
Available online at https://ganitjournal.bdmathsociety.org/

GANIT: Journal of Bangladesh Mathematical Society

GANIT J. Bangladesh Math. Soc. 43.2 (2023) 65–74

DOI: https://doi.org/10.3329/ganit.v43i2.70799.

Quantum State Reconstruction Through Online Shadow

Tomography: Theoretical Framework and Simulation Results

Rashedul Islam Seum, Md. Nirab Hossain *, Jenia Fardousi Koly, Md. Showkat Ali, and Nur Mohammad Salem

Department of Applied Mathematics, Faculty of science, University of Dhaka, Dhaka 1000, Bangladesh

ABSTRACT

The purpose of this research work is to learn the quantum states in an ideal environments analytically, compu-
tationally, and graphically. The analysis starts with the learning of quantum states in identity channels with
the help of the Regularized Follow the Leader (RFTL) algorithm. Our machine will try to learn the states
based on the previous information, which is called the online learning model. The objective of this problem is to
minimize regret by utilizing a learning algorithm that successively anticipates quantum states through observed
measurements and losses. We have to produce many copies of quantum state ρ to perform analysis on them,
which indicates the use of the shadow tomography approach in an ideal situation. Our goal is to learn the
shadow of the state ρ by using a series of measurement operators that have two outcomes in nature. Aaronson
et al. [1] developed an online setting for a non-realizable case, where the maximum possible loss is O(

√
Tn)

for the best possible state up to T−measurements . It is noteworthy that this outcome is an extension of the
Aaronson PAC-like findings [2].

© 2023 Published by Bangladesh Mathematical Society

Received: September 25, 2023 Accepted: December 29, 2023 Published Online: December 31, 2023

Keywords: Quantum State Tomography; Shadow Tomography; Online Learning; Quantum Machine Learning;
Learnability of Quantum States; Regularized Follow The Leader Algorithm

1 Introduction

In the early 1980s, machine learning became an active utility of research in theoretical computer science.
Probably Approximately Correct (PAC) model was developed by Leslie Valiant [3], it plays a vital role to pop-
ularize machine learning and is based on the previous model that has been used in statistics and was developed
by Vapnik and others. Leslie Valiant, however, imposes a new concept of computational complexity in this
model. The mathematical reliability definition attributes an efficient framework to learn the target concepts.
Deutsch’s definition of a Universal Turing Machine [4] subsumed quantum computing into digital realm, and
Peter Shor’s work on his factoring algorithm [5] pushed it one step further.

Quantum computing fundamentally aims to learn the description of an unknown quantum state ρ. Traditionally,
this problem is known as quantum state tomography, where the learner attempts to learn the quantum state ρ
by performing arbitrary measurements and come up with an approximate state σ such that both are arbitrarily
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close in trace distance. Scott Aaronson [2] presented this problem in the Probably Approximate Correct (PAC)
framework, which has had a significant impact on quantum computing. In this article, instead of learning
ρ under an absolute metric (such as trace distance), we only wish to learn ρ with respect to a pre-specified
underlying distribution on the measurements.

Scoot Aaronson in a later work [1] extended the PAC setting into an online setting where we answer the
question: is it true that given a sequence E1, E2, · · · of yes/no measurements, where each Et is followed shortly
by a dTr(Etρ), there is a way to anticipate dTr(Etρ) by guesses yt ∈ [0, 1] in such a way that |yt −Tr(Etρ)| > ϵ
at most O(n) times, given ϵ > 0 and n is the number of qubits? It turns out that the answer is yes, and we can
accomplish this efficiently. Note that instead of learning the full quantum state, we are learning the actions of
a quantum state subject to a measurement which are referred to as the shadows of the quantum state.

2 Background and Literature Review

In this section, we will discuss three learning models: the Exact learning model, PAC learning model and
Agnostic learning model introduced by Angluin, Valiant, and Haussler and Kearns et al., respectively. The
three learning models will be described both in classical and quantum settings. We will introduce the concept
of Quantum Example Oracle (QPEX) in all of those models. Most importantly, the models will be in an
oracular setting. That is, we shall consider a concept class C which can be considered as a set of functions as
c : {0, 1}n 7→ {0, 1} or c : [N ] 7→ {0, 1}, where N is a sepcified bit string.

