dx+

�
Ω

|∇u|p dx = 0

Using Sobolev-Poincare inequality, we have

p− 1

p

d

dt

�
Ω

up dx+ C−p
p

�
Ω

up dx ⩽ 0

Assuming Ψ(t) =
�
Ω
up dx we have,

Ψ′

Ψ
⩽ − p

p− 1
C−p

p

Integrating the above differential inequality on 0 ⩽ s ⩽ t

� t

0

Ψ′

Ψ
dt ⩽ −

� t

0

p

p− 1
C−p

p dt

Then

lnΨ(s)

∣∣∣∣t
0

⩽
p

p− 1
C−p

p t

Consequently, this suggests that

Ψ(t) ⩽ Ψ(0)e
p

p−1C
−p
p t

It is evident that

0 ⩽
�
Ω

up(t) dx ⩽

(�
Ω

up
0 dx

)
e

p
p−1C

−p
p t

This indicates that extinction of u will be at infinity.

6 Conclusion

This article provides an overview indicating that the Hölder continuity of a weak solution to Trudinger’s
equation has been confirmed within a confined region in a Sobolev space. Additionally, it is noted that the
nonnegative weak solution to the mentioned equation experiences infinite-time extinction.
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[4] DiBenedetto, E., Degenerate Parabolic Equations, Universititext, Springer-Verlag, New York, (1993).

[5] E. DiBenedetto, On the local behaviour of solutions of degenerate parabolic equations with measurable
coefficients, Ann. Scuola Norm. Sup. Pisa CI. Sci. (4), 13 (3): 487-535 (1986).

[6] DiBenedetto, E., Gianazza, U., and Vespri, V., Harnack’s inequality for degenerate and singular parabolic
equations, Springer Monographs in Mathematics, (2012).



Sarkar / GANIT J. Bangladesh Math. Soc. 43.2 (2023) 75–91 91

[7] E. DiBenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math.
J., 32: 83-118 (1983).

[8] Evans, L., C., Partial Differential Equations, American Mathematical Society, Providence, RI, (1998).

[9] F. Feng and F.J. Molz, A 2-d diffusion based, wetland flow model, J. Hydrol., 196 : 230-250 (1997).

[10] U. Giannaza and V. Vespri, A Harnack inequality for solutions of doubly nonlinear parabolic equations,
J. Appl. Funct. Anal., 1(3) : 271-284 (2006).

[11] U. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate function-
als, Manuscripta Math. 57(1): 55-99(1986).

[12] T.V. Hromadka, C.E. Berenbrock, J.R. Freckleton and G.L. Guymon, A two dimensional dam- break
flood plain model, Adv. Water Resour. 8(1): 7-14(1985).
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