2.1 The Query Model of Computation

The main objective of this model is to compute a Boolean function {0, 1}n 7→ {0, 1}. Here we encode the
bits of X instead of knowing it explicitly, i.e., the oracle will return xi for some given i ∈ [N ]. The cost of such
an algorithm is equal to the number of queries to the oracle or number of times an oracle is accessed.
Formally a quantum query is equivalent to constructing the following unitary over n+ 1 qubits:

Ox : |i, b⟩ 7→ |i, b⊕ xi⟩

Where i ∈ 0, 1, · · ·N − 1, and N = 2n, b ∈ [0, 1].

2.2 Exact Learning

Classical Exact Learning: A learner A is trying to learn something for a target concept c ∈ C that
has given access to some specific membership oracle MQ(c). MQ(c) gives back the label c(x) for the input
x ∈ {0, 1}n. A learning algorithm A is said to be an exact learning algorithm if the following condition is
satisfied:
For all c(x) there is a hypothesis output h(x) such that

Pr(h(x) = c(x)) ≥ 2
3 , ∀x ∈ {0, 1}n (2.1)

As we can see, the full procedure is based on the identification of some actual oracles c ∈ C which is why this
is also known as “Oracle Identification”. The query complexity of the learner A is given by for all c ∈ C and
internal randomness x the maximum number of accesses to the oracle MQ(c).

Quantum Exact Learning: Analogue to classical, in quantum setting, the learner will have access to Quantum
Membership Oracle QMC(c) instead of Membership Oracle MQ(c) in classical ones, that is the mapping:

QMC(c) : |x, b⟩ 7→ |x, b⊕ c(x)⟩, x ∈ {0, 1}n, b ∈ {0, 1}

The matrices are equivalent in both setups. The query complexity is defined as the minimum number of queries
over all C. By using the truth table of N = 2n-bit, each concept c ∈ C can also be defined in an alternative
way. If we can maximize query complexity over all C ⊆ {0, 1}N such that |C| = M then we can define the
(N,M)-query complexity.
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2.3 Probably Approximate Correct (PAC) Learning

Classical PAC Learning: A learner A is trying to learn from a target concept c ∈ C and a distribution
D : {0, 1}n 7→ [0, 1] which together make a random example oracle PEX(c,D). Note that PEX(c,D) will give
(x, c(x)), where x is taken from the unknown distribution D. We can define (ϵ, δ)-PAC learning for algorithm
A if-

Prx∈D([h(x) ̸= c(x)] ≤ ϵ) ≥ 1− δ

Here, the learner is independent of the output hypothesis, which is not a member of the target concept. If we
can do so, then it is called proper PAC learning. The sample complexity for A is defined as the maximum calls
to PEX(c,D). The (ϵ, δ)-PAC sample complexity is defined as the minimum over all (ϵ, δ)-PAC.

Quantum PAC Learning: Here the learner [6] is given access to Quantum Example Oracle QPEX(c,D)
and which uses superposition to give a quantum example.∑

x∈{0,1}

√
D(x)|x, c(x)⟩

A learner here performs a POVM measurement on the state, and for each outcome, the learner assigns a
hypothesis given that he has multiple copies of the quantum example. We can also define here (ϵ, δ) quantum
PAC and the sample complexity is the minimum number of queries over all QPEX(c,D).

2.4 Quantum State Tomography and Learning Quantum States

State tomography is a process where an apparatus is capable of producing many copies of the quantum
state, and by performing suitable measurements, we can get a description of the system. This description will
give the accuracy of the apparatus. These experiments involve sending quantum states over long distances. But
how does the receiving party verify that the state that they receive is the same as the one that was sent by the
other party? This is a problem of significant practical importance and is precisely what tomography aims to
solve.
The question is, to learn the state ρ density matrix of dimension (2n× 2n) at ϵ trace distance, how many single
copies of the state are needed? Depending on the assumptions taken on the ρ it depends on, if there is no
assumption, then measurement numbers grow exponentially with n. Even if we take joint measurements, the
number of measurements also grows exponentially [7, 8].
More generally, state tomography is the process of learning the given unknown mixed state ρ ∈ Cd×d. But it is
restricted because it is then possible to recreate the state ρ if all of the information regarding it is given, which
also indicates that we are violating no-cloning theorem. It turns out that we can’t know a lot of detail about
the mixed state.
Let’s say the state ρ is measured in basis {|v1⟩ , |v2⟩ , · · · |vm⟩} and after measurement the state is |vi⟩. The
probability ⟨vi|ρ|vi⟩ is the only quantity we can measure, and we are guessing that the probability amplitude is
somewhat large. This statement provides limited but valuable insights regarding the state ρ. But as we have
observed, the state is now broken. So the adjustment will be: we need a lot of copies so that we can perform
measurements remotely. Suppose there is an apparatus that can make n copies of the state ρ. As the state ρ is
too restrictive, so our second adjustment: with high probability, the output ρ̃ ∈ Cd×d is the approximation of
the original state ρ.

In generally, a Hermitian matrix of 2n × 2n describe a n−qubit quantum states which have essentially need to
be trace of unity, which leads to the fact that it needs ∼ 22

n

real parameters. Aaronson has shown in his paper
[2] how to effectively learn those states.

Definition 1. In quantum state tomography problem, we want to estimate the mixed state ρ which has dimension
d given n copies of the state ρ⊗n where n, d ∈ R. Specifically, this process has the following input and output:

Input: With an error margin ϵ ≥ 0, a tensor product of power n, which is ρ⊗n of the mixed state ρ.
Output: Approximate state ρ̃ ∈ Cd×d such that the trace distance is within the error margin with high
probability,

dTr(ρ, ρ̃) ≤ ϵ
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In general, a Hermitian matrix of dimension 2n× 2n represent n−qubit system has trace unity and has 22
n

real
parameters. Aaronson studied in his paper how to effectively learn those states [2]. We studied the case with
the restriction of two outcome measurements, Ei and I−Ei, such that Tr(Eiρ) denoted the probability of each
outcome.
Aaronson stated a very important PAC-learning result [2] which is the fundamental point for quantum state
tomography. The result is that, from O(n) measurement outcomes, which are randomly selected i.i.d. from an
unknown distribution D on the complete set of two-outcome measurements, it is possible to generate the state
ρ̃ such that it has roughly the same expectation as the state ρ. Formally, this can be written as:

Theorem 1. For the parameters γ, δ, ϵ > 0 ∃ learner has the following: For the set of two outcome mea-
surements Ei which are taken i.i.d. from distribution D and for given T = n · poly( 1ϵ ,

1
γ , log(δ)) and for the

measurement results (E1, b1), (E2, b2), · · · , (En, bn) where bi is a bit with Pr(bi = 1) = Tr(Eiρ) with the proba-
bility ≥ 1− δ, a classical description ρ̃ is produced by the learner as:

PrE∼D [Tr(Eρ̃)− Tr(Eρ) > γ] ≤ ϵ

The proof of this theorem uses the results of Anthony and Bartlett [9] and Bartlett and Long [10] on γ
shattering dimension, which uses a Boolean function and VC dimensions as follows:

Proof. Let, for a set E there be a class of function f : E 7→ [0, 1]. If there exists α1, α2, · · · , αd for some set of
measurements S = {E1, E2, · · · , Ed} such that there exists f ∈ C for some Z ⊆ [d]:
Case-1: If i ∈ Z then f(Ei) ≥ αi + γ
Case-2: If i /∈ Z then f(Ei) ≤ αi − γ
The largest set S that is shattered by C is known as the γ−fat shattering dimension of C.

This indicates that with probability αi with respect to the measurement Ei, which is recovered from a bit
zi with a γ−fat shattering there exists ρz for each string z ∈ {0, 1}d. The encodings from the classical state to
the quantum state z 7→ ρz are called quantum random access codes. Aaronson showed that for known bounds
[11] of such codes, d = O( bγ2 ).

2.5 Online Learning of Quantum States

According to Aaronson the measurement operators are simply drawn from distribution D leads to a major
drawback; moreover it is the same distribution from where the training samples are picked for testing the
learners performance. In the context of learning theorist this leads to an inefficient situation as they failed for
the evolving environments. In order to overcome this, we need to focus on the online learning setting which is
based on the learning theorem by Aaronson. Mathematically, is it true that, given a sequence E1, E2, · · · of
yes/no measurements, where each Et is followed shortly by a dTr(Etρ), there is a way to anticipate dTr(Etρ)
by guesses yt ∈ [0, 1] in such a way such that |yt − Tr(Etρ)| > ϵ at most O(n) times, given ϵ > 0 and n is the
number of qubits? This paper aims to address this question.

The query model of computation is generalized when we try to find out answer of our above question which
eventually leads to online setting and regret minimization. We will use the main results from paper [1].

Theorem 2. Let E1, E2, · · · be a sequence of two outcome measurements, and let ρ be an n−qubit mixed state.
Here the measurement operators are presented to the learner one by one, where each of them is associated with
a value bt ∈ [0, 1] such that |Tr(Etρ)− bt| < ϵ

3 . Then an explicit strategy exists for generating hypotheses states
ρ̃1, ρ̃2, · · · such that |Tr(Etρ̃t)− Tr(Etρ)| for at most O( nϵ2 ) values of t.

Proof. A sketch of the proof is as follows:

1. We will start from a maximally mixed state, ρ̃1 = I
2n .

2. Now for each time step t = 1, 2, 3, · · · we have the following:

(a) Predict ρ̃t. Due to the measurement Et, the learner has to face loss lt : R 7→ R. The loss function
lt(Tr(Etψ)) is surely L−Lipschitz and convex. Let l′t(x) denotes the subderivative with respect to x.

(b) Let’s define ∇t := l′t(Tr(Etρ̃t))Et. The decision will be updated following the RFTL algorithm with
the von Neumann regularizer as follows:

ρ̃t+1 = argmin
ψ

{
η

t∑
s=1

Tr(∇sψ) +

2n∑
i=1

λi(ψ) log λi

}
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(c) The iteration’s progression is as follows: Let at tth iteration the hypothesis be ρ̃t. The current
hypothesis will run if the value of the loss function is l > 2ϵ

3 . This algorithm makes at most O( nϵ2 )
such updates.

There is an alternative approach to updating the hypothesis, which is called the Matrix Multiplicative
Weights (MMW) discussed in [12] and the new update rule would be:

ρ̃t+1 =
exp(− η

L

∑t
τ=1 ∇τ )

Tr(exp(− η
L

∑t
τ=1 ∇τ ))

The regret of theorem 2 can be found by setting η =
√

(log 2)n
2TL2 and is bounded by 2L

√
(2log2)Tn, on the

other hand, while using MMW updates by using η =
√

(log 2)n
4T the regret is bounded by 2L

√
(log 2)Tn, where

the regret RT is defined by:

RT :=

T∑
t=1

lt(Tr(Etρ̃t))− min
ψ∈Cn

T∑
t=1

lt(Tr(Etψ))

Therefore in general for an n−qubit system it can be shown that if E1, E2, · · · be a sequence of two outcome
measurements and l1, l2, · · · be the corresponding convex and L−Lipschitz loss function then there Aaronson
et. al. [1] guarantees that there is a learning algorithm with regret RT = O(L

√
Tn).

3 Computational Simulations

In this final section, we will visualize our simulations for both online learning of quantum states and noisy
online learning of quantum states. In the case of visualization, fidelity is crucial to understanding the topic
clearly.

Fidelity: The fidelity between two quantum states, ϕ and ϕ̃ is denoted by F and is defined as

F (ϕ, ϕ̃) = Tr

[√√
ϕϕ̃

√
ϕ

]
It represents the quality of learning between the approximate and true quantum states. The value of F has
the range [0, 1], where 0 indicates either the states are orthogonal or there exists dissimilarity, and 1 indicates
that the two states are completely identical.

Fidelity between two pure states ϕ = |ψ1⟩ ⟨ψ1| and ϕ̃ = |ψ2⟩ ⟨ψ2| reduces to its square overlap:

F (ϕ, ϕ̃) = |⟨ψ1|ψ2⟩|2

3.1 Simulations of Online Learning of Quantum States

Using the RFTL algorithm for learning quantum states, simulations were performed using Python program-
ming language. The outcomes of the simulations are depicted in graphical form.

Initially, we will demonstrate the loss and fidelity values for various iterations and learning rates. Subse-
quently, we will visually represent these values through graphs and draw conclusions based on our analysis.

In the simulation, we are trying to learn the target state: ρ = |0⟩ ⟨0| =
(
1 0
0 0

)
.
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Case I: Simulation for online learning of quantum state for η = 0.5 and T = 10:

Table 3.1: Loss and Fidelity for η = 0.5 and T = 10.
Iteration Loss Fidelity
t = 1 0.2475 0.7071
t = 2 0.9851 0.0000
t = 3 0.4060 0.6065
t = 4 0.4602 0.5739
t = 5 0.1413 0.5805
t = 6 0.1160 0.6065
t = 7 0.3943 0.6065
t = 8 0.1427 0.5810
t = 9 0.4104 0.6065
t = 10 0.1284 0.5819
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Figure 3.1: Learning Quantum States with η = 0.5 and T = 10.

It is expected that the identity channel will suffer a higher loss initially, but with time, the machine will
learn to estimate the states’ results with increasing fidelity. Now we analyze the results by increasing the value
of the time step.
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Case II: Simulation for online learning of quantum state for η = 0.5 and T = 20:

Table 3.2: Loss and Fidelity for η = 0.5 and T = 20.
Iteration Loss Fidelity
t = 1 0.2597 0.7071
t = 2 1.0026 0.0000
t = 3 0.1351 0.6065
t = 4 0.3932 0.6066
t = 5 0.4440 0.5775
t = 6 0.1289 0.5818
t = 7 0.4030 0.6065
t = 8 0.1379 0.5810
t = 9 0.3952 0.6065
t = 10 0.4348 0.5819
t = 11 0.4408 0.5841
t = 12 0.1344 0.5842
t = 13 0.1096 0.6065
t = 14 0.3922 0.6065
t = 15 0.1350 0.5829
t = 16 0.4086 0.6066
t = 17 0.1360 0.5832
t = 18 0.1148 0.6065
t = 19 0.4099 0.6065
t = 20 0.1302 0.5834
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Figure 3.2: Learning Quantum States with η = 0.5 and T = 20.

Again, with respect to the increasing time step, the identity channel will suffer a higher loss initially, but
eventually, the machine will learn to estimate the state’s results with increasing fidelity. And most importantly,
the each of the graphs is moving towards its equilibrium.
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Case III: Simulation for online learning of quantum state for η = 0.5 and T = 30:

Table 3.3: Loss and Fidelity for η = 0.5 and T = 30.
Iteration Loss Fidelity
t = 1 0.2591 0.7071
t = 2 1.0001 0.0014
t = 3 0.3928 0.6065
t = 4 0.1335 0.5584
t = 5 0.3876 0.6065
t = 6 0.1286 0.5661
t = 7 0.3876 0.6065
t = 8 0.1366 0.5687
t = 9 0.1071 0.6065
t = 10 0.1071 0.6065
t = 11 0.4049 0.6066
t = 12 0.1285 0.5708
t = 13 0.1045 0.6065
t = 14 0.1063 0.6065
t = 15 0.3985 0.6065
t = 16 0.4497 0.5717
t = 17 0.4523 0.5756
t = 18 0.1329 0.5753
t = 19 0.3958 0.6065
t = 20 0.1391 0.5722
t = 21 0.4037 0.6065
t = 22 0.1323 0.5724
t = 23 0.3897 0.6065
t = 24 0.1326 0.5725
t = 25 0.1037 0.6065
t = 26 0.1071 0.6065
t = 27 0.1083 0.6065
t = 28 0.4039 0.6065
t = 29 0.4504 0.5728
t = 30 0.4476 0.5764
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Figure 3.3: Learning Quantum States with η = 0.5 and T = 30.

Finally, using theoretical and graphical analysis, we can conclude that the machine is exhibiting proficient
learning capabilities in relation to the identity channel. By increasing the time step and learning rate with some
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specific tolerance, fidelity increases and loss decreases. After a long time, their parallel movement indicate the
effectiveness of the RFTL algorithm.

4 Conclusion

This article validates that the RFTL algorithm is applied for learning quantum states under an ideal envi-
ronment. It shows the efficacy of RFTL algorithm as the number of iterations increases. Simulation shows that
loss and fidelity curves are moving to an equilibrium with gradual time step progression. This convergence of
loss and fidelity over time serves as a testament to the effectiveness of this approach, offering exciting prospects
for further research and practical applications in Quantum Machine Learning. In future, further generalization
in this setting to a noisy channel can be established, where the state will change at every round with respect to
a noise parameter.
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